MemCpyOptimizer.cpp revision 777d2306b36816a53bc1ae1244c0dc7d998ae691
1a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
3a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                     The LLVM Compiler Infrastructure
4a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
5a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This file is distributed under the University of Illinois Open Source
6a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// License. See LICENSE.TXT for details.
7a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
8a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
9a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
10a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This pass performs various transformations related to eliminating memcpy
11a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// calls, or transforming sets of stores into memset's.
12a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
13a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
14a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
15a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#define DEBUG_TYPE "memcpyopt"
16a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Transforms/Scalar.h"
17a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/IntrinsicInst.h"
18a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Instructions.h"
19a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/SmallVector.h"
20a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/Statistic.h"
21a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/Dominators.h"
22a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/AliasAnalysis.h"
23a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/MemoryDependenceAnalysis.h"
24a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/Debug.h"
25a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/GetElementPtrTypeIterator.h"
26a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Target/TargetData.h"
27a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include <list>
28a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonusing namespace llvm;
29a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
30a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
31a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemSetInfer, "Number of memsets inferred");
32a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
33a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// isBytewiseValue - If the specified value can be set by repeating the same
34a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte in memory, return the i8 value that it is represented with.  This is
35a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
36a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
37a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte store (e.g. i16 0x1234), return null.
38a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic Value *isBytewiseValue(Value *V) {
39a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All byte-wide stores are splatable, even of arbitrary variables.
40a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (V->getType() == Type::Int8Ty) return V;
41a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
42a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Constant float and double values can be handled as integer values if the
43a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // corresponding integer value is "byteable".  An important case is 0.0.
44a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
45a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (CFP->getType() == Type::FloatTy)
46a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);
47a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (CFP->getType() == Type::DoubleTy)
48a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::Int64Ty);
49a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Don't handle long double formats, which have strange constraints.
50a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
51a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
52a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can handle constant integers that are power of two in size and a
53a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // multiple of 8 bits.
54a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
55a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    unsigned Width = CI->getBitWidth();
56a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isPowerOf2_32(Width) && Width > 8) {
57a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // We can handle this value if the recursive binary decomposition is the
58a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // same at all levels.
59a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val = CI->getValue();
60a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val2;
61a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      while (Val.getBitWidth() != 8) {
62a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        unsigned NextWidth = Val.getBitWidth()/2;
63a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2  = Val.lshr(NextWidth);
64a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2.trunc(Val.getBitWidth()/2);
65a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val.trunc(Val.getBitWidth()/2);
66a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
67a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        // If the top/bottom halves aren't the same, reject it.
68a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        if (Val != Val2)
69a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          return 0;
70a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      }
71a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return ConstantInt::get(Val);
72a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
73a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
74a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
75a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Conceptually, we could handle things like:
76a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %a = zext i8 %X to i16
77a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %b = shl i16 %a, 8
78a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %c = or i16 %a, %b
79a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but until there is an example that actually needs this, it doesn't seem
80a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // worth worrying about.
81a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return 0;
82a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
83a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
84a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
85a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                  bool &VariableIdxFound, TargetData &TD) {
86a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip over the first indices.
87a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  gep_type_iterator GTI = gep_type_begin(GEP);
88a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 1; i != Idx; ++i, ++GTI)
89a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    /*skip along*/;
90a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
91a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Compute the offset implied by the rest of the indices.
92a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset = 0;
93a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
94a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
95a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC == 0)
96a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return VariableIdxFound = true;
97a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC->isZero()) continue;  // No offset.
98a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
99a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Handle struct indices, which add their field offset to the pointer.
100a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
101a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
102a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
103a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
104a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
105a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we have a sequential type like an array or vector.  Multiply
106a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the index by the ElementSize.
107777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
108a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Offset += Size*OpC->getSExtValue();
109a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
110a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
111a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return Offset;
112a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
113a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
114a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
115a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// constant offset, and return that constant offset.  For example, Ptr1 might
116a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
117a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
118a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                            TargetData &TD) {
119a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
120a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // base.  After that base, they may have some number of common (and
121a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // potentially variable) indices.  After that they handle some constant
122a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // offset, which determines their offset from each other.  At this point, we
123a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // handle no other case.
124a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
125a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
126a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
127a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
128a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
129a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip any common indices and track the GEP types.
130a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Idx = 1;
131a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
132a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
133a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
134a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
135a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool VariableIdxFound = false;
136a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
137a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
138a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (VariableIdxFound) return false;
139a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
140a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Offset = Offset2-Offset1;
141a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
142a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
143a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
144a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
145a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
146a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// This allows us to analyze stores like:
147a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+1
148a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+0
149a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+3
150a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+2
151a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// which sometimes happens with stores to arrays of structs etc.  When we see
152a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the first store, we make a range [1, 2).  The second store extends the range
153a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
154a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// two ranges into [0, 3) which is memset'able.
155a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
156a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstruct MemsetRange {
157a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Start/End - A semi range that describes the span that this range covers.
158a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The range is closed at the start and open at the end: [Start, End).
159a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Start, End;
160a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
161a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// StartPtr - The getelementptr instruction that points to the start of the
162a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// range.
163a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr;
164a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
165a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Alignment - The known alignment of the first store.
166a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Alignment;
167a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
168a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// TheStores - The actual stores that make up this range.
169a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<StoreInst*, 16> TheStores;
170a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
171a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool isProfitableToUseMemset(const TargetData &TD) const;
172a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
173a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
174a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
175a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
176a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
177a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we found more than 8 stores to merge or 64 bytes, use memset.
178a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() >= 8 || End-Start >= 64) return true;
179a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
180a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume that the code generator is capable of merging pairs of stores
181a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // together if it wants to.
182a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() <= 2) return false;
183a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
184a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have fewer than 8 stores, it can still be worthwhile to do this.
185a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // For example, merging 4 i8 stores into an i32 store is useful almost always.
186a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
187a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memset will be split into 2 32-bit stores anyway) and doing so can
188a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // pessimize the llvm optimizer.
189a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
190a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we don't have perfect knowledge here, make some assumptions: assume
191a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the maximum GPR width is the same size as the pointer size and assume that
192a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // this width can be stored.  If so, check to see whether we will end up
193a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // actually reducing the number of stores used.
194a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Bytes = unsigned(End-Start);
195a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumPointerStores = Bytes/TD.getPointerSize();
196a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
197a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume the remaining bytes if any are done a byte at a time.
198a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
199a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
200a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we will reduce the # stores (according to this heuristic), do the
201a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
202a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // etc.
203a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return TheStores.size() > NumPointerStores+NumByteStores;
204a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
205a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
206a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
207a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
208a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonclass MemsetRanges {
209a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Ranges - A sorted list of the memset ranges.  We use std::list here
210a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// because each element is relatively large and expensive to copy.
211a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  std::list<MemsetRange> Ranges;
212a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::iterator range_iterator;
213a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD;
214a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonpublic:
215a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges(TargetData &td) : TD(td) {}
216a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
217a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::const_iterator const_iterator;
218a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator begin() const { return Ranges.begin(); }
219a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator end() const { return Ranges.end(); }
220a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool empty() const { return Ranges.empty(); }
221a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
222a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
223a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
224a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
225a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
226a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
227a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
228a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
229a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// new range for the specified store at the specified offset, merging into
230a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// existing ranges as appropriate.
231a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonvoid MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
232a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
233a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
234a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Do a linear search of the ranges to see if this can be joined and/or to
235a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // find the insertion point in the list.  We keep the ranges sorted for
236a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // simplicity here.  This is a linear search of a linked list, which is ugly,
237a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // however the number of ranges is limited, so this won't get crazy slow.
238a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  range_iterator I = Ranges.begin(), E = Ranges.end();
239a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
240a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (I != E && Start > I->End)
241a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++I;
242a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
243a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We now know that I == E, in which case we didn't find anything to merge
244a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
245a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to insert a new range.  Handle this now.
246a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I == E || End < I->Start) {
247a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MemsetRange &R = *Ranges.insert(I, MemsetRange());
248a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Start        = Start;
249a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.End          = End;
250a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.StartPtr     = SI->getPointerOperand();
251a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Alignment    = SI->getAlignment();
252a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.TheStores.push_back(SI);
253a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
254a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
255a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
256a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // This store overlaps with I, add it.
257a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  I->TheStores.push_back(SI);
258a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
259a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // At this point, we may have an interval that completely contains our store.
260a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If so, just add it to the interval and return.
261a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I->Start <= Start && I->End >= End)
262a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
263a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
264a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
265a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but is not entirely contained within the range.
266a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
267a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // See if the range extends the start of the range.  In this case, it couldn't
268a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // possibly cause it to join the prior range, because otherwise we would have
269a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // stopped on *it*.
270a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Start < I->Start) {
271a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->Start = Start;
272a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->StartPtr = SI->getPointerOperand();
273a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
274a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
275a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
276a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
277a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // End.
278a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (End > I->End) {
279a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->End = End;
2809c0f146d50ccc3ba780d4854b8e14422430013efNick Lewycky    range_iterator NextI = I;
281a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    while (++NextI != E && End >= NextI->Start) {
282a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // Merge the range in.
283a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
284a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (NextI->End > I->End)
285a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        I->End = NextI->End;
286a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Ranges.erase(NextI);
287a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      NextI = I;
288a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
289a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
290a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
291a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
292a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
293a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                         MemCpyOpt Pass
294a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
295a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
296a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
297a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
298a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
299a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool runOnFunction(Function &F);
300a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  public:
301a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    static char ID; // Pass identification, replacement for typeid
302ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohman    MemCpyOpt() : FunctionPass(&ID) {}
303a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
304a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  private:
305a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // This transformation requires dominator postdominator info
306a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
307a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.setPreservesCFG();
308a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<DominatorTree>();
309a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<MemoryDependenceAnalysis>();
310a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<AliasAnalysis>();
311a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<TargetData>();
312a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<AliasAnalysis>();
313a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<MemoryDependenceAnalysis>();
314a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<TargetData>();
315a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
316a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
317a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Helper fuctions
318a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
319a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool processMemCpy(MemCpyInst* M);
320a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
321a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool iterateOnFunction(Function &F);
322a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  };
323a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
324a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  char MemCpyOpt::ID = 0;
325a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
326a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
327a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// createMemCpyOptPass - The public interface to this file...
328a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonFunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
329a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
330a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic RegisterPass<MemCpyOpt> X("memcpyopt",
331a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 "MemCpy Optimization");
332a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
333a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
334a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
335a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processStore - When GVN is scanning forward over instructions, we look for
336a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// some other patterns to fold away.  In particular, this looks for stores to
337a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// neighboring locations of memory.  If it sees enough consequtive ones
338a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// (currently 4) it attempts to merge them together into a memcpy/memset.
339a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
340a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (SI->isVolatile()) return false;
341a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
342a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // There are two cases that are interesting for this code to handle: memcpy
343a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // and memset.  Right now we only handle memset.
344a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
345a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Ensure that the value being stored is something that can be memset'able a
346a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // byte at a time like "0" or "-1" or any width, as well as things like
347a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // 0xA0A0A0A0 and 0.0.
348a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
349a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!ByteVal)
350a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
351a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
352a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD = getAnalysis<TargetData>();
353a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
354a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
355a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Okay, so we now have a single store that can be splatable.  Scan to find
356a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // all subsequent stores of the same value to offset from the same pointer.
357a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Join these together into ranges, so we can decide whether contiguous blocks
358a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // are stored.
359a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges Ranges(TD);
360a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
361a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr = SI->getPointerOperand();
362a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
363a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  BasicBlock::iterator BI = SI;
364a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
365a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
366a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // If the call is readnone, ignore it, otherwise bail out.  We don't even
367a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // allow readonly here because we don't want something like:
368a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
369a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (AA.getModRefBehavior(CallSite::get(BI)) ==
370a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            AliasAnalysis::DoesNotAccessMemory)
371a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        continue;
372a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
373a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // TODO: If this is a memset, try to join it in.
374a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
375a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
376a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
377a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
378a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
379a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a non-store instruction it is fine, ignore it.
380a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
381a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore == 0) continue;
382a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
383a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a store, see if we can merge it in.
384a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore->isVolatile()) break;
385a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
386a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this stored value is of the same byte-splattable value.
387a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
388a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
389a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
390a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this store is to a constant offset from the start ptr.
391a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    int64_t Offset;
392a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
393a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
394a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
395a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Ranges.addStore(Offset, NextStore);
396a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
397a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
398a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have no ranges, then we just had a single store with nothing that
399a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // could be merged in.  This is a very common case of course.
400a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Ranges.empty())
401a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
402a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
403a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we had at least one store that could be merged in, add the starting
404a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // store as well.  We try to avoid this unless there is at least something
405a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // interesting as a small compile-time optimization.
406a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Ranges.addStore(0, SI);
407a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
408a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
409a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Function *MemSetF = 0;
410a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
411a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now that we have full information about ranges, loop over the ranges and
412a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // emit memset's for anything big enough to be worthwhile.
413a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool MadeChange = false;
414a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
415a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson       I != E; ++I) {
416a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const MemsetRange &Range = *I;
417a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
418a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (Range.TheStores.size() == 1) continue;
419a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
420a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If it is profitable to lower this range to memset, do so now.
421a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!Range.isProfitableToUseMemset(TD))
422a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
423a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
424a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we do want to transform this!  Create a new memset.  We put
425a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the memset right before the first instruction that isn't part of this
426a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // memset block.  This ensure that the memset is dominated by any addressing
427a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // instruction needed by the start of the block.
428a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    BasicBlock::iterator InsertPt = BI;
429a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
430824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner    if (MemSetF == 0) {
431824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner      const Type *Tys[] = {Type::Int64Ty};
432a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
433824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                          ->getParent(), Intrinsic::memset,
434824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                          Tys, 1);
435824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner   }
436a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
437a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Get the starting pointer of the block.
438a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StartPtr = Range.StartPtr;
439a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
440a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Cast the start ptr to be i8* as memset requires.
441a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty);
442a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (StartPtr->getType() != i8Ptr)
443a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
444a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 InsertPt);
445a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
446a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *Ops[] = {
447a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr, ByteVal,   // Start, value
448a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      ConstantInt::get(Type::Int64Ty, Range.End-Range.Start),  // size
449a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      ConstantInt::get(Type::Int32Ty, Range.Alignment)   // align
450a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    };
451a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
452a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    DEBUG(cerr << "Replace stores:\n";
453a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
454a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            cerr << *Range.TheStores[i];
455a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          cerr << "With: " << *C); C=C;
456a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
457a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    // Don't invalidate the iterator
458a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    BBI = BI;
459a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
460a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Zap all the stores.
461a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
462a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson         SE = Range.TheStores.end(); SI != SE; ++SI)
463a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      (*SI)->eraseFromParent();
464a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++NumMemSetInfer;
465a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MadeChange = true;
466a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
467a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
468a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return MadeChange;
469a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
470a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
471a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
472a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
473a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// and checks for the possibility of a call slot optimization by having
474a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the call write its result directly into the destination of the memcpy.
475a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
476a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The general transformation to keep in mind is
477a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
478a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., src, ...)
479a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
480a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
481a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // ->
482a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
483a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
484a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., dest, ...)
485a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
486a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since moving the memcpy is technically awkward, we additionally check that
487a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // src only holds uninitialized values at the moment of the call, meaning that
488a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy can be discarded rather than moved.
489a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
490a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Deliberately get the source and destination with bitcasts stripped away,
491a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // because we'll need to do type comparisons based on the underlying type.
492a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value* cpyDest = cpy->getDest();
493a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value* cpySrc = cpy->getSource();
494a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  CallSite CS = CallSite::get(C);
495a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
496a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We need to be able to reason about the size of the memcpy, so we require
497a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that it be a constant.
498a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
499a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!cpyLength)
500a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
501a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
502a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Require that src be an alloca.  This simplifies the reasoning considerably.
503a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
504a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcAlloca)
505a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
506a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
507a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that all of src is copied to dest.
508a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData& TD = getAnalysis<TargetData>();
509a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
510a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
511a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcArraySize)
512a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
513a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
514777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands  uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
515a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcArraySize->getZExtValue();
516a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
517a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (cpyLength->getZExtValue() < srcSize)
518a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
519a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
520a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that accessing the first srcSize bytes of dest will not cause a
521a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // trap.  Otherwise the transform is invalid since it might cause a trap
522a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to occur earlier than it otherwise would.
523a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
524a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // The destination is an alloca.  Check it is larger than srcSize.
525a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
526a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!destArraySize)
527a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
528a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
529777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
530a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      destArraySize->getZExtValue();
531a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
532a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
533a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
534a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
535a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If the destination is an sret parameter then only accesses that are
536a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // outside of the returned struct type can trap.
537a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!A->hasStructRetAttr())
538a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
539a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
540a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
541777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t destSize = TD.getTypeAllocSize(StructTy);
542a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
543a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
544a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
545a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else {
546a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
547a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
548a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
549a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that src is not accessed except via the call and the memcpy.  This
550a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // guarantees that it holds only undefined values when passed in (so the final
551a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memcpy can be dropped), that it is not read or written between the call and
552a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy, and that writing beyond the end of it is undefined.
553a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
554a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                   srcAlloca->use_end());
555a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (!srcUseList.empty()) {
556a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    User* UI = srcUseList.back();
557a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcUseList.pop_back();
558a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
559009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (isa<BitCastInst>(UI)) {
560a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
561a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           I != E; ++I)
562a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        srcUseList.push_back(*I);
563009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
564009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (G->hasAllZeroIndices())
565009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
566009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson             I != E; ++I)
567009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson          srcUseList.push_back(*I);
568009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
569009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        return false;
570a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (UI != C && UI != cpy) {
571a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
572a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
573a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
574a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
575a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we're changing the parameter to the callsite, we need to make sure
576a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that what would be the new parameter dominates the callsite.
577a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  DominatorTree& DT = getAnalysis<DominatorTree>();
578a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
579a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!DT.dominates(cpyDestInst, C))
580a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
581a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
582a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // In addition to knowing that the call does not access src in some
583a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // unexpected manner, for example via a global, which we deduce from
584a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the use analysis, we also need to know that it does not sneakily
585a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // access dest.  We rely on AA to figure this out for us.
586a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
587a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
588a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoModRef)
589a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
590a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
591a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All the checks have passed, so do the transformation.
59212cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  bool changedArgument = false;
593a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 0; i < CS.arg_size(); ++i)
594009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
595a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (cpySrc->getType() != cpyDest->getType())
5967cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
597a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                              cpyDest->getName(), C);
59812cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson      changedArgument = true;
599009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (CS.getArgument(i)->getType() != cpyDest->getType())
600009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
601009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson                       CS.getArgument(i)->getType(), cpyDest->getName(), C));
602009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
603009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, cpyDest);
604a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
605a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
60612cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  if (!changedArgument)
60712cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson    return false;
60812cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson
609a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Drop any cached information about the call, because we may have changed
610a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // its dependence information by changing its parameter.
611a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
6124f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner  MD.removeInstruction(C);
613a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
614a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Remove the memcpy
615a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(cpy);
616a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  cpy->eraseFromParent();
617a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  NumMemCpyInstr++;
618a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
619a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
620a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
621a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
622a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
623a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
624a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
625a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///  This allows later passes to remove the first memcpy altogether.
626a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::processMemCpy(MemCpyInst* M) {
627a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
628a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
629a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  // The are two possible optimizations we can do for memcpy:
630a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  //   a) memcpy-memcpy xform which exposes redundance for DSE
631a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  //   b) call-memcpy xform for return slot optimization
6324c724006256032e827177afeae04ea62436796e7Chris Lattner  MemDepResult dep = MD.getDependency(M);
633b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!dep.isClobber())
634a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    return false;
635b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!isa<MemCpyInst>(dep.getInst())) {
6364c724006256032e827177afeae04ea62436796e7Chris Lattner    if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
6379dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson      return performCallSlotOptzn(M, C);
638b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner    return false;
6399dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson  }
640a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
6414c724006256032e827177afeae04ea62436796e7Chris Lattner  MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
642a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
643a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can only transforms memcpy's where the dest of one is the source of the
644a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // other
645a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (M->getSource() != MDep->getDest())
646a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
647a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
648a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Second, the length of the memcpy's must be the same, or the preceeding one
649a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // must be larger than the following one.
650a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
651a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
652a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!C1 || !C2)
653a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
654a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
655a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t DepSize = C1->getValue().getZExtValue();
656a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t CpySize = C2->getValue().getZExtValue();
657a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
658a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (DepSize < CpySize)
659a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
660a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
661a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Finally, we have to make sure that the dest of the second does not
662a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // alias the source of the first
663a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
664a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
665a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoAlias)
666a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
667a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
668a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           AliasAnalysis::NoAlias)
669a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
670a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
671a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           != AliasAnalysis::NoAlias)
672a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
673a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
674a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If all checks passed, then we can transform these memcpy's
675824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner  const Type *Tys[1];
676824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner  Tys[0] = M->getLength()->getType();
677a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Function* MemCpyFun = Intrinsic::getDeclaration(
678a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 M->getParent()->getParent()->getParent(),
679824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                 M->getIntrinsicID(), Tys, 1);
680a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
681dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  Value *Args[4] = {
682dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
683dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  };
684a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
685dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
686a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
68702e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson
68802e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // If C and M don't interfere, then this is a valid transformation.  If they
68902e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // did, this would mean that the two sources overlap, which would be bad.
69039f372e23e49cecb8db2eb7120eb331173e50c74Chris Lattner  if (MD.getDependency(C) == dep) {
6914f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner    MD.removeInstruction(M);
692a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    M->eraseFromParent();
69302e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson    NumMemCpyInstr++;
694a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return true;
695a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
696a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
69702e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // Otherwise, there was no point in doing this, so we remove the call we
69802e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // inserted and act like nothing happened.
699a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(C);
700a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  C->eraseFromParent();
70102e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  return false;
702a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
703a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
704a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
705a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// function.
706a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
707a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::runOnFunction(Function& F) {
708a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
709a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool changed = false;
710a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool shouldContinue = true;
711a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
712a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (shouldContinue) {
713a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    shouldContinue = iterateOnFunction(F);
714a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    changed |= shouldContinue;
715a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
716a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
717a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return changed;
718a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
719a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
720a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
721a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
722a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::iterateOnFunction(Function &F) {
723a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool changed_function = false;
724a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
725a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  // Walk all instruction in the function
726a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
727a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
728a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson         BI != BE;) {
729a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      // Avoid invalidating the iterator
730a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      Instruction* I = BI++;
731a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
732a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      if (StoreInst *SI = dyn_cast<StoreInst>(I))
733a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson        changed_function |= processStore(SI, BI);
734529bd53411c6f583fd8ed435adf4c0f923d185fdTorok Edwin      else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
735a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson        changed_function |= processMemCpy(M);
736a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      }
737a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
738a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
739a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
740a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return changed_function;
741a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
742