SimplifyCFGPass.cpp revision f4f10e37791cef519a057d10d12f688333f554a7
1//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements dead code elimination and basic block merging, along
11// with a collection of other peephole control flow optimizations.  For example:
12//
13//   * Removes basic blocks with no predecessors.
14//   * Merges a basic block into its predecessor if there is only one and the
15//     predecessor only has one successor.
16//   * Eliminates PHI nodes for basic blocks with a single predecessor.
17//   * Eliminates a basic block that only contains an unconditional branch.
18//   * Changes invoke instructions to nounwind functions to be calls.
19//   * Change things like "if (x) if (y)" into "if (x&y)".
20//   * etc..
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "simplifycfg"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Constants.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/Attributes.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Pass.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/Statistic.h"
38using namespace llvm;
39
40STATISTIC(NumSimpl, "Number of blocks simplified");
41
42namespace {
43  struct CFGSimplifyPass : public FunctionPass {
44    static char ID; // Pass identification, replacement for typeid
45    CFGSimplifyPass() : FunctionPass(&ID) {}
46
47    virtual bool runOnFunction(Function &F);
48  };
49}
50
51char CFGSimplifyPass::ID = 0;
52static RegisterPass<CFGSimplifyPass> X("simplifycfg", "Simplify the CFG");
53
54// Public interface to the CFGSimplification pass
55FunctionPass *llvm::createCFGSimplificationPass() {
56  return new CFGSimplifyPass();
57}
58
59/// ChangeToUnreachable - Insert an unreachable instruction before the specified
60/// instruction, making it and the rest of the code in the block dead.
61static void ChangeToUnreachable(Instruction *I) {
62  BasicBlock *BB = I->getParent();
63  // Loop over all of the successors, removing BB's entry from any PHI
64  // nodes.
65  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
66    (*SI)->removePredecessor(BB);
67
68  new UnreachableInst(I->getContext(), I);
69
70  // All instructions after this are dead.
71  BasicBlock::iterator BBI = I, BBE = BB->end();
72  while (BBI != BBE) {
73    if (!BBI->use_empty())
74      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
75    BB->getInstList().erase(BBI++);
76  }
77}
78
79/// ChangeToCall - Convert the specified invoke into a normal call.
80static void ChangeToCall(InvokeInst *II) {
81  BasicBlock *BB = II->getParent();
82  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
83  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(),
84                                       Args.end(), "", II);
85  NewCall->takeName(II);
86  NewCall->setCallingConv(II->getCallingConv());
87  NewCall->setAttributes(II->getAttributes());
88  II->replaceAllUsesWith(NewCall);
89
90  // Follow the call by a branch to the normal destination.
91  BranchInst::Create(II->getNormalDest(), II);
92
93  // Update PHI nodes in the unwind destination
94  II->getUnwindDest()->removePredecessor(BB);
95  BB->getInstList().erase(II);
96}
97
98static bool MarkAliveBlocks(BasicBlock *BB,
99                            SmallPtrSet<BasicBlock*, 128> &Reachable) {
100
101  SmallVector<BasicBlock*, 128> Worklist;
102  Worklist.push_back(BB);
103  bool Changed = false;
104  do {
105    BB = Worklist.pop_back_val();
106
107    if (!Reachable.insert(BB))
108      continue;
109
110    // Do a quick scan of the basic block, turning any obviously unreachable
111    // instructions into LLVM unreachable insts.  The instruction combining pass
112    // canonicalizes unreachable insts into stores to null or undef.
113    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
114      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
115        if (CI->doesNotReturn()) {
116          // If we found a call to a no-return function, insert an unreachable
117          // instruction after it.  Make sure there isn't *already* one there
118          // though.
119          ++BBI;
120          if (!isa<UnreachableInst>(BBI)) {
121            ChangeToUnreachable(BBI);
122            Changed = true;
123          }
124          break;
125        }
126      }
127
128      // Store to undef and store to null are undefined and used to signal that
129      // they should be changed to unreachable by passes that can't modify the
130      // CFG.
131      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
132        Value *Ptr = SI->getOperand(1);
133
134        if (isa<UndefValue>(Ptr) ||
135            (isa<ConstantPointerNull>(Ptr) &&
136             SI->getPointerAddressSpace() == 0)) {
137          ChangeToUnreachable(SI);
138          Changed = true;
139          break;
140        }
141      }
142    }
143
144    // Turn invokes that call 'nounwind' functions into ordinary calls.
145    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
146      if (II->doesNotThrow()) {
147        ChangeToCall(II);
148        Changed = true;
149      }
150
151    Changed |= ConstantFoldTerminator(BB);
152    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
153      Worklist.push_back(*SI);
154  } while (!Worklist.empty());
155  return Changed;
156}
157
158/// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
159/// if they are in a dead cycle.  Return true if a change was made, false
160/// otherwise.
161static bool RemoveUnreachableBlocksFromFn(Function &F) {
162  SmallPtrSet<BasicBlock*, 128> Reachable;
163  bool Changed = MarkAliveBlocks(F.begin(), Reachable);
164
165  // If there are unreachable blocks in the CFG...
166  if (Reachable.size() == F.size())
167    return Changed;
168
169  assert(Reachable.size() < F.size());
170  NumSimpl += F.size()-Reachable.size();
171
172  // Loop over all of the basic blocks that are not reachable, dropping all of
173  // their internal references...
174  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
175    if (Reachable.count(BB))
176      continue;
177
178    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
179      if (Reachable.count(*SI))
180        (*SI)->removePredecessor(BB);
181    BB->dropAllReferences();
182  }
183
184  for (Function::iterator I = ++F.begin(); I != F.end();)
185    if (!Reachable.count(I))
186      I = F.getBasicBlockList().erase(I);
187    else
188      ++I;
189
190  return true;
191}
192
193/// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
194/// node) return blocks, merge them together to promote recursive block merging.
195static bool MergeEmptyReturnBlocks(Function &F) {
196  bool Changed = false;
197
198  BasicBlock *RetBlock = 0;
199
200  // Scan all the blocks in the function, looking for empty return blocks.
201  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
202    BasicBlock &BB = *BBI++;
203
204    // Only look at return blocks.
205    ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
206    if (Ret == 0) continue;
207
208    // Only look at the block if it is empty or the only other thing in it is a
209    // single PHI node that is the operand to the return.
210    if (Ret != &BB.front()) {
211      // Check for something else in the block.
212      BasicBlock::iterator I = Ret;
213      --I;
214      // Skip over debug info.
215      while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
216        --I;
217      if (!isa<DbgInfoIntrinsic>(I) &&
218          (!isa<PHINode>(I) || I != BB.begin() ||
219           Ret->getNumOperands() == 0 ||
220           Ret->getOperand(0) != I))
221        continue;
222    }
223
224    // If this is the first returning block, remember it and keep going.
225    if (RetBlock == 0) {
226      RetBlock = &BB;
227      continue;
228    }
229
230    // Otherwise, we found a duplicate return block.  Merge the two.
231    Changed = true;
232
233    // Case when there is no input to the return or when the returned values
234    // agree is trivial.  Note that they can't agree if there are phis in the
235    // blocks.
236    if (Ret->getNumOperands() == 0 ||
237        Ret->getOperand(0) ==
238          cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
239      BB.replaceAllUsesWith(RetBlock);
240      BB.eraseFromParent();
241      continue;
242    }
243
244    // If the canonical return block has no PHI node, create one now.
245    PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
246    if (RetBlockPHI == 0) {
247      Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
248      RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), "merge",
249                                    &RetBlock->front());
250
251      for (pred_iterator PI = pred_begin(RetBlock), E = pred_end(RetBlock);
252           PI != E; ++PI)
253        RetBlockPHI->addIncoming(InVal, *PI);
254      RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
255    }
256
257    // Turn BB into a block that just unconditionally branches to the return
258    // block.  This handles the case when the two return blocks have a common
259    // predecessor but that return different things.
260    RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
261    BB.getTerminator()->eraseFromParent();
262    BranchInst::Create(RetBlock, &BB);
263  }
264
265  return Changed;
266}
267
268/// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
269/// iterating until no more changes are made.
270static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
271  bool Changed = false;
272  bool LocalChange = true;
273  while (LocalChange) {
274    LocalChange = false;
275
276    // Loop over all of the basic blocks (except the first one) and remove them
277    // if they are unneeded...
278    //
279    for (Function::iterator BBIt = ++F.begin(); BBIt != F.end(); ) {
280      if (SimplifyCFG(BBIt++, TD)) {
281        LocalChange = true;
282        ++NumSimpl;
283      }
284    }
285    Changed |= LocalChange;
286  }
287  return Changed;
288}
289
290// It is possible that we may require multiple passes over the code to fully
291// simplify the CFG.
292//
293bool CFGSimplifyPass::runOnFunction(Function &F) {
294  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
295  bool EverChanged = RemoveUnreachableBlocksFromFn(F);
296  EverChanged |= MergeEmptyReturnBlocks(F);
297  EverChanged |= IterativeSimplifyCFG(F, TD);
298
299  // If neither pass changed anything, we're done.
300  if (!EverChanged) return false;
301
302  // IterativeSimplifyCFG can (rarely) make some loops dead.  If this happens,
303  // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
304  // iterate between the two optimizations.  We structure the code like this to
305  // avoid reruning IterativeSimplifyCFG if the second pass of
306  // RemoveUnreachableBlocksFromFn doesn't do anything.
307  if (!RemoveUnreachableBlocksFromFn(F))
308    return true;
309
310  do {
311    EverChanged = IterativeSimplifyCFG(F, TD);
312    EverChanged |= RemoveUnreachableBlocksFromFn(F);
313  } while (EverChanged);
314
315  return true;
316}
317