InstructionCombining.cpp revision e104f1bccbf828dcbe4e82709c8ca97d8bf018d5
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm-c/Initialization.h"
52#include <algorithm>
53#include <climits>
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57STATISTIC(NumCombined , "Number of insts combined");
58STATISTIC(NumConstProp, "Number of constant folds");
59STATISTIC(NumDeadInst , "Number of dead inst eliminated");
60STATISTIC(NumSunkInst , "Number of instructions sunk");
61
62// Initialization Routines
63void llvm::initializeInstCombine(PassRegistry &Registry) {
64  initializeInstCombinerPass(Registry);
65}
66
67void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
68  initializeInstCombine(*unwrap(R));
69}
70
71char InstCombiner::ID = 0;
72INITIALIZE_PASS(InstCombiner, "instcombine",
73                "Combine redundant instructions", false, false)
74
75void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
76  AU.addPreservedID(LCSSAID);
77  AU.setPreservesCFG();
78}
79
80
81/// ShouldChangeType - Return true if it is desirable to convert a computation
82/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
83/// type for example, or from a smaller to a larger illegal type.
84bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
85  assert(From->isIntegerTy() && To->isIntegerTy());
86
87  // If we don't have TD, we don't know if the source/dest are legal.
88  if (!TD) return false;
89
90  unsigned FromWidth = From->getPrimitiveSizeInBits();
91  unsigned ToWidth = To->getPrimitiveSizeInBits();
92  bool FromLegal = TD->isLegalInteger(FromWidth);
93  bool ToLegal = TD->isLegalInteger(ToWidth);
94
95  // If this is a legal integer from type, and the result would be an illegal
96  // type, don't do the transformation.
97  if (FromLegal && !ToLegal)
98    return false;
99
100  // Otherwise, if both are illegal, do not increase the size of the result. We
101  // do allow things like i160 -> i64, but not i64 -> i160.
102  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
103    return false;
104
105  return true;
106}
107
108
109/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
110/// operators which are associative or commutative:
111//
112//  Commutative operators:
113//
114//  1. Order operands such that they are listed from right (least complex) to
115//     left (most complex).  This puts constants before unary operators before
116//     binary operators.
117//
118//  Associative operators:
119//
120//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
121//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
122//
123//  Associative and commutative operators:
124//
125//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
126//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
127//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
128//     if C1 and C2 are constants.
129//
130bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
131  Instruction::BinaryOps Opcode = I.getOpcode();
132  bool Changed = false;
133
134  do {
135    // Order operands such that they are listed from right (least complex) to
136    // left (most complex).  This puts constants before unary operators before
137    // binary operators.
138    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
139        getComplexity(I.getOperand(1)))
140      Changed = !I.swapOperands();
141
142    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
143    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
144
145    if (I.isAssociative()) {
146      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
147      if (Op0 && Op0->getOpcode() == Opcode) {
148        Value *A = Op0->getOperand(0);
149        Value *B = Op0->getOperand(1);
150        Value *C = I.getOperand(1);
151
152        // Does "B op C" simplify?
153        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
154          // It simplifies to V.  Form "A op V".
155          I.setOperand(0, A);
156          I.setOperand(1, V);
157          Changed = true;
158          continue;
159        }
160      }
161
162      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
163      if (Op1 && Op1->getOpcode() == Opcode) {
164        Value *A = I.getOperand(0);
165        Value *B = Op1->getOperand(0);
166        Value *C = Op1->getOperand(1);
167
168        // Does "A op B" simplify?
169        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
170          // It simplifies to V.  Form "V op C".
171          I.setOperand(0, V);
172          I.setOperand(1, C);
173          Changed = true;
174          continue;
175        }
176      }
177    }
178
179    if (I.isAssociative() && I.isCommutative()) {
180      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
181      if (Op0 && Op0->getOpcode() == Opcode) {
182        Value *A = Op0->getOperand(0);
183        Value *B = Op0->getOperand(1);
184        Value *C = I.getOperand(1);
185
186        // Does "C op A" simplify?
187        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
188          // It simplifies to V.  Form "V op B".
189          I.setOperand(0, V);
190          I.setOperand(1, B);
191          Changed = true;
192          continue;
193        }
194      }
195
196      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
197      if (Op1 && Op1->getOpcode() == Opcode) {
198        Value *A = I.getOperand(0);
199        Value *B = Op1->getOperand(0);
200        Value *C = Op1->getOperand(1);
201
202        // Does "C op A" simplify?
203        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
204          // It simplifies to V.  Form "B op V".
205          I.setOperand(0, B);
206          I.setOperand(1, V);
207          Changed = true;
208          continue;
209        }
210      }
211
212      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
213      // if C1 and C2 are constants.
214      if (Op0 && Op1 &&
215          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
216          isa<Constant>(Op0->getOperand(1)) &&
217          isa<Constant>(Op1->getOperand(1)) &&
218          Op0->hasOneUse() && Op1->hasOneUse()) {
219        Value *A = Op0->getOperand(0);
220        Constant *C1 = cast<Constant>(Op0->getOperand(1));
221        Value *B = Op1->getOperand(0);
222        Constant *C2 = cast<Constant>(Op1->getOperand(1));
223
224        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
225        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
226                                                  &I);
227        Worklist.Add(New);
228        I.setOperand(0, New);
229        I.setOperand(1, Folded);
230        Changed = true;
231        continue;
232      }
233    }
234
235    // No further simplifications.
236    return Changed;
237  } while (1);
238}
239
240/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
241/// "(X LOp Y) ROp (X LOp Z)".
242static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
243                                     Instruction::BinaryOps ROp) {
244  switch (LOp) {
245  default:
246    return false;
247
248  case Instruction::And:
249    // And distributes over Or and Xor.
250    switch (ROp) {
251    default:
252      return false;
253    case Instruction::Or:
254    case Instruction::Xor:
255      return true;
256    }
257
258  case Instruction::Mul:
259    // Multiplication distributes over addition and subtraction.
260    switch (ROp) {
261    default:
262      return false;
263    case Instruction::Add:
264    case Instruction::Sub:
265      return true;
266    }
267
268  case Instruction::Or:
269    // Or distributes over And.
270    switch (ROp) {
271    default:
272      return false;
273    case Instruction::And:
274      return true;
275    }
276  }
277}
278
279/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
280/// "(X ROp Z) LOp (Y ROp Z)".
281static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
282                                     Instruction::BinaryOps ROp) {
283  if (Instruction::isCommutative(ROp))
284    return LeftDistributesOverRight(ROp, LOp);
285  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
286  // but this requires knowing that the addition does not overflow and other
287  // such subtleties.
288  return false;
289}
290
291/// SimplifyDistributed - This tries to simplify binary operations which some
292/// other binary operation distributes over (eg "A*B+A*C" -> "A*(B+C)" since
293/// addition is distributed over by multiplication).  Returns the result of
294/// the simplification, or null if no simplification was performed.
295Instruction *InstCombiner::SimplifyDistributed(BinaryOperator &I) {
296  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
297  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
298  if (!Op0 || !Op1 || Op0->getOpcode() != Op1->getOpcode())
299    return 0;
300
301  // The instruction has the form "(A op' B) op (C op' D)".
302  Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1);
303  Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1);
304  Instruction::BinaryOps OuterOpcode = I.getOpcode(); // op
305  Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
306
307  // Does "X op' Y" always equal "Y op' X"?
308  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
309
310  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
311  if (LeftDistributesOverRight(InnerOpcode, OuterOpcode))
312    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
313    // commutative case, "(A op' B) op (C op' A)"?
314    if (A == C || (InnerCommutative && A == D)) {
315      if (A != C)
316        std::swap(C, D);
317      // Consider forming "A op' (B op D)".
318      // If "B op D" simplifies then it can be formed with no cost.
319      Value *RHS = SimplifyBinOp(OuterOpcode, B, D, TD);
320      // If "B op D" doesn't simplify then only proceed if both of the existing
321      // operations "A op' B" and "C op' D" will be zapped since no longer used.
322      if (!RHS && Op0->hasOneUse() && Op1->hasOneUse())
323        RHS = Builder->CreateBinOp(OuterOpcode, B, D, Op1->getName());
324      if (RHS)
325        return BinaryOperator::Create(InnerOpcode, A, RHS);
326    }
327
328  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
329  if (RightDistributesOverLeft(OuterOpcode, InnerOpcode))
330    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
331    // commutative case, "(A op' B) op (B op' D)"?
332    if (B == D || (InnerCommutative && B == C)) {
333      if (B != D)
334        std::swap(C, D);
335      // Consider forming "(A op C) op' B".
336      // If "A op C" simplifies then it can be formed with no cost.
337      Value *LHS = SimplifyBinOp(OuterOpcode, A, C, TD);
338      // If "A op C" doesn't simplify then only proceed if both of the existing
339      // operations "A op' B" and "C op' D" will be zapped since no longer used.
340      if (!LHS && Op0->hasOneUse() && Op1->hasOneUse())
341        LHS = Builder->CreateBinOp(OuterOpcode, A, C, Op0->getName());
342      if (LHS)
343        return BinaryOperator::Create(InnerOpcode, LHS, B);
344    }
345
346  return 0;
347}
348
349// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
350// if the LHS is a constant zero (which is the 'negate' form).
351//
352Value *InstCombiner::dyn_castNegVal(Value *V) const {
353  if (BinaryOperator::isNeg(V))
354    return BinaryOperator::getNegArgument(V);
355
356  // Constants can be considered to be negated values if they can be folded.
357  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
358    return ConstantExpr::getNeg(C);
359
360  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
361    if (C->getType()->getElementType()->isIntegerTy())
362      return ConstantExpr::getNeg(C);
363
364  return 0;
365}
366
367// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
368// instruction if the LHS is a constant negative zero (which is the 'negate'
369// form).
370//
371Value *InstCombiner::dyn_castFNegVal(Value *V) const {
372  if (BinaryOperator::isFNeg(V))
373    return BinaryOperator::getFNegArgument(V);
374
375  // Constants can be considered to be negated values if they can be folded.
376  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
377    return ConstantExpr::getFNeg(C);
378
379  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
380    if (C->getType()->getElementType()->isFloatingPointTy())
381      return ConstantExpr::getFNeg(C);
382
383  return 0;
384}
385
386static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
387                                             InstCombiner *IC) {
388  if (CastInst *CI = dyn_cast<CastInst>(&I))
389    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
390
391  // Figure out if the constant is the left or the right argument.
392  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
393  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
394
395  if (Constant *SOC = dyn_cast<Constant>(SO)) {
396    if (ConstIsRHS)
397      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
398    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
399  }
400
401  Value *Op0 = SO, *Op1 = ConstOperand;
402  if (!ConstIsRHS)
403    std::swap(Op0, Op1);
404
405  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
406    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
407                                    SO->getName()+".op");
408  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
409    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
410                                   SO->getName()+".cmp");
411  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
412    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
413                                   SO->getName()+".cmp");
414  llvm_unreachable("Unknown binary instruction type!");
415}
416
417// FoldOpIntoSelect - Given an instruction with a select as one operand and a
418// constant as the other operand, try to fold the binary operator into the
419// select arguments.  This also works for Cast instructions, which obviously do
420// not have a second operand.
421Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
422  // Don't modify shared select instructions
423  if (!SI->hasOneUse()) return 0;
424  Value *TV = SI->getOperand(1);
425  Value *FV = SI->getOperand(2);
426
427  if (isa<Constant>(TV) || isa<Constant>(FV)) {
428    // Bool selects with constant operands can be folded to logical ops.
429    if (SI->getType()->isIntegerTy(1)) return 0;
430
431    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
432    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
433
434    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
435                              SelectFalseVal);
436  }
437  return 0;
438}
439
440
441/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
442/// has a PHI node as operand #0, see if we can fold the instruction into the
443/// PHI (which is only possible if all operands to the PHI are constants).
444///
445/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
446/// that would normally be unprofitable because they strongly encourage jump
447/// threading.
448Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
449                                         bool AllowAggressive) {
450  AllowAggressive = false;
451  PHINode *PN = cast<PHINode>(I.getOperand(0));
452  unsigned NumPHIValues = PN->getNumIncomingValues();
453  if (NumPHIValues == 0 ||
454      // We normally only transform phis with a single use, unless we're trying
455      // hard to make jump threading happen.
456      (!PN->hasOneUse() && !AllowAggressive))
457    return 0;
458
459
460  // Check to see if all of the operands of the PHI are simple constants
461  // (constantint/constantfp/undef).  If there is one non-constant value,
462  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
463  // bail out.  We don't do arbitrary constant expressions here because moving
464  // their computation can be expensive without a cost model.
465  BasicBlock *NonConstBB = 0;
466  for (unsigned i = 0; i != NumPHIValues; ++i)
467    if (!isa<Constant>(PN->getIncomingValue(i)) ||
468        isa<ConstantExpr>(PN->getIncomingValue(i))) {
469      if (NonConstBB) return 0;  // More than one non-const value.
470      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
471      NonConstBB = PN->getIncomingBlock(i);
472
473      // If the incoming non-constant value is in I's block, we have an infinite
474      // loop.
475      if (NonConstBB == I.getParent())
476        return 0;
477    }
478
479  // If there is exactly one non-constant value, we can insert a copy of the
480  // operation in that block.  However, if this is a critical edge, we would be
481  // inserting the computation one some other paths (e.g. inside a loop).  Only
482  // do this if the pred block is unconditionally branching into the phi block.
483  if (NonConstBB != 0 && !AllowAggressive) {
484    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
485    if (!BI || !BI->isUnconditional()) return 0;
486  }
487
488  // Okay, we can do the transformation: create the new PHI node.
489  PHINode *NewPN = PHINode::Create(I.getType(), "");
490  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
491  InsertNewInstBefore(NewPN, *PN);
492  NewPN->takeName(PN);
493
494  // Next, add all of the operands to the PHI.
495  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
496    // We only currently try to fold the condition of a select when it is a phi,
497    // not the true/false values.
498    Value *TrueV = SI->getTrueValue();
499    Value *FalseV = SI->getFalseValue();
500    BasicBlock *PhiTransBB = PN->getParent();
501    for (unsigned i = 0; i != NumPHIValues; ++i) {
502      BasicBlock *ThisBB = PN->getIncomingBlock(i);
503      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
504      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
505      Value *InV = 0;
506      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
507        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
508      } else {
509        assert(PN->getIncomingBlock(i) == NonConstBB);
510        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
511                                 FalseVInPred,
512                                 "phitmp", NonConstBB->getTerminator());
513        Worklist.Add(cast<Instruction>(InV));
514      }
515      NewPN->addIncoming(InV, ThisBB);
516    }
517  } else if (I.getNumOperands() == 2) {
518    Constant *C = cast<Constant>(I.getOperand(1));
519    for (unsigned i = 0; i != NumPHIValues; ++i) {
520      Value *InV = 0;
521      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
522        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
523          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
524        else
525          InV = ConstantExpr::get(I.getOpcode(), InC, C);
526      } else {
527        assert(PN->getIncomingBlock(i) == NonConstBB);
528        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
529          InV = BinaryOperator::Create(BO->getOpcode(),
530                                       PN->getIncomingValue(i), C, "phitmp",
531                                       NonConstBB->getTerminator());
532        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
533          InV = CmpInst::Create(CI->getOpcode(),
534                                CI->getPredicate(),
535                                PN->getIncomingValue(i), C, "phitmp",
536                                NonConstBB->getTerminator());
537        else
538          llvm_unreachable("Unknown binop!");
539
540        Worklist.Add(cast<Instruction>(InV));
541      }
542      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
543    }
544  } else {
545    CastInst *CI = cast<CastInst>(&I);
546    const Type *RetTy = CI->getType();
547    for (unsigned i = 0; i != NumPHIValues; ++i) {
548      Value *InV;
549      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
550        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
551      } else {
552        assert(PN->getIncomingBlock(i) == NonConstBB);
553        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
554                               I.getType(), "phitmp",
555                               NonConstBB->getTerminator());
556        Worklist.Add(cast<Instruction>(InV));
557      }
558      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
559    }
560  }
561  return ReplaceInstUsesWith(I, NewPN);
562}
563
564/// FindElementAtOffset - Given a type and a constant offset, determine whether
565/// or not there is a sequence of GEP indices into the type that will land us at
566/// the specified offset.  If so, fill them into NewIndices and return the
567/// resultant element type, otherwise return null.
568const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
569                                          SmallVectorImpl<Value*> &NewIndices) {
570  if (!TD) return 0;
571  if (!Ty->isSized()) return 0;
572
573  // Start with the index over the outer type.  Note that the type size
574  // might be zero (even if the offset isn't zero) if the indexed type
575  // is something like [0 x {int, int}]
576  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
577  int64_t FirstIdx = 0;
578  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
579    FirstIdx = Offset/TySize;
580    Offset -= FirstIdx*TySize;
581
582    // Handle hosts where % returns negative instead of values [0..TySize).
583    if (Offset < 0) {
584      --FirstIdx;
585      Offset += TySize;
586      assert(Offset >= 0);
587    }
588    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
589  }
590
591  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
592
593  // Index into the types.  If we fail, set OrigBase to null.
594  while (Offset) {
595    // Indexing into tail padding between struct/array elements.
596    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
597      return 0;
598
599    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
600      const StructLayout *SL = TD->getStructLayout(STy);
601      assert(Offset < (int64_t)SL->getSizeInBytes() &&
602             "Offset must stay within the indexed type");
603
604      unsigned Elt = SL->getElementContainingOffset(Offset);
605      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
606                                            Elt));
607
608      Offset -= SL->getElementOffset(Elt);
609      Ty = STy->getElementType(Elt);
610    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
611      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
612      assert(EltSize && "Cannot index into a zero-sized array");
613      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
614      Offset %= EltSize;
615      Ty = AT->getElementType();
616    } else {
617      // Otherwise, we can't index into the middle of this atomic type, bail.
618      return 0;
619    }
620  }
621
622  return Ty;
623}
624
625
626
627Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
628  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
629
630  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
631    return ReplaceInstUsesWith(GEP, V);
632
633  Value *PtrOp = GEP.getOperand(0);
634
635  // Eliminate unneeded casts for indices, and replace indices which displace
636  // by multiples of a zero size type with zero.
637  if (TD) {
638    bool MadeChange = false;
639    const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
640
641    gep_type_iterator GTI = gep_type_begin(GEP);
642    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
643         I != E; ++I, ++GTI) {
644      // Skip indices into struct types.
645      const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
646      if (!SeqTy) continue;
647
648      // If the element type has zero size then any index over it is equivalent
649      // to an index of zero, so replace it with zero if it is not zero already.
650      if (SeqTy->getElementType()->isSized() &&
651          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
652        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
653          *I = Constant::getNullValue(IntPtrTy);
654          MadeChange = true;
655        }
656
657      if ((*I)->getType() != IntPtrTy) {
658        // If we are using a wider index than needed for this platform, shrink
659        // it to what we need.  If narrower, sign-extend it to what we need.
660        // This explicit cast can make subsequent optimizations more obvious.
661        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
662        MadeChange = true;
663      }
664    }
665    if (MadeChange) return &GEP;
666  }
667
668  // Combine Indices - If the source pointer to this getelementptr instruction
669  // is a getelementptr instruction, combine the indices of the two
670  // getelementptr instructions into a single instruction.
671  //
672  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
673    // Note that if our source is a gep chain itself that we wait for that
674    // chain to be resolved before we perform this transformation.  This
675    // avoids us creating a TON of code in some cases.
676    //
677    if (GetElementPtrInst *SrcGEP =
678          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
679      if (SrcGEP->getNumOperands() == 2)
680        return 0;   // Wait until our source is folded to completion.
681
682    SmallVector<Value*, 8> Indices;
683
684    // Find out whether the last index in the source GEP is a sequential idx.
685    bool EndsWithSequential = false;
686    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
687         I != E; ++I)
688      EndsWithSequential = !(*I)->isStructTy();
689
690    // Can we combine the two pointer arithmetics offsets?
691    if (EndsWithSequential) {
692      // Replace: gep (gep %P, long B), long A, ...
693      // With:    T = long A+B; gep %P, T, ...
694      //
695      Value *Sum;
696      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
697      Value *GO1 = GEP.getOperand(1);
698      if (SO1 == Constant::getNullValue(SO1->getType())) {
699        Sum = GO1;
700      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
701        Sum = SO1;
702      } else {
703        // If they aren't the same type, then the input hasn't been processed
704        // by the loop above yet (which canonicalizes sequential index types to
705        // intptr_t).  Just avoid transforming this until the input has been
706        // normalized.
707        if (SO1->getType() != GO1->getType())
708          return 0;
709        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
710      }
711
712      // Update the GEP in place if possible.
713      if (Src->getNumOperands() == 2) {
714        GEP.setOperand(0, Src->getOperand(0));
715        GEP.setOperand(1, Sum);
716        return &GEP;
717      }
718      Indices.append(Src->op_begin()+1, Src->op_end()-1);
719      Indices.push_back(Sum);
720      Indices.append(GEP.op_begin()+2, GEP.op_end());
721    } else if (isa<Constant>(*GEP.idx_begin()) &&
722               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
723               Src->getNumOperands() != 1) {
724      // Otherwise we can do the fold if the first index of the GEP is a zero
725      Indices.append(Src->op_begin()+1, Src->op_end());
726      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
727    }
728
729    if (!Indices.empty())
730      return (GEP.isInBounds() && Src->isInBounds()) ?
731        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
732                                          Indices.end(), GEP.getName()) :
733        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
734                                  Indices.end(), GEP.getName());
735  }
736
737  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
738  Value *StrippedPtr = PtrOp->stripPointerCasts();
739  if (StrippedPtr != PtrOp) {
740    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
741
742    bool HasZeroPointerIndex = false;
743    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
744      HasZeroPointerIndex = C->isZero();
745
746    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
747    // into     : GEP [10 x i8]* X, i32 0, ...
748    //
749    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
750    //           into     : GEP i8* X, ...
751    //
752    // This occurs when the program declares an array extern like "int X[];"
753    if (HasZeroPointerIndex) {
754      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
755      if (const ArrayType *CATy =
756          dyn_cast<ArrayType>(CPTy->getElementType())) {
757        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
758        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
759          // -> GEP i8* X, ...
760          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
761          GetElementPtrInst *Res =
762            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
763                                      Idx.end(), GEP.getName());
764          Res->setIsInBounds(GEP.isInBounds());
765          return Res;
766        }
767
768        if (const ArrayType *XATy =
769              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
770          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
771          if (CATy->getElementType() == XATy->getElementType()) {
772            // -> GEP [10 x i8]* X, i32 0, ...
773            // At this point, we know that the cast source type is a pointer
774            // to an array of the same type as the destination pointer
775            // array.  Because the array type is never stepped over (there
776            // is a leading zero) we can fold the cast into this GEP.
777            GEP.setOperand(0, StrippedPtr);
778            return &GEP;
779          }
780        }
781      }
782    } else if (GEP.getNumOperands() == 2) {
783      // Transform things like:
784      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
785      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
786      const Type *SrcElTy = StrippedPtrTy->getElementType();
787      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
788      if (TD && SrcElTy->isArrayTy() &&
789          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
790          TD->getTypeAllocSize(ResElTy)) {
791        Value *Idx[2];
792        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
793        Idx[1] = GEP.getOperand(1);
794        Value *NewGEP = GEP.isInBounds() ?
795          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
796          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
797        // V and GEP are both pointer types --> BitCast
798        return new BitCastInst(NewGEP, GEP.getType());
799      }
800
801      // Transform things like:
802      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
803      //   (where tmp = 8*tmp2) into:
804      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
805
806      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
807        uint64_t ArrayEltSize =
808            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
809
810        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
811        // allow either a mul, shift, or constant here.
812        Value *NewIdx = 0;
813        ConstantInt *Scale = 0;
814        if (ArrayEltSize == 1) {
815          NewIdx = GEP.getOperand(1);
816          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
817        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
818          NewIdx = ConstantInt::get(CI->getType(), 1);
819          Scale = CI;
820        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
821          if (Inst->getOpcode() == Instruction::Shl &&
822              isa<ConstantInt>(Inst->getOperand(1))) {
823            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
824            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
825            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
826                                     1ULL << ShAmtVal);
827            NewIdx = Inst->getOperand(0);
828          } else if (Inst->getOpcode() == Instruction::Mul &&
829                     isa<ConstantInt>(Inst->getOperand(1))) {
830            Scale = cast<ConstantInt>(Inst->getOperand(1));
831            NewIdx = Inst->getOperand(0);
832          }
833        }
834
835        // If the index will be to exactly the right offset with the scale taken
836        // out, perform the transformation. Note, we don't know whether Scale is
837        // signed or not. We'll use unsigned version of division/modulo
838        // operation after making sure Scale doesn't have the sign bit set.
839        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
840            Scale->getZExtValue() % ArrayEltSize == 0) {
841          Scale = ConstantInt::get(Scale->getType(),
842                                   Scale->getZExtValue() / ArrayEltSize);
843          if (Scale->getZExtValue() != 1) {
844            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
845                                                       false /*ZExt*/);
846            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
847          }
848
849          // Insert the new GEP instruction.
850          Value *Idx[2];
851          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
852          Idx[1] = NewIdx;
853          Value *NewGEP = GEP.isInBounds() ?
854            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
855            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
856          // The NewGEP must be pointer typed, so must the old one -> BitCast
857          return new BitCastInst(NewGEP, GEP.getType());
858        }
859      }
860    }
861  }
862
863  /// See if we can simplify:
864  ///   X = bitcast A* to B*
865  ///   Y = gep X, <...constant indices...>
866  /// into a gep of the original struct.  This is important for SROA and alias
867  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
868  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
869    if (TD &&
870        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
871      // Determine how much the GEP moves the pointer.  We are guaranteed to get
872      // a constant back from EmitGEPOffset.
873      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
874      int64_t Offset = OffsetV->getSExtValue();
875
876      // If this GEP instruction doesn't move the pointer, just replace the GEP
877      // with a bitcast of the real input to the dest type.
878      if (Offset == 0) {
879        // If the bitcast is of an allocation, and the allocation will be
880        // converted to match the type of the cast, don't touch this.
881        if (isa<AllocaInst>(BCI->getOperand(0)) ||
882            isMalloc(BCI->getOperand(0))) {
883          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
884          if (Instruction *I = visitBitCast(*BCI)) {
885            if (I != BCI) {
886              I->takeName(BCI);
887              BCI->getParent()->getInstList().insert(BCI, I);
888              ReplaceInstUsesWith(*BCI, I);
889            }
890            return &GEP;
891          }
892        }
893        return new BitCastInst(BCI->getOperand(0), GEP.getType());
894      }
895
896      // Otherwise, if the offset is non-zero, we need to find out if there is a
897      // field at Offset in 'A's type.  If so, we can pull the cast through the
898      // GEP.
899      SmallVector<Value*, 8> NewIndices;
900      const Type *InTy =
901        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
902      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
903        Value *NGEP = GEP.isInBounds() ?
904          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
905                                     NewIndices.end()) :
906          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
907                             NewIndices.end());
908
909        if (NGEP->getType() == GEP.getType())
910          return ReplaceInstUsesWith(GEP, NGEP);
911        NGEP->takeName(&GEP);
912        return new BitCastInst(NGEP, GEP.getType());
913      }
914    }
915  }
916
917  return 0;
918}
919
920
921
922static bool IsOnlyNullComparedAndFreed(const Value &V) {
923  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
924       UI != UE; ++UI) {
925    const User *U = *UI;
926    if (isFreeCall(U))
927      continue;
928    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
929      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
930        continue;
931    return false;
932  }
933  return true;
934}
935
936Instruction *InstCombiner::visitMalloc(Instruction &MI) {
937  // If we have a malloc call which is only used in any amount of comparisons
938  // to null and free calls, delete the calls and replace the comparisons with
939  // true or false as appropriate.
940  if (IsOnlyNullComparedAndFreed(MI)) {
941    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
942         UI != UE;) {
943      // We can assume that every remaining use is a free call or an icmp eq/ne
944      // to null, so the cast is safe.
945      Instruction *I = cast<Instruction>(*UI);
946
947      // Early increment here, as we're about to get rid of the user.
948      ++UI;
949
950      if (isFreeCall(I)) {
951        EraseInstFromFunction(*cast<CallInst>(I));
952        continue;
953      }
954      // Again, the cast is safe.
955      ICmpInst *C = cast<ICmpInst>(I);
956      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
957                                               C->isFalseWhenEqual()));
958      EraseInstFromFunction(*C);
959    }
960    return EraseInstFromFunction(MI);
961  }
962  return 0;
963}
964
965
966
967Instruction *InstCombiner::visitFree(CallInst &FI) {
968  Value *Op = FI.getArgOperand(0);
969
970  // free undef -> unreachable.
971  if (isa<UndefValue>(Op)) {
972    // Insert a new store to null because we cannot modify the CFG here.
973    new StoreInst(ConstantInt::getTrue(FI.getContext()),
974           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
975    return EraseInstFromFunction(FI);
976  }
977
978  // If we have 'free null' delete the instruction.  This can happen in stl code
979  // when lots of inlining happens.
980  if (isa<ConstantPointerNull>(Op))
981    return EraseInstFromFunction(FI);
982
983  return 0;
984}
985
986
987
988Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
989  // Change br (not X), label True, label False to: br X, label False, True
990  Value *X = 0;
991  BasicBlock *TrueDest;
992  BasicBlock *FalseDest;
993  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
994      !isa<Constant>(X)) {
995    // Swap Destinations and condition...
996    BI.setCondition(X);
997    BI.setSuccessor(0, FalseDest);
998    BI.setSuccessor(1, TrueDest);
999    return &BI;
1000  }
1001
1002  // Cannonicalize fcmp_one -> fcmp_oeq
1003  FCmpInst::Predicate FPred; Value *Y;
1004  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1005                             TrueDest, FalseDest)) &&
1006      BI.getCondition()->hasOneUse())
1007    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1008        FPred == FCmpInst::FCMP_OGE) {
1009      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1010      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1011
1012      // Swap Destinations and condition.
1013      BI.setSuccessor(0, FalseDest);
1014      BI.setSuccessor(1, TrueDest);
1015      Worklist.Add(Cond);
1016      return &BI;
1017    }
1018
1019  // Cannonicalize icmp_ne -> icmp_eq
1020  ICmpInst::Predicate IPred;
1021  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1022                      TrueDest, FalseDest)) &&
1023      BI.getCondition()->hasOneUse())
1024    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1025        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1026        IPred == ICmpInst::ICMP_SGE) {
1027      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1028      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1029      // Swap Destinations and condition.
1030      BI.setSuccessor(0, FalseDest);
1031      BI.setSuccessor(1, TrueDest);
1032      Worklist.Add(Cond);
1033      return &BI;
1034    }
1035
1036  return 0;
1037}
1038
1039Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1040  Value *Cond = SI.getCondition();
1041  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1042    if (I->getOpcode() == Instruction::Add)
1043      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1044        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1045        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
1046          SI.setOperand(i,
1047                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
1048                                                AddRHS));
1049        SI.setOperand(0, I->getOperand(0));
1050        Worklist.Add(I);
1051        return &SI;
1052      }
1053  }
1054  return 0;
1055}
1056
1057Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1058  Value *Agg = EV.getAggregateOperand();
1059
1060  if (!EV.hasIndices())
1061    return ReplaceInstUsesWith(EV, Agg);
1062
1063  if (Constant *C = dyn_cast<Constant>(Agg)) {
1064    if (isa<UndefValue>(C))
1065      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1066
1067    if (isa<ConstantAggregateZero>(C))
1068      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1069
1070    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1071      // Extract the element indexed by the first index out of the constant
1072      Value *V = C->getOperand(*EV.idx_begin());
1073      if (EV.getNumIndices() > 1)
1074        // Extract the remaining indices out of the constant indexed by the
1075        // first index
1076        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
1077      else
1078        return ReplaceInstUsesWith(EV, V);
1079    }
1080    return 0; // Can't handle other constants
1081  }
1082  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1083    // We're extracting from an insertvalue instruction, compare the indices
1084    const unsigned *exti, *exte, *insi, *inse;
1085    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1086         exte = EV.idx_end(), inse = IV->idx_end();
1087         exti != exte && insi != inse;
1088         ++exti, ++insi) {
1089      if (*insi != *exti)
1090        // The insert and extract both reference distinctly different elements.
1091        // This means the extract is not influenced by the insert, and we can
1092        // replace the aggregate operand of the extract with the aggregate
1093        // operand of the insert. i.e., replace
1094        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1095        // %E = extractvalue { i32, { i32 } } %I, 0
1096        // with
1097        // %E = extractvalue { i32, { i32 } } %A, 0
1098        return ExtractValueInst::Create(IV->getAggregateOperand(),
1099                                        EV.idx_begin(), EV.idx_end());
1100    }
1101    if (exti == exte && insi == inse)
1102      // Both iterators are at the end: Index lists are identical. Replace
1103      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1104      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1105      // with "i32 42"
1106      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1107    if (exti == exte) {
1108      // The extract list is a prefix of the insert list. i.e. replace
1109      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1110      // %E = extractvalue { i32, { i32 } } %I, 1
1111      // with
1112      // %X = extractvalue { i32, { i32 } } %A, 1
1113      // %E = insertvalue { i32 } %X, i32 42, 0
1114      // by switching the order of the insert and extract (though the
1115      // insertvalue should be left in, since it may have other uses).
1116      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1117                                                 EV.idx_begin(), EV.idx_end());
1118      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1119                                     insi, inse);
1120    }
1121    if (insi == inse)
1122      // The insert list is a prefix of the extract list
1123      // We can simply remove the common indices from the extract and make it
1124      // operate on the inserted value instead of the insertvalue result.
1125      // i.e., replace
1126      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1127      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1128      // with
1129      // %E extractvalue { i32 } { i32 42 }, 0
1130      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1131                                      exti, exte);
1132  }
1133  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1134    // We're extracting from an intrinsic, see if we're the only user, which
1135    // allows us to simplify multiple result intrinsics to simpler things that
1136    // just get one value.
1137    if (II->hasOneUse()) {
1138      // Check if we're grabbing the overflow bit or the result of a 'with
1139      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1140      // and replace it with a traditional binary instruction.
1141      switch (II->getIntrinsicID()) {
1142      case Intrinsic::uadd_with_overflow:
1143      case Intrinsic::sadd_with_overflow:
1144        if (*EV.idx_begin() == 0) {  // Normal result.
1145          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1146          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1147          EraseInstFromFunction(*II);
1148          return BinaryOperator::CreateAdd(LHS, RHS);
1149        }
1150        break;
1151      case Intrinsic::usub_with_overflow:
1152      case Intrinsic::ssub_with_overflow:
1153        if (*EV.idx_begin() == 0) {  // Normal result.
1154          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1155          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1156          EraseInstFromFunction(*II);
1157          return BinaryOperator::CreateSub(LHS, RHS);
1158        }
1159        break;
1160      case Intrinsic::umul_with_overflow:
1161      case Intrinsic::smul_with_overflow:
1162        if (*EV.idx_begin() == 0) {  // Normal result.
1163          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1164          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1165          EraseInstFromFunction(*II);
1166          return BinaryOperator::CreateMul(LHS, RHS);
1167        }
1168        break;
1169      default:
1170        break;
1171      }
1172    }
1173  }
1174  // Can't simplify extracts from other values. Note that nested extracts are
1175  // already simplified implicitely by the above (extract ( extract (insert) )
1176  // will be translated into extract ( insert ( extract ) ) first and then just
1177  // the value inserted, if appropriate).
1178  return 0;
1179}
1180
1181
1182
1183
1184/// TryToSinkInstruction - Try to move the specified instruction from its
1185/// current block into the beginning of DestBlock, which can only happen if it's
1186/// safe to move the instruction past all of the instructions between it and the
1187/// end of its block.
1188static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1189  assert(I->hasOneUse() && "Invariants didn't hold!");
1190
1191  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1192  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
1193    return false;
1194
1195  // Do not sink alloca instructions out of the entry block.
1196  if (isa<AllocaInst>(I) && I->getParent() ==
1197        &DestBlock->getParent()->getEntryBlock())
1198    return false;
1199
1200  // We can only sink load instructions if there is nothing between the load and
1201  // the end of block that could change the value.
1202  if (I->mayReadFromMemory()) {
1203    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1204         Scan != E; ++Scan)
1205      if (Scan->mayWriteToMemory())
1206        return false;
1207  }
1208
1209  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
1210
1211  I->moveBefore(InsertPos);
1212  ++NumSunkInst;
1213  return true;
1214}
1215
1216
1217/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1218/// all reachable code to the worklist.
1219///
1220/// This has a couple of tricks to make the code faster and more powerful.  In
1221/// particular, we constant fold and DCE instructions as we go, to avoid adding
1222/// them to the worklist (this significantly speeds up instcombine on code where
1223/// many instructions are dead or constant).  Additionally, if we find a branch
1224/// whose condition is a known constant, we only visit the reachable successors.
1225///
1226static bool AddReachableCodeToWorklist(BasicBlock *BB,
1227                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1228                                       InstCombiner &IC,
1229                                       const TargetData *TD) {
1230  bool MadeIRChange = false;
1231  SmallVector<BasicBlock*, 256> Worklist;
1232  Worklist.push_back(BB);
1233
1234  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1235  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
1236
1237  do {
1238    BB = Worklist.pop_back_val();
1239
1240    // We have now visited this block!  If we've already been here, ignore it.
1241    if (!Visited.insert(BB)) continue;
1242
1243    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1244      Instruction *Inst = BBI++;
1245
1246      // DCE instruction if trivially dead.
1247      if (isInstructionTriviallyDead(Inst)) {
1248        ++NumDeadInst;
1249        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1250        Inst->eraseFromParent();
1251        continue;
1252      }
1253
1254      // ConstantProp instruction if trivially constant.
1255      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1256        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1257          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1258                       << *Inst << '\n');
1259          Inst->replaceAllUsesWith(C);
1260          ++NumConstProp;
1261          Inst->eraseFromParent();
1262          continue;
1263        }
1264
1265      if (TD) {
1266        // See if we can constant fold its operands.
1267        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1268             i != e; ++i) {
1269          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1270          if (CE == 0) continue;
1271
1272          // If we already folded this constant, don't try again.
1273          if (!FoldedConstants.insert(CE))
1274            continue;
1275
1276          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
1277          if (NewC && NewC != CE) {
1278            *i = NewC;
1279            MadeIRChange = true;
1280          }
1281        }
1282      }
1283
1284      InstrsForInstCombineWorklist.push_back(Inst);
1285    }
1286
1287    // Recursively visit successors.  If this is a branch or switch on a
1288    // constant, only visit the reachable successor.
1289    TerminatorInst *TI = BB->getTerminator();
1290    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1291      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1292        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1293        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1294        Worklist.push_back(ReachableBB);
1295        continue;
1296      }
1297    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1298      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1299        // See if this is an explicit destination.
1300        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1301          if (SI->getCaseValue(i) == Cond) {
1302            BasicBlock *ReachableBB = SI->getSuccessor(i);
1303            Worklist.push_back(ReachableBB);
1304            continue;
1305          }
1306
1307        // Otherwise it is the default destination.
1308        Worklist.push_back(SI->getSuccessor(0));
1309        continue;
1310      }
1311    }
1312
1313    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1314      Worklist.push_back(TI->getSuccessor(i));
1315  } while (!Worklist.empty());
1316
1317  // Once we've found all of the instructions to add to instcombine's worklist,
1318  // add them in reverse order.  This way instcombine will visit from the top
1319  // of the function down.  This jives well with the way that it adds all uses
1320  // of instructions to the worklist after doing a transformation, thus avoiding
1321  // some N^2 behavior in pathological cases.
1322  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1323                              InstrsForInstCombineWorklist.size());
1324
1325  return MadeIRChange;
1326}
1327
1328bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1329  MadeIRChange = false;
1330
1331  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1332        << F.getNameStr() << "\n");
1333
1334  {
1335    // Do a depth-first traversal of the function, populate the worklist with
1336    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1337    // track of which blocks we visit.
1338    SmallPtrSet<BasicBlock*, 64> Visited;
1339    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1340
1341    // Do a quick scan over the function.  If we find any blocks that are
1342    // unreachable, remove any instructions inside of them.  This prevents
1343    // the instcombine code from having to deal with some bad special cases.
1344    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1345      if (!Visited.count(BB)) {
1346        Instruction *Term = BB->getTerminator();
1347        while (Term != BB->begin()) {   // Remove instrs bottom-up
1348          BasicBlock::iterator I = Term; --I;
1349
1350          DEBUG(errs() << "IC: DCE: " << *I << '\n');
1351          // A debug intrinsic shouldn't force another iteration if we weren't
1352          // going to do one without it.
1353          if (!isa<DbgInfoIntrinsic>(I)) {
1354            ++NumDeadInst;
1355            MadeIRChange = true;
1356          }
1357
1358          // If I is not void type then replaceAllUsesWith undef.
1359          // This allows ValueHandlers and custom metadata to adjust itself.
1360          if (!I->getType()->isVoidTy())
1361            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1362          I->eraseFromParent();
1363        }
1364      }
1365  }
1366
1367  while (!Worklist.isEmpty()) {
1368    Instruction *I = Worklist.RemoveOne();
1369    if (I == 0) continue;  // skip null values.
1370
1371    // Check to see if we can DCE the instruction.
1372    if (isInstructionTriviallyDead(I)) {
1373      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1374      EraseInstFromFunction(*I);
1375      ++NumDeadInst;
1376      MadeIRChange = true;
1377      continue;
1378    }
1379
1380    // Instruction isn't dead, see if we can constant propagate it.
1381    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1382      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1383        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1384
1385        // Add operands to the worklist.
1386        ReplaceInstUsesWith(*I, C);
1387        ++NumConstProp;
1388        EraseInstFromFunction(*I);
1389        MadeIRChange = true;
1390        continue;
1391      }
1392
1393    // See if we can trivially sink this instruction to a successor basic block.
1394    if (I->hasOneUse()) {
1395      BasicBlock *BB = I->getParent();
1396      Instruction *UserInst = cast<Instruction>(I->use_back());
1397      BasicBlock *UserParent;
1398
1399      // Get the block the use occurs in.
1400      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1401        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1402      else
1403        UserParent = UserInst->getParent();
1404
1405      if (UserParent != BB) {
1406        bool UserIsSuccessor = false;
1407        // See if the user is one of our successors.
1408        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1409          if (*SI == UserParent) {
1410            UserIsSuccessor = true;
1411            break;
1412          }
1413
1414        // If the user is one of our immediate successors, and if that successor
1415        // only has us as a predecessors (we'd have to split the critical edge
1416        // otherwise), we can keep going.
1417        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1418          // Okay, the CFG is simple enough, try to sink this instruction.
1419          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1420      }
1421    }
1422
1423    // Now that we have an instruction, try combining it to simplify it.
1424    Builder->SetInsertPoint(I->getParent(), I);
1425
1426#ifndef NDEBUG
1427    std::string OrigI;
1428#endif
1429    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1430    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1431
1432    if (Instruction *Result = visit(*I)) {
1433      ++NumCombined;
1434      // Should we replace the old instruction with a new one?
1435      if (Result != I) {
1436        DEBUG(errs() << "IC: Old = " << *I << '\n'
1437                     << "    New = " << *Result << '\n');
1438
1439        // Everything uses the new instruction now.
1440        I->replaceAllUsesWith(Result);
1441
1442        // Push the new instruction and any users onto the worklist.
1443        Worklist.Add(Result);
1444        Worklist.AddUsersToWorkList(*Result);
1445
1446        // Move the name to the new instruction first.
1447        Result->takeName(I);
1448
1449        // Insert the new instruction into the basic block...
1450        BasicBlock *InstParent = I->getParent();
1451        BasicBlock::iterator InsertPos = I;
1452
1453        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1454          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1455            ++InsertPos;
1456
1457        InstParent->getInstList().insert(InsertPos, Result);
1458
1459        EraseInstFromFunction(*I);
1460      } else {
1461#ifndef NDEBUG
1462        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1463                     << "    New = " << *I << '\n');
1464#endif
1465
1466        // If the instruction was modified, it's possible that it is now dead.
1467        // if so, remove it.
1468        if (isInstructionTriviallyDead(I)) {
1469          EraseInstFromFunction(*I);
1470        } else {
1471          Worklist.Add(I);
1472          Worklist.AddUsersToWorkList(*I);
1473        }
1474      }
1475      MadeIRChange = true;
1476    }
1477  }
1478
1479  Worklist.Zap();
1480  return MadeIRChange;
1481}
1482
1483
1484bool InstCombiner::runOnFunction(Function &F) {
1485  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1486  TD = getAnalysisIfAvailable<TargetData>();
1487
1488
1489  /// Builder - This is an IRBuilder that automatically inserts new
1490  /// instructions into the worklist when they are created.
1491  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1492    TheBuilder(F.getContext(), TargetFolder(TD),
1493               InstCombineIRInserter(Worklist));
1494  Builder = &TheBuilder;
1495
1496  bool EverMadeChange = false;
1497
1498  // Iterate while there is work to do.
1499  unsigned Iteration = 0;
1500  while (DoOneIteration(F, Iteration++))
1501    EverMadeChange = true;
1502
1503  Builder = 0;
1504  return EverMadeChange;
1505}
1506
1507FunctionPass *llvm::createInstructionCombiningPass() {
1508  return new InstCombiner();
1509}
1510