SimplifyCFGPass.cpp revision 04d7d13d301df66f6c232e41611145c062183bf3
1//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements dead code elimination and basic block merging, along
11// with a collection of other peephole control flow optimizations.  For example:
12//
13//   * Removes basic blocks with no predecessors.
14//   * Merges a basic block into its predecessor if there is only one and the
15//     predecessor only has one successor.
16//   * Eliminates PHI nodes for basic blocks with a single predecessor.
17//   * Eliminates a basic block that only contains an unconditional branch.
18//   * Changes invoke instructions to nounwind functions to be calls.
19//   * Change things like "if (x) if (y)" into "if (x&y)".
20//   * etc..
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "simplifycfg"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Constants.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/Attributes.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Pass.h"
34#include "llvm/DataLayout.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/TargetTransformInfo.h"
39using namespace llvm;
40
41STATISTIC(NumSimpl, "Number of blocks simplified");
42
43namespace {
44  struct CFGSimplifyPass : public FunctionPass {
45    static char ID; // Pass identification, replacement for typeid
46    CFGSimplifyPass() : FunctionPass(ID) {
47      initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
48    }
49
50    virtual bool runOnFunction(Function &F);
51  };
52}
53
54char CFGSimplifyPass::ID = 0;
55INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
56                "Simplify the CFG", false, false)
57
58// Public interface to the CFGSimplification pass
59FunctionPass *llvm::createCFGSimplificationPass() {
60  return new CFGSimplifyPass();
61}
62
63/// changeToUnreachable - Insert an unreachable instruction before the specified
64/// instruction, making it and the rest of the code in the block dead.
65static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
66  BasicBlock *BB = I->getParent();
67  // Loop over all of the successors, removing BB's entry from any PHI
68  // nodes.
69  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
70    (*SI)->removePredecessor(BB);
71
72  // Insert a call to llvm.trap right before this.  This turns the undefined
73  // behavior into a hard fail instead of falling through into random code.
74  if (UseLLVMTrap) {
75    Function *TrapFn =
76      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
77    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
78    CallTrap->setDebugLoc(I->getDebugLoc());
79  }
80  new UnreachableInst(I->getContext(), I);
81
82  // All instructions after this are dead.
83  BasicBlock::iterator BBI = I, BBE = BB->end();
84  while (BBI != BBE) {
85    if (!BBI->use_empty())
86      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
87    BB->getInstList().erase(BBI++);
88  }
89}
90
91/// changeToCall - Convert the specified invoke into a normal call.
92static void changeToCall(InvokeInst *II) {
93  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
94  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
95  NewCall->takeName(II);
96  NewCall->setCallingConv(II->getCallingConv());
97  NewCall->setAttributes(II->getAttributes());
98  NewCall->setDebugLoc(II->getDebugLoc());
99  II->replaceAllUsesWith(NewCall);
100
101  // Follow the call by a branch to the normal destination.
102  BranchInst::Create(II->getNormalDest(), II);
103
104  // Update PHI nodes in the unwind destination
105  II->getUnwindDest()->removePredecessor(II->getParent());
106  II->eraseFromParent();
107}
108
109static bool markAliveBlocks(BasicBlock *BB,
110                            SmallPtrSet<BasicBlock*, 128> &Reachable) {
111
112  SmallVector<BasicBlock*, 128> Worklist;
113  Worklist.push_back(BB);
114  bool Changed = false;
115  do {
116    BB = Worklist.pop_back_val();
117
118    if (!Reachable.insert(BB))
119      continue;
120
121    // Do a quick scan of the basic block, turning any obviously unreachable
122    // instructions into LLVM unreachable insts.  The instruction combining pass
123    // canonicalizes unreachable insts into stores to null or undef.
124    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
125      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
126        if (CI->doesNotReturn()) {
127          // If we found a call to a no-return function, insert an unreachable
128          // instruction after it.  Make sure there isn't *already* one there
129          // though.
130          ++BBI;
131          if (!isa<UnreachableInst>(BBI)) {
132            // Don't insert a call to llvm.trap right before the unreachable.
133            changeToUnreachable(BBI, false);
134            Changed = true;
135          }
136          break;
137        }
138      }
139
140      // Store to undef and store to null are undefined and used to signal that
141      // they should be changed to unreachable by passes that can't modify the
142      // CFG.
143      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
144        // Don't touch volatile stores.
145        if (SI->isVolatile()) continue;
146
147        Value *Ptr = SI->getOperand(1);
148
149        if (isa<UndefValue>(Ptr) ||
150            (isa<ConstantPointerNull>(Ptr) &&
151             SI->getPointerAddressSpace() == 0)) {
152          changeToUnreachable(SI, true);
153          Changed = true;
154          break;
155        }
156      }
157    }
158
159    // Turn invokes that call 'nounwind' functions into ordinary calls.
160    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
161      Value *Callee = II->getCalledValue();
162      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
163        changeToUnreachable(II, true);
164        Changed = true;
165      } else if (II->doesNotThrow()) {
166        if (II->use_empty() && II->onlyReadsMemory()) {
167          // jump to the normal destination branch.
168          BranchInst::Create(II->getNormalDest(), II);
169          II->getUnwindDest()->removePredecessor(II->getParent());
170          II->eraseFromParent();
171        } else
172          changeToCall(II);
173        Changed = true;
174      }
175    }
176
177    Changed |= ConstantFoldTerminator(BB, true);
178    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
179      Worklist.push_back(*SI);
180  } while (!Worklist.empty());
181  return Changed;
182}
183
184/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
185/// if they are in a dead cycle.  Return true if a change was made, false
186/// otherwise.
187static bool removeUnreachableBlocksFromFn(Function &F) {
188  SmallPtrSet<BasicBlock*, 128> Reachable;
189  bool Changed = markAliveBlocks(F.begin(), Reachable);
190
191  // If there are unreachable blocks in the CFG...
192  if (Reachable.size() == F.size())
193    return Changed;
194
195  assert(Reachable.size() < F.size());
196  NumSimpl += F.size()-Reachable.size();
197
198  // Loop over all of the basic blocks that are not reachable, dropping all of
199  // their internal references...
200  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
201    if (Reachable.count(BB))
202      continue;
203
204    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
205      if (Reachable.count(*SI))
206        (*SI)->removePredecessor(BB);
207    BB->dropAllReferences();
208  }
209
210  for (Function::iterator I = ++F.begin(); I != F.end();)
211    if (!Reachable.count(I))
212      I = F.getBasicBlockList().erase(I);
213    else
214      ++I;
215
216  return true;
217}
218
219/// mergeEmptyReturnBlocks - If we have more than one empty (other than phi
220/// node) return blocks, merge them together to promote recursive block merging.
221static bool mergeEmptyReturnBlocks(Function &F) {
222  bool Changed = false;
223
224  BasicBlock *RetBlock = 0;
225
226  // Scan all the blocks in the function, looking for empty return blocks.
227  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
228    BasicBlock &BB = *BBI++;
229
230    // Only look at return blocks.
231    ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
232    if (Ret == 0) continue;
233
234    // Only look at the block if it is empty or the only other thing in it is a
235    // single PHI node that is the operand to the return.
236    if (Ret != &BB.front()) {
237      // Check for something else in the block.
238      BasicBlock::iterator I = Ret;
239      --I;
240      // Skip over debug info.
241      while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
242        --I;
243      if (!isa<DbgInfoIntrinsic>(I) &&
244          (!isa<PHINode>(I) || I != BB.begin() ||
245           Ret->getNumOperands() == 0 ||
246           Ret->getOperand(0) != I))
247        continue;
248    }
249
250    // If this is the first returning block, remember it and keep going.
251    if (RetBlock == 0) {
252      RetBlock = &BB;
253      continue;
254    }
255
256    // Otherwise, we found a duplicate return block.  Merge the two.
257    Changed = true;
258
259    // Case when there is no input to the return or when the returned values
260    // agree is trivial.  Note that they can't agree if there are phis in the
261    // blocks.
262    if (Ret->getNumOperands() == 0 ||
263        Ret->getOperand(0) ==
264          cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
265      BB.replaceAllUsesWith(RetBlock);
266      BB.eraseFromParent();
267      continue;
268    }
269
270    // If the canonical return block has no PHI node, create one now.
271    PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
272    if (RetBlockPHI == 0) {
273      Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
274      pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
275      RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
276                                    std::distance(PB, PE), "merge",
277                                    &RetBlock->front());
278
279      for (pred_iterator PI = PB; PI != PE; ++PI)
280        RetBlockPHI->addIncoming(InVal, *PI);
281      RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
282    }
283
284    // Turn BB into a block that just unconditionally branches to the return
285    // block.  This handles the case when the two return blocks have a common
286    // predecessor but that return different things.
287    RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
288    BB.getTerminator()->eraseFromParent();
289    BranchInst::Create(RetBlock, &BB);
290  }
291
292  return Changed;
293}
294
295/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
296/// iterating until no more changes are made.
297static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
298                                   const TargetTransformInfo *TTI) {
299  bool Changed = false;
300  bool LocalChange = true;
301  while (LocalChange) {
302    LocalChange = false;
303
304    // Loop over all of the basic blocks and remove them if they are unneeded...
305    //
306    for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
307      if (SimplifyCFG(BBIt++, TD, TTI)) {
308        LocalChange = true;
309        ++NumSimpl;
310      }
311    }
312    Changed |= LocalChange;
313  }
314  return Changed;
315}
316
317// It is possible that we may require multiple passes over the code to fully
318// simplify the CFG.
319//
320bool CFGSimplifyPass::runOnFunction(Function &F) {
321  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
322  const TargetTransformInfo *TTI =
323      getAnalysisIfAvailable<TargetTransformInfo>();
324  bool EverChanged = removeUnreachableBlocksFromFn(F);
325  EverChanged |= mergeEmptyReturnBlocks(F);
326  EverChanged |= iterativelySimplifyCFG(F, TD, TTI);
327
328  // If neither pass changed anything, we're done.
329  if (!EverChanged) return false;
330
331  // iterativelySimplifyCFG can (rarely) make some loops dead.  If this happens,
332  // removeUnreachableBlocksFromFn is needed to nuke them, which means we should
333  // iterate between the two optimizations.  We structure the code like this to
334  // avoid reruning iterativelySimplifyCFG if the second pass of
335  // removeUnreachableBlocksFromFn doesn't do anything.
336  if (!removeUnreachableBlocksFromFn(F))
337    return true;
338
339  do {
340    EverChanged = iterativelySimplifyCFG(F, TD, TTI);
341    EverChanged |= removeUnreachableBlocksFromFn(F);
342  } while (EverChanged);
343
344  return true;
345}
346