InlineFunction.cpp revision 0744f09efc53d3352ac1caffc61f6e8239201c3b
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Attributes.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/CallSite.h"
27using namespace llvm;
28
29bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(CI), CG, TD);
31}
32bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(II), CG, TD);
34}
35
36/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
37/// in the body of the inlined function into invokes and turn unwind
38/// instructions into branches to the invoke unwind dest.
39///
40/// II is the invoke instruction being inlined.  FirstNewBlock is the first
41/// block of the inlined code (the last block is the end of the function),
42/// and InlineCodeInfo is information about the code that got inlined.
43static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
44                                ClonedCodeInfo &InlinedCodeInfo) {
45  BasicBlock *InvokeDest = II->getUnwindDest();
46  std::vector<Value*> InvokeDestPHIValues;
47
48  // If there are PHI nodes in the unwind destination block, we need to
49  // keep track of which values came into them from this invoke, then remove
50  // the entry for this block.
51  BasicBlock *InvokeBlock = II->getParent();
52  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
53    PHINode *PN = cast<PHINode>(I);
54    // Save the value to use for this edge.
55    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
56  }
57
58  Function *Caller = FirstNewBlock->getParent();
59
60  // The inlined code is currently at the end of the function, scan from the
61  // start of the inlined code to its end, checking for stuff we need to
62  // rewrite.
63  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
64    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
65         BB != E; ++BB) {
66      if (InlinedCodeInfo.ContainsCalls) {
67        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
68          Instruction *I = BBI++;
69
70          // We only need to check for function calls: inlined invoke
71          // instructions require no special handling.
72          if (!isa<CallInst>(I)) continue;
73          CallInst *CI = cast<CallInst>(I);
74
75          // If this call cannot unwind, don't convert it to an invoke.
76          if (CI->doesNotThrow())
77            continue;
78
79          // Convert this function call into an invoke instruction.
80          // First, split the basic block.
81          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
82
83          // Next, create the new invoke instruction, inserting it at the end
84          // of the old basic block.
85          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
86          InvokeInst *II =
87            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
88                               InvokeArgs.begin(), InvokeArgs.end(),
89                               CI->getName(), BB->getTerminator());
90          II->setCallingConv(CI->getCallingConv());
91          II->setAttributes(CI->getAttributes());
92
93          // Make sure that anything using the call now uses the invoke!
94          CI->replaceAllUsesWith(II);
95
96          // Delete the unconditional branch inserted by splitBasicBlock
97          BB->getInstList().pop_back();
98          Split->getInstList().pop_front();  // Delete the original call
99
100          // Update any PHI nodes in the exceptional block to indicate that
101          // there is now a new entry in them.
102          unsigned i = 0;
103          for (BasicBlock::iterator I = InvokeDest->begin();
104               isa<PHINode>(I); ++I, ++i) {
105            PHINode *PN = cast<PHINode>(I);
106            PN->addIncoming(InvokeDestPHIValues[i], BB);
107          }
108
109          // This basic block is now complete, start scanning the next one.
110          break;
111        }
112      }
113
114      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
115        // An UnwindInst requires special handling when it gets inlined into an
116        // invoke site.  Once this happens, we know that the unwind would cause
117        // a control transfer to the invoke exception destination, so we can
118        // transform it into a direct branch to the exception destination.
119        BranchInst::Create(InvokeDest, UI);
120
121        // Delete the unwind instruction!
122        UI->eraseFromParent();
123
124        // Update any PHI nodes in the exceptional block to indicate that
125        // there is now a new entry in them.
126        unsigned i = 0;
127        for (BasicBlock::iterator I = InvokeDest->begin();
128             isa<PHINode>(I); ++I, ++i) {
129          PHINode *PN = cast<PHINode>(I);
130          PN->addIncoming(InvokeDestPHIValues[i], BB);
131        }
132      }
133    }
134  }
135
136  // Now that everything is happy, we have one final detail.  The PHI nodes in
137  // the exception destination block still have entries due to the original
138  // invoke instruction.  Eliminate these entries (which might even delete the
139  // PHI node) now.
140  InvokeDest->removePredecessor(II->getParent());
141}
142
143/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
144/// into the caller, update the specified callgraph to reflect the changes we
145/// made.  Note that it's possible that not all code was copied over, so only
146/// some edges of the callgraph may remain.
147static void UpdateCallGraphAfterInlining(CallSite CS,
148                                         Function::iterator FirstNewBlock,
149                                       DenseMap<const Value*, Value*> &ValueMap,
150                                         CallGraph &CG) {
151  const Function *Caller = CS.getInstruction()->getParent()->getParent();
152  const Function *Callee = CS.getCalledFunction();
153  CallGraphNode *CalleeNode = CG[Callee];
154  CallGraphNode *CallerNode = CG[Caller];
155
156  // Since we inlined some uninlined call sites in the callee into the caller,
157  // add edges from the caller to all of the callees of the callee.
158  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
159
160  // Consider the case where CalleeNode == CallerNode.
161  CallGraphNode::CalledFunctionsVector CallCache;
162  if (CalleeNode == CallerNode) {
163    CallCache.assign(I, E);
164    I = CallCache.begin();
165    E = CallCache.end();
166  }
167
168  for (; I != E; ++I) {
169    const Instruction *OrigCall = I->first.getInstruction();
170
171    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
172    // Only copy the edge if the call was inlined!
173    if (VMI != ValueMap.end() && VMI->second) {
174      // If the call was inlined, but then constant folded, there is no edge to
175      // add.  Check for this case.
176      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
177        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
178    }
179  }
180  // Update the call graph by deleting the edge from Callee to Caller.  We must
181  // do this after the loop above in case Caller and Callee are the same.
182  CallerNode->removeCallEdgeFor(CS);
183}
184
185
186// InlineFunction - This function inlines the called function into the basic
187// block of the caller.  This returns false if it is not possible to inline this
188// call.  The program is still in a well defined state if this occurs though.
189//
190// Note that this only does one level of inlining.  For example, if the
191// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
192// exists in the instruction stream.  Similiarly this will inline a recursive
193// function by one level.
194//
195bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
196  Instruction *TheCall = CS.getInstruction();
197  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
198         "Instruction not in function!");
199
200  const Function *CalledFunc = CS.getCalledFunction();
201  if (CalledFunc == 0 ||          // Can't inline external function or indirect
202      CalledFunc->isDeclaration() || // call, or call to a vararg function!
203      CalledFunc->getFunctionType()->isVarArg()) return false;
204
205
206  // If the call to the callee is not a tail call, we must clear the 'tail'
207  // flags on any calls that we inline.
208  bool MustClearTailCallFlags =
209    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
210
211  // If the call to the callee cannot throw, set the 'nounwind' flag on any
212  // calls that we inline.
213  bool MarkNoUnwind = CS.doesNotThrow();
214
215  BasicBlock *OrigBB = TheCall->getParent();
216  Function *Caller = OrigBB->getParent();
217
218  // GC poses two hazards to inlining, which only occur when the callee has GC:
219  //  1. If the caller has no GC, then the callee's GC must be propagated to the
220  //     caller.
221  //  2. If the caller has a differing GC, it is invalid to inline.
222  if (CalledFunc->hasGC()) {
223    if (!Caller->hasGC())
224      Caller->setGC(CalledFunc->getGC());
225    else if (CalledFunc->getGC() != Caller->getGC())
226      return false;
227  }
228
229  // Get an iterator to the last basic block in the function, which will have
230  // the new function inlined after it.
231  //
232  Function::iterator LastBlock = &Caller->back();
233
234  // Make sure to capture all of the return instructions from the cloned
235  // function.
236  std::vector<ReturnInst*> Returns;
237  ClonedCodeInfo InlinedFunctionInfo;
238  Function::iterator FirstNewBlock;
239
240  { // Scope to destroy ValueMap after cloning.
241    DenseMap<const Value*, Value*> ValueMap;
242
243    assert(CalledFunc->arg_size() == CS.arg_size() &&
244           "No varargs calls can be inlined!");
245
246    // Calculate the vector of arguments to pass into the function cloner, which
247    // matches up the formal to the actual argument values.
248    CallSite::arg_iterator AI = CS.arg_begin();
249    unsigned ArgNo = 0;
250    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
251         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
252      Value *ActualArg = *AI;
253
254      // When byval arguments actually inlined, we need to make the copy implied
255      // by them explicit.  However, we don't do this if the callee is readonly
256      // or readnone, because the copy would be unneeded: the callee doesn't
257      // modify the struct.
258      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
259          !CalledFunc->onlyReadsMemory()) {
260        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
261        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
262
263        // Create the alloca.  If we have TargetData, use nice alignment.
264        unsigned Align = 1;
265        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
266        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
267                                          Caller->begin()->begin());
268        // Emit a memcpy.
269        const Type *Tys[] = { Type::Int64Ty };
270        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
271                                                       Intrinsic::memcpy,
272                                                       Tys, 1);
273        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
274        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
275
276        Value *Size;
277        if (TD == 0)
278          Size = ConstantExpr::getSizeOf(AggTy);
279        else
280          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
281
282        // Always generate a memcpy of alignment 1 here because we don't know
283        // the alignment of the src pointer.  Other optimizations can infer
284        // better alignment.
285        Value *CallArgs[] = {
286          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
287        };
288        CallInst *TheMemCpy =
289          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
290
291        // If we have a call graph, update it.
292        if (CG) {
293          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
294          CallGraphNode *CallerNode = (*CG)[Caller];
295          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
296        }
297
298        // Uses of the argument in the function should use our new alloca
299        // instead.
300        ActualArg = NewAlloca;
301      }
302
303      ValueMap[I] = ActualArg;
304    }
305
306    // We want the inliner to prune the code as it copies.  We would LOVE to
307    // have no dead or constant instructions leftover after inlining occurs
308    // (which can happen, e.g., because an argument was constant), but we'll be
309    // happy with whatever the cloner can do.
310    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
311                              &InlinedFunctionInfo, TD);
312
313    // Remember the first block that is newly cloned over.
314    FirstNewBlock = LastBlock; ++FirstNewBlock;
315
316    // Update the callgraph if requested.
317    if (CG)
318      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
319  }
320
321  // If there are any alloca instructions in the block that used to be the entry
322  // block for the callee, move them to the entry block of the caller.  First
323  // calculate which instruction they should be inserted before.  We insert the
324  // instructions at the end of the current alloca list.
325  //
326  {
327    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
328    for (BasicBlock::iterator I = FirstNewBlock->begin(),
329           E = FirstNewBlock->end(); I != E; )
330      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
331        // If the alloca is now dead, remove it.  This often occurs due to code
332        // specialization.
333        if (AI->use_empty()) {
334          AI->eraseFromParent();
335          continue;
336        }
337
338        if (isa<Constant>(AI->getArraySize())) {
339          // Scan for the block of allocas that we can move over, and move them
340          // all at once.
341          while (isa<AllocaInst>(I) &&
342                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
343            ++I;
344
345          // Transfer all of the allocas over in a block.  Using splice means
346          // that the instructions aren't removed from the symbol table, then
347          // reinserted.
348          Caller->getEntryBlock().getInstList().splice(
349              InsertPoint,
350              FirstNewBlock->getInstList(),
351              AI, I);
352        }
353      }
354  }
355
356  // If the inlined code contained dynamic alloca instructions, wrap the inlined
357  // code with llvm.stacksave/llvm.stackrestore intrinsics.
358  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
359    Module *M = Caller->getParent();
360    // Get the two intrinsics we care about.
361    Constant *StackSave, *StackRestore;
362    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
363    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
364
365    // If we are preserving the callgraph, add edges to the stacksave/restore
366    // functions for the calls we insert.
367    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
368    if (CG) {
369      // We know that StackSave/StackRestore are Function*'s, because they are
370      // intrinsics which must have the right types.
371      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
372      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
373      CallerNode = (*CG)[Caller];
374    }
375
376    // Insert the llvm.stacksave.
377    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
378                                          FirstNewBlock->begin());
379    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
380
381    // Insert a call to llvm.stackrestore before any return instructions in the
382    // inlined function.
383    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
384      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
385      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
386    }
387
388    // Count the number of StackRestore calls we insert.
389    unsigned NumStackRestores = Returns.size();
390
391    // If we are inlining an invoke instruction, insert restores before each
392    // unwind.  These unwinds will be rewritten into branches later.
393    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
394      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
395           BB != E; ++BB)
396        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
397          CallInst::Create(StackRestore, SavedPtr, "", UI);
398          ++NumStackRestores;
399        }
400    }
401  }
402
403  // If we are inlining tail call instruction through a call site that isn't
404  // marked 'tail', we must remove the tail marker for any calls in the inlined
405  // code.  Also, calls inlined through a 'nounwind' call site should be marked
406  // 'nounwind'.
407  if (InlinedFunctionInfo.ContainsCalls &&
408      (MustClearTailCallFlags || MarkNoUnwind)) {
409    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
410         BB != E; ++BB)
411      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
412        if (CallInst *CI = dyn_cast<CallInst>(I)) {
413          if (MustClearTailCallFlags)
414            CI->setTailCall(false);
415          if (MarkNoUnwind)
416            CI->setDoesNotThrow();
417        }
418  }
419
420  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
421  // instructions are unreachable.
422  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
423    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
424         BB != E; ++BB) {
425      TerminatorInst *Term = BB->getTerminator();
426      if (isa<UnwindInst>(Term)) {
427        new UnreachableInst(Term);
428        BB->getInstList().erase(Term);
429      }
430    }
431
432  // If we are inlining for an invoke instruction, we must make sure to rewrite
433  // any inlined 'unwind' instructions into branches to the invoke exception
434  // destination, and call instructions into invoke instructions.
435  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
436    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
437
438  // If we cloned in _exactly one_ basic block, and if that block ends in a
439  // return instruction, we splice the body of the inlined callee directly into
440  // the calling basic block.
441  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
442    // Move all of the instructions right before the call.
443    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
444                                 FirstNewBlock->begin(), FirstNewBlock->end());
445    // Remove the cloned basic block.
446    Caller->getBasicBlockList().pop_back();
447
448    // If the call site was an invoke instruction, add a branch to the normal
449    // destination.
450    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
451      BranchInst::Create(II->getNormalDest(), TheCall);
452
453    // If the return instruction returned a value, replace uses of the call with
454    // uses of the returned value.
455    if (!TheCall->use_empty()) {
456      ReturnInst *R = Returns[0];
457      TheCall->replaceAllUsesWith(R->getReturnValue());
458    }
459    // Since we are now done with the Call/Invoke, we can delete it.
460    TheCall->eraseFromParent();
461
462    // Since we are now done with the return instruction, delete it also.
463    Returns[0]->eraseFromParent();
464
465    // We are now done with the inlining.
466    return true;
467  }
468
469  // Otherwise, we have the normal case, of more than one block to inline or
470  // multiple return sites.
471
472  // We want to clone the entire callee function into the hole between the
473  // "starter" and "ender" blocks.  How we accomplish this depends on whether
474  // this is an invoke instruction or a call instruction.
475  BasicBlock *AfterCallBB;
476  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
477
478    // Add an unconditional branch to make this look like the CallInst case...
479    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
480
481    // Split the basic block.  This guarantees that no PHI nodes will have to be
482    // updated due to new incoming edges, and make the invoke case more
483    // symmetric to the call case.
484    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
485                                          CalledFunc->getName()+".exit");
486
487  } else {  // It's a call
488    // If this is a call instruction, we need to split the basic block that
489    // the call lives in.
490    //
491    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
492                                          CalledFunc->getName()+".exit");
493  }
494
495  // Change the branch that used to go to AfterCallBB to branch to the first
496  // basic block of the inlined function.
497  //
498  TerminatorInst *Br = OrigBB->getTerminator();
499  assert(Br && Br->getOpcode() == Instruction::Br &&
500         "splitBasicBlock broken!");
501  Br->setOperand(0, FirstNewBlock);
502
503
504  // Now that the function is correct, make it a little bit nicer.  In
505  // particular, move the basic blocks inserted from the end of the function
506  // into the space made by splitting the source basic block.
507  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
508                                     FirstNewBlock, Caller->end());
509
510  // Handle all of the return instructions that we just cloned in, and eliminate
511  // any users of the original call/invoke instruction.
512  const Type *RTy = CalledFunc->getReturnType();
513
514  if (Returns.size() > 1) {
515    // The PHI node should go at the front of the new basic block to merge all
516    // possible incoming values.
517    PHINode *PHI = 0;
518    if (!TheCall->use_empty()) {
519      PHI = PHINode::Create(RTy, TheCall->getName(),
520                            AfterCallBB->begin());
521      // Anything that used the result of the function call should now use the
522      // PHI node as their operand.
523      TheCall->replaceAllUsesWith(PHI);
524    }
525
526    // Loop over all of the return instructions adding entries to the PHI node
527    // as appropriate.
528    if (PHI) {
529      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
530        ReturnInst *RI = Returns[i];
531        assert(RI->getReturnValue()->getType() == PHI->getType() &&
532               "Ret value not consistent in function!");
533        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
534      }
535    }
536
537    // Add a branch to the merge points and remove return instructions.
538    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
539      ReturnInst *RI = Returns[i];
540      BranchInst::Create(AfterCallBB, RI);
541      RI->eraseFromParent();
542    }
543  } else if (!Returns.empty()) {
544    // Otherwise, if there is exactly one return value, just replace anything
545    // using the return value of the call with the computed value.
546    if (!TheCall->use_empty())
547      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
548
549    // Splice the code from the return block into the block that it will return
550    // to, which contains the code that was after the call.
551    BasicBlock *ReturnBB = Returns[0]->getParent();
552    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
553                                      ReturnBB->getInstList());
554
555    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
556    ReturnBB->replaceAllUsesWith(AfterCallBB);
557
558    // Delete the return instruction now and empty ReturnBB now.
559    Returns[0]->eraseFromParent();
560    ReturnBB->eraseFromParent();
561  } else if (!TheCall->use_empty()) {
562    // No returns, but something is using the return value of the call.  Just
563    // nuke the result.
564    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
565  }
566
567  // Since we are now done with the Call/Invoke, we can delete it.
568  TheCall->eraseFromParent();
569
570  // We should always be able to fold the entry block of the function into the
571  // single predecessor of the block...
572  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
573  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
574
575  // Splice the code entry block into calling block, right before the
576  // unconditional branch.
577  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
578  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
579
580  // Remove the unconditional branch.
581  OrigBB->getInstList().erase(Br);
582
583  // Now we can remove the CalleeEntry block, which is now empty.
584  Caller->getBasicBlockList().erase(CalleeEntry);
585
586  return true;
587}
588