MemCpyOptimizer.cpp revision f41eaacee4a4a2d4339dd553626d98c73650c8c7
1a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
3a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                     The LLVM Compiler Infrastructure
4a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
5a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This file is distributed under the University of Illinois Open Source
6a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// License. See LICENSE.TXT for details.
7a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
8a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
9a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
10a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This pass performs various transformations related to eliminating memcpy
11a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// calls, or transforming sets of stores into memset's.
12a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
13a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
14a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
15a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#define DEBUG_TYPE "memcpyopt"
16a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Transforms/Scalar.h"
17a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/IntrinsicInst.h"
18a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Instructions.h"
19fa5cbd6d0fbda23fd669c8718e07b19001b2d21aOwen Anderson#include "llvm/LLVMContext.h"
20a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/SmallVector.h"
21a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/Statistic.h"
22a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/Dominators.h"
23a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/AliasAnalysis.h"
24a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/Debug.h"
26a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/GetElementPtrTypeIterator.h"
27bdff548e4dd577a72094d57b282de4e765643b96Chris Lattner#include "llvm/Support/raw_ostream.h"
28a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Target/TargetData.h"
29a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include <list>
30a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonusing namespace llvm;
31a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
32a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemSetInfer, "Number of memsets inferred");
34a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
35a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// isBytewiseValue - If the specified value can be set by repeating the same
36a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte in memory, return the i8 value that it is represented with.  This is
37a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
38a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
39a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte store (e.g. i16 0x1234), return null.
4061c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerstatic Value *isBytewiseValue(Value *V, LLVMContext &Context) {
41a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All byte-wide stores are splatable, even of arbitrary variables.
421d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson  if (V->getType() == Type::getInt8Ty(Context)) return V;
43a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
44a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Constant float and double values can be handled as integer values if the
45a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // corresponding integer value is "byteable".  An important case is 0.0.
46a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
471d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson    if (CFP->getType() == Type::getFloatTy(Context))
481d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
491d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson    if (CFP->getType() == Type::getDoubleTy(Context))
501d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
51a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Don't handle long double formats, which have strange constraints.
52a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
53a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
54a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can handle constant integers that are power of two in size and a
55a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // multiple of 8 bits.
56a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
57a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    unsigned Width = CI->getBitWidth();
58a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isPowerOf2_32(Width) && Width > 8) {
59a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // We can handle this value if the recursive binary decomposition is the
60a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // same at all levels.
61a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val = CI->getValue();
62a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val2;
63a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      while (Val.getBitWidth() != 8) {
64a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        unsigned NextWidth = Val.getBitWidth()/2;
65a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2  = Val.lshr(NextWidth);
66a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2.trunc(Val.getBitWidth()/2);
67a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val.trunc(Val.getBitWidth()/2);
68a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
69a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        // If the top/bottom halves aren't the same, reject it.
70a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        if (Val != Val2)
71a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          return 0;
72a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      }
73eed707b1e6097aac2bb6b3d47271f6300ace7f2eOwen Anderson      return ConstantInt::get(Context, Val);
74a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
75a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
76a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
77a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Conceptually, we could handle things like:
78a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %a = zext i8 %X to i16
79a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %b = shl i16 %a, 8
80a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %c = or i16 %a, %b
81a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but until there is an example that actually needs this, it doesn't seem
82a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // worth worrying about.
83a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return 0;
84a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
85a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
86a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
87a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                  bool &VariableIdxFound, TargetData &TD) {
88a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip over the first indices.
89a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  gep_type_iterator GTI = gep_type_begin(GEP);
90a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 1; i != Idx; ++i, ++GTI)
91a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    /*skip along*/;
92a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
93a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Compute the offset implied by the rest of the indices.
94a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset = 0;
95a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
96a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
97a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC == 0)
98a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return VariableIdxFound = true;
99a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC->isZero()) continue;  // No offset.
100a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
101a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Handle struct indices, which add their field offset to the pointer.
102a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
103a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
104a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
105a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
106a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
107a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we have a sequential type like an array or vector.  Multiply
108a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the index by the ElementSize.
109777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
110a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Offset += Size*OpC->getSExtValue();
111a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
112a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
113a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return Offset;
114a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
115a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
116a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
117a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// constant offset, and return that constant offset.  For example, Ptr1 might
118a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
119a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
120a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                            TargetData &TD) {
121a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
122a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // base.  After that base, they may have some number of common (and
123a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // potentially variable) indices.  After that they handle some constant
124a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // offset, which determines their offset from each other.  At this point, we
125a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // handle no other case.
126a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
127a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
128a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
129a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
130a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
131a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip any common indices and track the GEP types.
132a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Idx = 1;
133a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
134a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
135a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
136a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
137a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool VariableIdxFound = false;
138a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
139a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
140a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (VariableIdxFound) return false;
141a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
142a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Offset = Offset2-Offset1;
143a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
144a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
145a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
146a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
147a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
148a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// This allows us to analyze stores like:
149a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+1
150a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+0
151a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+3
152a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+2
153a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// which sometimes happens with stores to arrays of structs etc.  When we see
154a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the first store, we make a range [1, 2).  The second store extends the range
155a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
156a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// two ranges into [0, 3) which is memset'able.
157a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
158a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstruct MemsetRange {
159a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Start/End - A semi range that describes the span that this range covers.
160a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The range is closed at the start and open at the end: [Start, End).
161a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Start, End;
162a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
163a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// StartPtr - The getelementptr instruction that points to the start of the
164a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// range.
165a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr;
166a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
167a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Alignment - The known alignment of the first store.
168a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Alignment;
169a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
170a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// TheStores - The actual stores that make up this range.
171a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<StoreInst*, 16> TheStores;
172a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
173a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool isProfitableToUseMemset(const TargetData &TD) const;
174a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
175a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
176a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
177a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
178a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
179a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we found more than 8 stores to merge or 64 bytes, use memset.
180a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() >= 8 || End-Start >= 64) return true;
181a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
182a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume that the code generator is capable of merging pairs of stores
183a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // together if it wants to.
184a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() <= 2) return false;
185a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
186a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have fewer than 8 stores, it can still be worthwhile to do this.
187a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // For example, merging 4 i8 stores into an i32 store is useful almost always.
188a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
189a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memset will be split into 2 32-bit stores anyway) and doing so can
190a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // pessimize the llvm optimizer.
191a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
192a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we don't have perfect knowledge here, make some assumptions: assume
193a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the maximum GPR width is the same size as the pointer size and assume that
194a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // this width can be stored.  If so, check to see whether we will end up
195a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // actually reducing the number of stores used.
196a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Bytes = unsigned(End-Start);
197a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumPointerStores = Bytes/TD.getPointerSize();
198a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
199a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume the remaining bytes if any are done a byte at a time.
200a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
201a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
202a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we will reduce the # stores (according to this heuristic), do the
203a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
204a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // etc.
205a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return TheStores.size() > NumPointerStores+NumByteStores;
206a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
207a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
208a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
209a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
210a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonclass MemsetRanges {
211a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Ranges - A sorted list of the memset ranges.  We use std::list here
212a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// because each element is relatively large and expensive to copy.
213a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  std::list<MemsetRange> Ranges;
214a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::iterator range_iterator;
215a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD;
216a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonpublic:
217a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges(TargetData &td) : TD(td) {}
218a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
219a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::const_iterator const_iterator;
220a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator begin() const { return Ranges.begin(); }
221a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator end() const { return Ranges.end(); }
222a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool empty() const { return Ranges.empty(); }
223a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
224a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
225a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
226a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
227a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
228a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
229a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
230a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
231a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// new range for the specified store at the specified offset, merging into
232a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// existing ranges as appropriate.
233a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonvoid MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
234a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
235a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
236a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Do a linear search of the ranges to see if this can be joined and/or to
237a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // find the insertion point in the list.  We keep the ranges sorted for
238a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // simplicity here.  This is a linear search of a linked list, which is ugly,
239a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // however the number of ranges is limited, so this won't get crazy slow.
240a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  range_iterator I = Ranges.begin(), E = Ranges.end();
241a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
242a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (I != E && Start > I->End)
243a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++I;
244a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
245a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We now know that I == E, in which case we didn't find anything to merge
246a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
247a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to insert a new range.  Handle this now.
248a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I == E || End < I->Start) {
249a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MemsetRange &R = *Ranges.insert(I, MemsetRange());
250a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Start        = Start;
251a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.End          = End;
252a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.StartPtr     = SI->getPointerOperand();
253a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Alignment    = SI->getAlignment();
254a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.TheStores.push_back(SI);
255a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
256a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
257a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
258a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // This store overlaps with I, add it.
259a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  I->TheStores.push_back(SI);
260a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
261a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // At this point, we may have an interval that completely contains our store.
262a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If so, just add it to the interval and return.
263a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I->Start <= Start && I->End >= End)
264a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
265a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
266a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but is not entirely contained within the range.
268a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
269a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // See if the range extends the start of the range.  In this case, it couldn't
270a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // possibly cause it to join the prior range, because otherwise we would have
271a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // stopped on *it*.
272a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Start < I->Start) {
273a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->Start = Start;
274a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->StartPtr = SI->getPointerOperand();
275a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
276a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
277a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
278a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
279a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // End.
280a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (End > I->End) {
281a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->End = End;
2829c0f146d50ccc3ba780d4854b8e14422430013efNick Lewycky    range_iterator NextI = I;
283a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    while (++NextI != E && End >= NextI->Start) {
284a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // Merge the range in.
285a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
286a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (NextI->End > I->End)
287a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        I->End = NextI->End;
288a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Ranges.erase(NextI);
289a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      NextI = I;
290a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
291a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
292a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
293a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
294a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
295a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                         MemCpyOpt Pass
296a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
297a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
298a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
299a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
300a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
301a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool runOnFunction(Function &F);
302a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  public:
303a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    static char ID; // Pass identification, replacement for typeid
304ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohman    MemCpyOpt() : FunctionPass(&ID) {}
305a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
306a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  private:
307a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // This transformation requires dominator postdominator info
308a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
309a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.setPreservesCFG();
310a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<DominatorTree>();
311a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<MemoryDependenceAnalysis>();
312a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<AliasAnalysis>();
313a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<AliasAnalysis>();
314a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<MemoryDependenceAnalysis>();
315a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
316a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
317a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Helper fuctions
31861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
31961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    bool processMemCpy(MemCpyInst *M);
320f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    bool processMemMove(MemMoveInst *M);
32161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
322a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool iterateOnFunction(Function &F);
323a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  };
324a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
325a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  char MemCpyOpt::ID = 0;
326a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
327a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
328a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// createMemCpyOptPass - The public interface to this file...
329a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonFunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
330a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
331a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic RegisterPass<MemCpyOpt> X("memcpyopt",
332a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 "MemCpy Optimization");
333a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
334a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
335a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
336a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processStore - When GVN is scanning forward over instructions, we look for
337a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// some other patterns to fold away.  In particular, this looks for stores to
338a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// neighboring locations of memory.  If it sees enough consequtive ones
339a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// (currently 4) it attempts to merge them together into a memcpy/memset.
34061c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerbool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
341a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (SI->isVolatile()) return false;
342a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
343a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // There are two cases that are interesting for this code to handle: memcpy
344a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // and memset.  Right now we only handle memset.
345a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
346a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Ensure that the value being stored is something that can be memset'able a
347a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // byte at a time like "0" or "-1" or any width, as well as things like
348a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // 0xA0A0A0A0 and 0.0.
349e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson  Value *ByteVal = isBytewiseValue(SI->getOperand(0), SI->getContext());
350a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!ByteVal)
351a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
352a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
3538942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  TargetData *TD = getAnalysisIfAvailable<TargetData>();
3548942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  if (!TD) return false;
355a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
356a195b7ffd6612a331751c7b6042d5cd921ee586cDan Gohman  Module *M = SI->getParent()->getParent()->getParent();
357a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
358a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Okay, so we now have a single store that can be splatable.  Scan to find
359a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // all subsequent stores of the same value to offset from the same pointer.
360a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Join these together into ranges, so we can decide whether contiguous blocks
361a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // are stored.
3628942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  MemsetRanges Ranges(*TD);
363a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
364a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr = SI->getPointerOperand();
365a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
366a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  BasicBlock::iterator BI = SI;
367a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
368a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
369a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // If the call is readnone, ignore it, otherwise bail out.  We don't even
370a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // allow readonly here because we don't want something like:
371a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
372a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (AA.getModRefBehavior(CallSite::get(BI)) ==
373a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            AliasAnalysis::DoesNotAccessMemory)
374a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        continue;
375a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
376a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // TODO: If this is a memset, try to join it in.
377a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
378a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
379a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
380a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
381a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
382a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a non-store instruction it is fine, ignore it.
383a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
384a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore == 0) continue;
385a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
386a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a store, see if we can merge it in.
387a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore->isVolatile()) break;
388a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
389a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this stored value is of the same byte-splattable value.
390e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson    if (ByteVal != isBytewiseValue(NextStore->getOperand(0),
391e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                                   NextStore->getContext()))
392a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
393a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
394a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this store is to a constant offset from the start ptr.
395a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    int64_t Offset;
3968942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
397a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
398a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
399a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Ranges.addStore(Offset, NextStore);
400a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
401a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
402a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have no ranges, then we just had a single store with nothing that
403a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // could be merged in.  This is a very common case of course.
404a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Ranges.empty())
405a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
406a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
407a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we had at least one store that could be merged in, add the starting
408a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // store as well.  We try to avoid this unless there is at least something
409a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // interesting as a small compile-time optimization.
410a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Ranges.addStore(0, SI);
411a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
412a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
413a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Function *MemSetF = 0;
414a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
415a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now that we have full information about ranges, loop over the ranges and
416a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // emit memset's for anything big enough to be worthwhile.
417a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool MadeChange = false;
418a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
419a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson       I != E; ++I) {
420a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const MemsetRange &Range = *I;
421a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
422a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (Range.TheStores.size() == 1) continue;
423a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
424a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If it is profitable to lower this range to memset, do so now.
4258942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    if (!Range.isProfitableToUseMemset(*TD))
426a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
427a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
428a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we do want to transform this!  Create a new memset.  We put
429a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the memset right before the first instruction that isn't part of this
430a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // memset block.  This ensure that the memset is dominated by any addressing
431a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // instruction needed by the start of the block.
432a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    BasicBlock::iterator InsertPt = BI;
433a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
434824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner    if (MemSetF == 0) {
435f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      const Type *Ty = Type::getInt64Ty(SI->getContext());
436f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, &Ty, 1);
437824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner   }
438a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
439a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Get the starting pointer of the block.
440a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StartPtr = Range.StartPtr;
441a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
442a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Cast the start ptr to be i8* as memset requires.
4431d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson    const Type *i8Ptr =
4441d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson          PointerType::getUnqual(Type::getInt8Ty(SI->getContext()));
445a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (StartPtr->getType() != i8Ptr)
446460f656475738d1a95a6be95346908ce1597df25Daniel Dunbar      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
447a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 InsertPt);
448a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
449a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *Ops[] = {
450a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr, ByteVal,   // Start, value
451e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // size
4521d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      ConstantInt::get(Type::getInt64Ty(SI->getContext()),
4531d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                       Range.End-Range.Start),
454e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // align
4551d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      ConstantInt::get(Type::getInt32Ty(SI->getContext()), Range.Alignment)
456a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    };
457a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
458bdff548e4dd577a72094d57b282de4e765643b96Chris Lattner    DEBUG(errs() << "Replace stores:\n";
459a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
460bdff548e4dd577a72094d57b282de4e765643b96Chris Lattner            errs() << *Range.TheStores[i];
461bdff548e4dd577a72094d57b282de4e765643b96Chris Lattner          errs() << "With: " << *C); C=C;
462a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
463a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    // Don't invalidate the iterator
464a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    BBI = BI;
465a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
466a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Zap all the stores.
467a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
468a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson         SE = Range.TheStores.end(); SI != SE; ++SI)
469a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      (*SI)->eraseFromParent();
470a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++NumMemSetInfer;
471a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MadeChange = true;
472a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
473a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
474a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return MadeChange;
475a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
476a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
477a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
478a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
479a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// and checks for the possibility of a call slot optimization by having
480a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the call write its result directly into the destination of the memcpy.
481a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
482a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The general transformation to keep in mind is
483a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
484a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., src, ...)
485a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
486a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
487a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // ->
488a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
489a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
490a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., dest, ...)
491a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
492a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since moving the memcpy is technically awkward, we additionally check that
493a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // src only holds uninitialized values at the moment of the call, meaning that
494a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy can be discarded rather than moved.
495a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
496a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Deliberately get the source and destination with bitcasts stripped away,
497a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // because we'll need to do type comparisons based on the underlying type.
49861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  Value *cpyDest = cpy->getDest();
49961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  Value *cpySrc = cpy->getSource();
500a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  CallSite CS = CallSite::get(C);
501a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
502a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We need to be able to reason about the size of the memcpy, so we require
503a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that it be a constant.
50461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
505a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!cpyLength)
506a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
507a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
508a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Require that src be an alloca.  This simplifies the reasoning considerably.
50961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
510a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcAlloca)
511a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
512a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
513a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that all of src is copied to dest.
51461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  TargetData *TD = getAnalysisIfAvailable<TargetData>();
5158942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  if (!TD) return false;
516a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
51761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
518a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcArraySize)
519a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
520a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
5218942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
522a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcArraySize->getZExtValue();
523a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
524a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (cpyLength->getZExtValue() < srcSize)
525a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
526a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
527a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that accessing the first srcSize bytes of dest will not cause a
528a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // trap.  Otherwise the transform is invalid since it might cause a trap
529a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to occur earlier than it otherwise would.
53061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
531a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // The destination is an alloca.  Check it is larger than srcSize.
53261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
533a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!destArraySize)
534a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
535a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
5368942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
537a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      destArraySize->getZExtValue();
538a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
539a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
540a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
54161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
542a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If the destination is an sret parameter then only accesses that are
543a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // outside of the returned struct type can trap.
544a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!A->hasStructRetAttr())
545a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
546a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
54761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
5488942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    uint64_t destSize = TD->getTypeAllocSize(StructTy);
549a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
550a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
551a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
552a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else {
553a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
554a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
555a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
556a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that src is not accessed except via the call and the memcpy.  This
557a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // guarantees that it holds only undefined values when passed in (so the final
558a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memcpy can be dropped), that it is not read or written between the call and
559a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy, and that writing beyond the end of it is undefined.
560a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
561a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                   srcAlloca->use_end());
562a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (!srcUseList.empty()) {
56361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    User *UI = srcUseList.back();
564a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcUseList.pop_back();
565a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
566009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (isa<BitCastInst>(UI)) {
567a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
568a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           I != E; ++I)
569a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        srcUseList.push_back(*I);
57061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
571009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (G->hasAllZeroIndices())
572009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
573009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson             I != E; ++I)
574009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson          srcUseList.push_back(*I);
575009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
576009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        return false;
577a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (UI != C && UI != cpy) {
578a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
579a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
580a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
581a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
582a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we're changing the parameter to the callsite, we need to make sure
583a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that what would be the new parameter dominates the callsite.
58461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  DominatorTree &DT = getAnalysis<DominatorTree>();
58561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
586a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!DT.dominates(cpyDestInst, C))
587a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
588a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
589a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // In addition to knowing that the call does not access src in some
590a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // unexpected manner, for example via a global, which we deduce from
591a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the use analysis, we also need to know that it does not sneakily
592a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // access dest.  We rely on AA to figure this out for us.
59361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
594a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
595a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoModRef)
596a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
597a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
598a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All the checks have passed, so do the transformation.
59912cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  bool changedArgument = false;
600a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 0; i < CS.arg_size(); ++i)
601009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
602a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (cpySrc->getType() != cpyDest->getType())
6037cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
604a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                              cpyDest->getName(), C);
60512cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson      changedArgument = true;
60661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      if (CS.getArgument(i)->getType() == cpyDest->getType())
607009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, cpyDest);
60861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      else
60961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
61061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
611a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
612a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
61312cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  if (!changedArgument)
61412cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson    return false;
61512cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson
616a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Drop any cached information about the call, because we may have changed
617a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // its dependence information by changing its parameter.
61861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
6194f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner  MD.removeInstruction(C);
620a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
621a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Remove the memcpy
622a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(cpy);
623a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  cpy->eraseFromParent();
624a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  NumMemCpyInstr++;
625a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
626a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
627a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
628a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
629a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
630a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
631a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
632a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///  This allows later passes to remove the first memcpy altogether.
63361c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerbool MemCpyOpt::processMemCpy(MemCpyInst *M) {
63461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
635a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
636a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  // The are two possible optimizations we can do for memcpy:
63761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  //   a) memcpy-memcpy xform which exposes redundance for DSE.
63861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  //   b) call-memcpy xform for return slot optimization.
6394c724006256032e827177afeae04ea62436796e7Chris Lattner  MemDepResult dep = MD.getDependency(M);
640b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!dep.isClobber())
641a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    return false;
642b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!isa<MemCpyInst>(dep.getInst())) {
64361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
6449dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson      return performCallSlotOptzn(M, C);
645b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner    return false;
6469dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson  }
647a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
64861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
649a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
650a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can only transforms memcpy's where the dest of one is the source of the
651a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // other
652a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (M->getSource() != MDep->getDest())
653a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
654a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
655a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Second, the length of the memcpy's must be the same, or the preceeding one
656a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // must be larger than the following one.
65761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
65861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
659a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!C1 || !C2)
660a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
661a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
662a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t DepSize = C1->getValue().getZExtValue();
663a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t CpySize = C2->getValue().getZExtValue();
664a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
665a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (DepSize < CpySize)
666a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
667a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
668a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Finally, we have to make sure that the dest of the second does not
669a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // alias the source of the first
67061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
671a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
672a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoAlias)
673a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
674a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
675a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           AliasAnalysis::NoAlias)
676a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
677a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
678a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           != AliasAnalysis::NoAlias)
679a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
680a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
681a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If all checks passed, then we can transform these memcpy's
682f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  const Type *Ty = M->getLength()->getType();
68361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  Function *MemCpyFun = Intrinsic::getDeclaration(
684a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 M->getParent()->getParent()->getParent(),
685f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner                                 M->getIntrinsicID(), &Ty, 1);
686a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
687dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  Value *Args[4] = {
688dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
689dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  };
690a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
69161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  CallInst *C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
692a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
69302e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson
69402e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // If C and M don't interfere, then this is a valid transformation.  If they
69502e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // did, this would mean that the two sources overlap, which would be bad.
69639f372e23e49cecb8db2eb7120eb331173e50c74Chris Lattner  if (MD.getDependency(C) == dep) {
6974f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner    MD.removeInstruction(M);
698a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    M->eraseFromParent();
69902e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson    NumMemCpyInstr++;
700a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return true;
701a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
702a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
70302e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // Otherwise, there was no point in doing this, so we remove the call we
70402e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // inserted and act like nothing happened.
705a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(C);
706a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  C->eraseFromParent();
70702e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  return false;
708a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
709a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
710f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
711f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner/// are guaranteed not to alias.
712f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattnerbool MemCpyOpt::processMemMove(MemMoveInst *M) {
713f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
714f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
715f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // If the memmove is a constant size, use it for the alias query, this allows
716f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // us to optimize things like: memmove(P, P+64, 64);
717f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  uint64_t MemMoveSize = ~0ULL;
718f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
719f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    MemMoveSize = Len->getZExtValue();
720f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
721f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // See if the pointers alias.
722f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
723f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      AliasAnalysis::NoAlias)
724f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    return false;
725f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
726f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  DEBUG(errs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
727f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
728f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // If not, then we know we can transform this.
729f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  Module *Mod = M->getParent()->getParent()->getParent();
730f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  const Type *Ty = M->getLength()->getType();
731f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  M->setOperand(0, Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, &Ty, 1));
732f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
733f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // MemDep may have over conservative information about this instruction, just
734f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // conservatively flush it from the cache.
735f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
736f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  return true;
737f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner}
738f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
739f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
74061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
741a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::iterateOnFunction(Function &F) {
74261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  bool MadeChange = false;
743a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
74461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  // Walk all instruction in the function.
745a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
746a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
747a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson         BI != BE;) {
74861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      // Avoid invalidating the iterator.
74961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      Instruction *I = BI++;
750a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
751a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      if (StoreInst *SI = dyn_cast<StoreInst>(I))
75261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        MadeChange |= processStore(SI, BI);
75361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
75461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        MadeChange |= processMemCpy(M);
755f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
756f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner        if (processMemMove(M)) {
757f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner          --BI;         // Reprocess the new memcpy.
758f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner          MadeChange = true;
759f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner        }
760f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      }
761a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
762a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
763a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
76461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  return MadeChange;
765a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
76661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
76761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
76861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// function.
76961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner//
77061c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerbool MemCpyOpt::runOnFunction(Function &F) {
77161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  bool MadeChange = false;
77261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  while (1) {
77361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    if (!iterateOnFunction(F))
77461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      break;
77561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    MadeChange = true;
77661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  }
77761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
77861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  return MadeChange;
77961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner}
78061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
78161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
78261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
783