InlineFunction.cpp revision 0c7f116bb6950ef819323d855415b2f2b0aad987
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AssumptionCache.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Analysis/CaptureTracking.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallSite.h"
28#include "llvm/IR/CFG.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/DIBuilder.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/MDBuilder.h"
40#include "llvm/IR/Module.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include "llvm/Support/CommandLine.h"
43#include <algorithm>
44using namespace llvm;
45
46static cl::opt<bool>
47EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
48  cl::Hidden,
49  cl::desc("Convert noalias attributes to metadata during inlining."));
50
51static cl::opt<bool>
52PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
53  cl::init(true), cl::Hidden,
54  cl::desc("Convert align attributes to assumptions during inlining."));
55
56bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
57                          bool InsertLifetime) {
58  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
59}
60bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
61                          bool InsertLifetime) {
62  return InlineFunction(CallSite(II), IFI, InsertLifetime);
63}
64
65namespace {
66  /// A class for recording information about inlining through an invoke.
67  class InvokeInliningInfo {
68    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
69    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
70    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
71    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
72    SmallVector<Value*, 8> UnwindDestPHIValues;
73
74  public:
75    InvokeInliningInfo(InvokeInst *II)
76      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
77        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
78      // If there are PHI nodes in the unwind destination block, we need to keep
79      // track of which values came into them from the invoke before removing
80      // the edge from this block.
81      llvm::BasicBlock *InvokeBB = II->getParent();
82      BasicBlock::iterator I = OuterResumeDest->begin();
83      for (; isa<PHINode>(I); ++I) {
84        // Save the value to use for this edge.
85        PHINode *PHI = cast<PHINode>(I);
86        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
87      }
88
89      CallerLPad = cast<LandingPadInst>(I);
90    }
91
92    /// The outer unwind destination is the target of
93    /// unwind edges introduced for calls within the inlined function.
94    BasicBlock *getOuterResumeDest() const {
95      return OuterResumeDest;
96    }
97
98    BasicBlock *getInnerResumeDest();
99
100    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
101
102    /// Forward the 'resume' instruction to the caller's landing pad block.
103    /// When the landing pad block has only one predecessor, this is
104    /// a simple branch. When there is more than one predecessor, we need to
105    /// split the landing pad block after the landingpad instruction and jump
106    /// to there.
107    void forwardResume(ResumeInst *RI,
108                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
109
110    /// Add incoming-PHI values to the unwind destination block for the given
111    /// basic block, using the values for the original invoke's source block.
112    void addIncomingPHIValuesFor(BasicBlock *BB) const {
113      addIncomingPHIValuesForInto(BB, OuterResumeDest);
114    }
115
116    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
117      BasicBlock::iterator I = dest->begin();
118      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
119        PHINode *phi = cast<PHINode>(I);
120        phi->addIncoming(UnwindDestPHIValues[i], src);
121      }
122    }
123  };
124}
125
126/// Get or create a target for the branch from ResumeInsts.
127BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
128  if (InnerResumeDest) return InnerResumeDest;
129
130  // Split the landing pad.
131  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
132  InnerResumeDest =
133    OuterResumeDest->splitBasicBlock(SplitPoint,
134                                     OuterResumeDest->getName() + ".body");
135
136  // The number of incoming edges we expect to the inner landing pad.
137  const unsigned PHICapacity = 2;
138
139  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
140  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
141  BasicBlock::iterator I = OuterResumeDest->begin();
142  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
143    PHINode *OuterPHI = cast<PHINode>(I);
144    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
145                                        OuterPHI->getName() + ".lpad-body",
146                                        InsertPoint);
147    OuterPHI->replaceAllUsesWith(InnerPHI);
148    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
149  }
150
151  // Create a PHI for the exception values.
152  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
153                                     "eh.lpad-body", InsertPoint);
154  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
155  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
156
157  // All done.
158  return InnerResumeDest;
159}
160
161/// Forward the 'resume' instruction to the caller's landing pad block.
162/// When the landing pad block has only one predecessor, this is a simple
163/// branch. When there is more than one predecessor, we need to split the
164/// landing pad block after the landingpad instruction and jump to there.
165void InvokeInliningInfo::forwardResume(ResumeInst *RI,
166                               SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
167  BasicBlock *Dest = getInnerResumeDest();
168  BasicBlock *Src = RI->getParent();
169
170  BranchInst::Create(Dest, Src);
171
172  // Update the PHIs in the destination. They were inserted in an order which
173  // makes this work.
174  addIncomingPHIValuesForInto(Src, Dest);
175
176  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
177  RI->eraseFromParent();
178}
179
180/// When we inline a basic block into an invoke,
181/// we have to turn all of the calls that can throw into invokes.
182/// This function analyze BB to see if there are any calls, and if so,
183/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
184/// nodes in that block with the values specified in InvokeDestPHIValues.
185static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
186                                                   InvokeInliningInfo &Invoke) {
187  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
188    Instruction *I = BBI++;
189
190    // We only need to check for function calls: inlined invoke
191    // instructions require no special handling.
192    CallInst *CI = dyn_cast<CallInst>(I);
193
194    // If this call cannot unwind, don't convert it to an invoke.
195    // Inline asm calls cannot throw.
196    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
197      continue;
198
199    // Convert this function call into an invoke instruction.  First, split the
200    // basic block.
201    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
202
203    // Delete the unconditional branch inserted by splitBasicBlock
204    BB->getInstList().pop_back();
205
206    // Create the new invoke instruction.
207    ImmutableCallSite CS(CI);
208    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
209    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
210                                        Invoke.getOuterResumeDest(),
211                                        InvokeArgs, CI->getName(), BB);
212    II->setDebugLoc(CI->getDebugLoc());
213    II->setCallingConv(CI->getCallingConv());
214    II->setAttributes(CI->getAttributes());
215
216    // Make sure that anything using the call now uses the invoke!  This also
217    // updates the CallGraph if present, because it uses a WeakVH.
218    CI->replaceAllUsesWith(II);
219
220    // Delete the original call
221    Split->getInstList().pop_front();
222
223    // Update any PHI nodes in the exceptional block to indicate that there is
224    // now a new entry in them.
225    Invoke.addIncomingPHIValuesFor(BB);
226    return;
227  }
228}
229
230/// If we inlined an invoke site, we need to convert calls
231/// in the body of the inlined function into invokes.
232///
233/// II is the invoke instruction being inlined.  FirstNewBlock is the first
234/// block of the inlined code (the last block is the end of the function),
235/// and InlineCodeInfo is information about the code that got inlined.
236static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
237                                ClonedCodeInfo &InlinedCodeInfo) {
238  BasicBlock *InvokeDest = II->getUnwindDest();
239
240  Function *Caller = FirstNewBlock->getParent();
241
242  // The inlined code is currently at the end of the function, scan from the
243  // start of the inlined code to its end, checking for stuff we need to
244  // rewrite.
245  InvokeInliningInfo Invoke(II);
246
247  // Get all of the inlined landing pad instructions.
248  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
249  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
250    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
251      InlinedLPads.insert(II->getLandingPadInst());
252
253  // Append the clauses from the outer landing pad instruction into the inlined
254  // landing pad instructions.
255  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
256  for (LandingPadInst *InlinedLPad : InlinedLPads) {
257    unsigned OuterNum = OuterLPad->getNumClauses();
258    InlinedLPad->reserveClauses(OuterNum);
259    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
260      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
261    if (OuterLPad->isCleanup())
262      InlinedLPad->setCleanup(true);
263  }
264
265  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
266    if (InlinedCodeInfo.ContainsCalls)
267      HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
268
269    // Forward any resumes that are remaining here.
270    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
271      Invoke.forwardResume(RI, InlinedLPads);
272  }
273
274  // Now that everything is happy, we have one final detail.  The PHI nodes in
275  // the exception destination block still have entries due to the original
276  // invoke instruction. Eliminate these entries (which might even delete the
277  // PHI node) now.
278  InvokeDest->removePredecessor(II->getParent());
279}
280
281/// When inlining a function that contains noalias scope metadata,
282/// this metadata needs to be cloned so that the inlined blocks
283/// have different "unqiue scopes" at every call site. Were this not done, then
284/// aliasing scopes from a function inlined into a caller multiple times could
285/// not be differentiated (and this would lead to miscompiles because the
286/// non-aliasing property communicated by the metadata could have
287/// call-site-specific control dependencies).
288static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
289  const Function *CalledFunc = CS.getCalledFunction();
290  SetVector<const MDNode *> MD;
291
292  // Note: We could only clone the metadata if it is already used in the
293  // caller. I'm omitting that check here because it might confuse
294  // inter-procedural alias analysis passes. We can revisit this if it becomes
295  // an efficiency or overhead problem.
296
297  for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
298       I != IE; ++I)
299    for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
300      if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
301        MD.insert(M);
302      if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
303        MD.insert(M);
304    }
305
306  if (MD.empty())
307    return;
308
309  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
310  // the set.
311  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
312  while (!Queue.empty()) {
313    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
314    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
315      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
316        if (MD.insert(M1))
317          Queue.push_back(M1);
318  }
319
320  // Now we have a complete set of all metadata in the chains used to specify
321  // the noalias scopes and the lists of those scopes.
322  SmallVector<TempMDTuple, 16> DummyNodes;
323  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
324  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
325       I != IE; ++I) {
326    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
327    MDMap[*I].reset(DummyNodes.back().get());
328  }
329
330  // Create new metadata nodes to replace the dummy nodes, replacing old
331  // metadata references with either a dummy node or an already-created new
332  // node.
333  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
334       I != IE; ++I) {
335    SmallVector<Metadata *, 4> NewOps;
336    for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
337      const Metadata *V = (*I)->getOperand(i);
338      if (const MDNode *M = dyn_cast<MDNode>(V))
339        NewOps.push_back(MDMap[M]);
340      else
341        NewOps.push_back(const_cast<Metadata *>(V));
342    }
343
344    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
345    MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
346    assert(TempM->isTemporary() && "Expected temporary node");
347
348    TempM->replaceAllUsesWith(NewM);
349  }
350
351  // Now replace the metadata in the new inlined instructions with the
352  // repacements from the map.
353  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
354       VMI != VMIE; ++VMI) {
355    if (!VMI->second)
356      continue;
357
358    Instruction *NI = dyn_cast<Instruction>(VMI->second);
359    if (!NI)
360      continue;
361
362    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
363      MDNode *NewMD = MDMap[M];
364      // If the call site also had alias scope metadata (a list of scopes to
365      // which instructions inside it might belong), propagate those scopes to
366      // the inlined instructions.
367      if (MDNode *CSM =
368              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
369        NewMD = MDNode::concatenate(NewMD, CSM);
370      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
371    } else if (NI->mayReadOrWriteMemory()) {
372      if (MDNode *M =
373              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
374        NI->setMetadata(LLVMContext::MD_alias_scope, M);
375    }
376
377    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
378      MDNode *NewMD = MDMap[M];
379      // If the call site also had noalias metadata (a list of scopes with
380      // which instructions inside it don't alias), propagate those scopes to
381      // the inlined instructions.
382      if (MDNode *CSM =
383              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
384        NewMD = MDNode::concatenate(NewMD, CSM);
385      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
386    } else if (NI->mayReadOrWriteMemory()) {
387      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
388        NI->setMetadata(LLVMContext::MD_noalias, M);
389    }
390  }
391}
392
393/// If the inlined function has noalias arguments,
394/// then add new alias scopes for each noalias argument, tag the mapped noalias
395/// parameters with noalias metadata specifying the new scope, and tag all
396/// non-derived loads, stores and memory intrinsics with the new alias scopes.
397static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
398                                  const DataLayout &DL, AliasAnalysis *AA) {
399  if (!EnableNoAliasConversion)
400    return;
401
402  const Function *CalledFunc = CS.getCalledFunction();
403  SmallVector<const Argument *, 4> NoAliasArgs;
404
405  for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
406       E = CalledFunc->arg_end(); I != E; ++I) {
407    if (I->hasNoAliasAttr() && !I->hasNUses(0))
408      NoAliasArgs.push_back(I);
409  }
410
411  if (NoAliasArgs.empty())
412    return;
413
414  // To do a good job, if a noalias variable is captured, we need to know if
415  // the capture point dominates the particular use we're considering.
416  DominatorTree DT;
417  DT.recalculate(const_cast<Function&>(*CalledFunc));
418
419  // noalias indicates that pointer values based on the argument do not alias
420  // pointer values which are not based on it. So we add a new "scope" for each
421  // noalias function argument. Accesses using pointers based on that argument
422  // become part of that alias scope, accesses using pointers not based on that
423  // argument are tagged as noalias with that scope.
424
425  DenseMap<const Argument *, MDNode *> NewScopes;
426  MDBuilder MDB(CalledFunc->getContext());
427
428  // Create a new scope domain for this function.
429  MDNode *NewDomain =
430    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
431  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
432    const Argument *A = NoAliasArgs[i];
433
434    std::string Name = CalledFunc->getName();
435    if (A->hasName()) {
436      Name += ": %";
437      Name += A->getName();
438    } else {
439      Name += ": argument ";
440      Name += utostr(i);
441    }
442
443    // Note: We always create a new anonymous root here. This is true regardless
444    // of the linkage of the callee because the aliasing "scope" is not just a
445    // property of the callee, but also all control dependencies in the caller.
446    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
447    NewScopes.insert(std::make_pair(A, NewScope));
448  }
449
450  // Iterate over all new instructions in the map; for all memory-access
451  // instructions, add the alias scope metadata.
452  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
453       VMI != VMIE; ++VMI) {
454    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
455      if (!VMI->second)
456        continue;
457
458      Instruction *NI = dyn_cast<Instruction>(VMI->second);
459      if (!NI)
460        continue;
461
462      bool IsArgMemOnlyCall = false, IsFuncCall = false;
463      SmallVector<const Value *, 2> PtrArgs;
464
465      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
466        PtrArgs.push_back(LI->getPointerOperand());
467      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
468        PtrArgs.push_back(SI->getPointerOperand());
469      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
470        PtrArgs.push_back(VAAI->getPointerOperand());
471      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
472        PtrArgs.push_back(CXI->getPointerOperand());
473      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
474        PtrArgs.push_back(RMWI->getPointerOperand());
475      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
476        // If we know that the call does not access memory, then we'll still
477        // know that about the inlined clone of this call site, and we don't
478        // need to add metadata.
479        if (ICS.doesNotAccessMemory())
480          continue;
481
482        IsFuncCall = true;
483        if (AA) {
484          AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
485          if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
486              MRB == AliasAnalysis::OnlyReadsArgumentPointees)
487            IsArgMemOnlyCall = true;
488        }
489
490        for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
491             AE = ICS.arg_end(); AI != AE; ++AI) {
492          // We need to check the underlying objects of all arguments, not just
493          // the pointer arguments, because we might be passing pointers as
494          // integers, etc.
495          // However, if we know that the call only accesses pointer arguments,
496          // then we only need to check the pointer arguments.
497          if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
498            continue;
499
500          PtrArgs.push_back(*AI);
501        }
502      }
503
504      // If we found no pointers, then this instruction is not suitable for
505      // pairing with an instruction to receive aliasing metadata.
506      // However, if this is a call, this we might just alias with none of the
507      // noalias arguments.
508      if (PtrArgs.empty() && !IsFuncCall)
509        continue;
510
511      // It is possible that there is only one underlying object, but you
512      // need to go through several PHIs to see it, and thus could be
513      // repeated in the Objects list.
514      SmallPtrSet<const Value *, 4> ObjSet;
515      SmallVector<Metadata *, 4> Scopes, NoAliases;
516
517      SmallSetVector<const Argument *, 4> NAPtrArgs;
518      for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
519        SmallVector<Value *, 4> Objects;
520        GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
521                             Objects, DL, /* MaxLookup = */ 0);
522
523        for (Value *O : Objects)
524          ObjSet.insert(O);
525      }
526
527      // Figure out if we're derived from anything that is not a noalias
528      // argument.
529      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
530      for (const Value *V : ObjSet) {
531        // Is this value a constant that cannot be derived from any pointer
532        // value (we need to exclude constant expressions, for example, that
533        // are formed from arithmetic on global symbols).
534        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
535                             isa<ConstantPointerNull>(V) ||
536                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
537        if (IsNonPtrConst)
538          continue;
539
540        // If this is anything other than a noalias argument, then we cannot
541        // completely describe the aliasing properties using alias.scope
542        // metadata (and, thus, won't add any).
543        if (const Argument *A = dyn_cast<Argument>(V)) {
544          if (!A->hasNoAliasAttr())
545            UsesAliasingPtr = true;
546        } else {
547          UsesAliasingPtr = true;
548        }
549
550        // If this is not some identified function-local object (which cannot
551        // directly alias a noalias argument), or some other argument (which,
552        // by definition, also cannot alias a noalias argument), then we could
553        // alias a noalias argument that has been captured).
554        if (!isa<Argument>(V) &&
555            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
556          CanDeriveViaCapture = true;
557      }
558
559      // A function call can always get captured noalias pointers (via other
560      // parameters, globals, etc.).
561      if (IsFuncCall && !IsArgMemOnlyCall)
562        CanDeriveViaCapture = true;
563
564      // First, we want to figure out all of the sets with which we definitely
565      // don't alias. Iterate over all noalias set, and add those for which:
566      //   1. The noalias argument is not in the set of objects from which we
567      //      definitely derive.
568      //   2. The noalias argument has not yet been captured.
569      // An arbitrary function that might load pointers could see captured
570      // noalias arguments via other noalias arguments or globals, and so we
571      // must always check for prior capture.
572      for (const Argument *A : NoAliasArgs) {
573        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
574                                 // It might be tempting to skip the
575                                 // PointerMayBeCapturedBefore check if
576                                 // A->hasNoCaptureAttr() is true, but this is
577                                 // incorrect because nocapture only guarantees
578                                 // that no copies outlive the function, not
579                                 // that the value cannot be locally captured.
580                                 !PointerMayBeCapturedBefore(A,
581                                   /* ReturnCaptures */ false,
582                                   /* StoreCaptures */ false, I, &DT)))
583          NoAliases.push_back(NewScopes[A]);
584      }
585
586      if (!NoAliases.empty())
587        NI->setMetadata(LLVMContext::MD_noalias,
588                        MDNode::concatenate(
589                            NI->getMetadata(LLVMContext::MD_noalias),
590                            MDNode::get(CalledFunc->getContext(), NoAliases)));
591
592      // Next, we want to figure out all of the sets to which we might belong.
593      // We might belong to a set if the noalias argument is in the set of
594      // underlying objects. If there is some non-noalias argument in our list
595      // of underlying objects, then we cannot add a scope because the fact
596      // that some access does not alias with any set of our noalias arguments
597      // cannot itself guarantee that it does not alias with this access
598      // (because there is some pointer of unknown origin involved and the
599      // other access might also depend on this pointer). We also cannot add
600      // scopes to arbitrary functions unless we know they don't access any
601      // non-parameter pointer-values.
602      bool CanAddScopes = !UsesAliasingPtr;
603      if (CanAddScopes && IsFuncCall)
604        CanAddScopes = IsArgMemOnlyCall;
605
606      if (CanAddScopes)
607        for (const Argument *A : NoAliasArgs) {
608          if (ObjSet.count(A))
609            Scopes.push_back(NewScopes[A]);
610        }
611
612      if (!Scopes.empty())
613        NI->setMetadata(
614            LLVMContext::MD_alias_scope,
615            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
616                                MDNode::get(CalledFunc->getContext(), Scopes)));
617    }
618  }
619}
620
621/// If the inlined function has non-byval align arguments, then
622/// add @llvm.assume-based alignment assumptions to preserve this information.
623static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
624  if (!PreserveAlignmentAssumptions)
625    return;
626  auto &DL = CS.getCaller()->getParent()->getDataLayout();
627
628  // To avoid inserting redundant assumptions, we should check for assumptions
629  // already in the caller. To do this, we might need a DT of the caller.
630  DominatorTree DT;
631  bool DTCalculated = false;
632
633  Function *CalledFunc = CS.getCalledFunction();
634  for (Function::arg_iterator I = CalledFunc->arg_begin(),
635                              E = CalledFunc->arg_end();
636       I != E; ++I) {
637    unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
638    if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
639      if (!DTCalculated) {
640        DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
641                                               ->getParent()));
642        DTCalculated = true;
643      }
644
645      // If we can already prove the asserted alignment in the context of the
646      // caller, then don't bother inserting the assumption.
647      Value *Arg = CS.getArgument(I->getArgNo());
648      if (getKnownAlignment(Arg, DL, CS.getInstruction(),
649                            &IFI.ACT->getAssumptionCache(*CalledFunc),
650                            &DT) >= Align)
651        continue;
652
653      IRBuilder<>(CS.getInstruction())
654          .CreateAlignmentAssumption(DL, Arg, Align);
655    }
656  }
657}
658
659/// Once we have cloned code over from a callee into the caller,
660/// update the specified callgraph to reflect the changes we made.
661/// Note that it's possible that not all code was copied over, so only
662/// some edges of the callgraph may remain.
663static void UpdateCallGraphAfterInlining(CallSite CS,
664                                         Function::iterator FirstNewBlock,
665                                         ValueToValueMapTy &VMap,
666                                         InlineFunctionInfo &IFI) {
667  CallGraph &CG = *IFI.CG;
668  const Function *Caller = CS.getInstruction()->getParent()->getParent();
669  const Function *Callee = CS.getCalledFunction();
670  CallGraphNode *CalleeNode = CG[Callee];
671  CallGraphNode *CallerNode = CG[Caller];
672
673  // Since we inlined some uninlined call sites in the callee into the caller,
674  // add edges from the caller to all of the callees of the callee.
675  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
676
677  // Consider the case where CalleeNode == CallerNode.
678  CallGraphNode::CalledFunctionsVector CallCache;
679  if (CalleeNode == CallerNode) {
680    CallCache.assign(I, E);
681    I = CallCache.begin();
682    E = CallCache.end();
683  }
684
685  for (; I != E; ++I) {
686    const Value *OrigCall = I->first;
687
688    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
689    // Only copy the edge if the call was inlined!
690    if (VMI == VMap.end() || VMI->second == nullptr)
691      continue;
692
693    // If the call was inlined, but then constant folded, there is no edge to
694    // add.  Check for this case.
695    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
696    if (!NewCall)
697      continue;
698
699    // We do not treat intrinsic calls like real function calls because we
700    // expect them to become inline code; do not add an edge for an intrinsic.
701    CallSite CS = CallSite(NewCall);
702    if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
703      continue;
704
705    // Remember that this call site got inlined for the client of
706    // InlineFunction.
707    IFI.InlinedCalls.push_back(NewCall);
708
709    // It's possible that inlining the callsite will cause it to go from an
710    // indirect to a direct call by resolving a function pointer.  If this
711    // happens, set the callee of the new call site to a more precise
712    // destination.  This can also happen if the call graph node of the caller
713    // was just unnecessarily imprecise.
714    if (!I->second->getFunction())
715      if (Function *F = CallSite(NewCall).getCalledFunction()) {
716        // Indirect call site resolved to direct call.
717        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
718
719        continue;
720      }
721
722    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
723  }
724
725  // Update the call graph by deleting the edge from Callee to Caller.  We must
726  // do this after the loop above in case Caller and Callee are the same.
727  CallerNode->removeCallEdgeFor(CS);
728}
729
730static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
731                                    BasicBlock *InsertBlock,
732                                    InlineFunctionInfo &IFI) {
733  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
734  IRBuilder<> Builder(InsertBlock->begin());
735
736  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
737
738  // Always generate a memcpy of alignment 1 here because we don't know
739  // the alignment of the src pointer.  Other optimizations can infer
740  // better alignment.
741  Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
742}
743
744/// When inlining a call site that has a byval argument,
745/// we have to make the implicit memcpy explicit by adding it.
746static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
747                                  const Function *CalledFunc,
748                                  InlineFunctionInfo &IFI,
749                                  unsigned ByValAlignment) {
750  PointerType *ArgTy = cast<PointerType>(Arg->getType());
751  Type *AggTy = ArgTy->getElementType();
752
753  Function *Caller = TheCall->getParent()->getParent();
754
755  // If the called function is readonly, then it could not mutate the caller's
756  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
757  // temporary.
758  if (CalledFunc->onlyReadsMemory()) {
759    // If the byval argument has a specified alignment that is greater than the
760    // passed in pointer, then we either have to round up the input pointer or
761    // give up on this transformation.
762    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
763      return Arg;
764
765    const DataLayout &DL = Caller->getParent()->getDataLayout();
766
767    // If the pointer is already known to be sufficiently aligned, or if we can
768    // round it up to a larger alignment, then we don't need a temporary.
769    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
770                                   &IFI.ACT->getAssumptionCache(*Caller)) >=
771        ByValAlignment)
772      return Arg;
773
774    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
775    // for code quality, but rarely happens and is required for correctness.
776  }
777
778  // Create the alloca.  If we have DataLayout, use nice alignment.
779  unsigned Align =
780      Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
781
782  // If the byval had an alignment specified, we *must* use at least that
783  // alignment, as it is required by the byval argument (and uses of the
784  // pointer inside the callee).
785  Align = std::max(Align, ByValAlignment);
786
787  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
788                                    &*Caller->begin()->begin());
789  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
790
791  // Uses of the argument in the function should use our new alloca
792  // instead.
793  return NewAlloca;
794}
795
796// Check whether this Value is used by a lifetime intrinsic.
797static bool isUsedByLifetimeMarker(Value *V) {
798  for (User *U : V->users()) {
799    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
800      switch (II->getIntrinsicID()) {
801      default: break;
802      case Intrinsic::lifetime_start:
803      case Intrinsic::lifetime_end:
804        return true;
805      }
806    }
807  }
808  return false;
809}
810
811// Check whether the given alloca already has
812// lifetime.start or lifetime.end intrinsics.
813static bool hasLifetimeMarkers(AllocaInst *AI) {
814  Type *Ty = AI->getType();
815  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
816                                       Ty->getPointerAddressSpace());
817  if (Ty == Int8PtrTy)
818    return isUsedByLifetimeMarker(AI);
819
820  // Do a scan to find all the casts to i8*.
821  for (User *U : AI->users()) {
822    if (U->getType() != Int8PtrTy) continue;
823    if (U->stripPointerCasts() != AI) continue;
824    if (isUsedByLifetimeMarker(U))
825      return true;
826  }
827  return false;
828}
829
830/// Rebuild the entire inlined-at chain for this instruction so that the top of
831/// the chain now is inlined-at the new call site.
832static DebugLoc
833updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode,
834                    LLVMContext &Ctx,
835                    DenseMap<const MDLocation *, MDLocation *> &IANodes) {
836  SmallVector<MDLocation*, 3> InlinedAtLocations;
837  MDLocation *Last = InlinedAtNode;
838  MDLocation *CurInlinedAt = DL;
839
840  // Gather all the inlined-at nodes
841  while (MDLocation *IA = CurInlinedAt->getInlinedAt()) {
842    // Skip any we've already built nodes for
843    if (MDLocation *Found = IANodes[IA]) {
844      Last = Found;
845      break;
846    }
847
848    InlinedAtLocations.push_back(IA);
849    CurInlinedAt = IA;
850  }
851
852  // Starting from the top, rebuild the nodes to point to the new inlined-at
853  // location (then rebuilding the rest of the chain behind it) and update the
854  // map of already-constructed inlined-at nodes.
855  for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend();
856       I != E; ++I) {
857    const MDLocation *MD = *I;
858    Last = IANodes[MD] = MDLocation::getDistinct(
859        Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
860  }
861
862  // And finally create the normal location for this instruction, referring to
863  // the new inlined-at chain.
864  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
865}
866
867/// Update inlined instructions' line numbers to
868/// to encode location where these instructions are inlined.
869static void fixupLineNumbers(Function *Fn, Function::iterator FI,
870                             Instruction *TheCall) {
871  DebugLoc TheCallDL = TheCall->getDebugLoc();
872  if (!TheCallDL)
873    return;
874
875  auto &Ctx = Fn->getContext();
876  MDLocation *InlinedAtNode = TheCallDL;
877
878  // Create a unique call site, not to be confused with any other call from the
879  // same location.
880  InlinedAtNode = MDLocation::getDistinct(
881      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
882      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
883
884  // Cache the inlined-at nodes as they're built so they are reused, without
885  // this every instruction's inlined-at chain would become distinct from each
886  // other.
887  DenseMap<const MDLocation *, MDLocation *> IANodes;
888
889  for (; FI != Fn->end(); ++FI) {
890    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
891         BI != BE; ++BI) {
892      DebugLoc DL = BI->getDebugLoc();
893      if (!DL) {
894        // If the inlined instruction has no line number, make it look as if it
895        // originates from the call location. This is important for
896        // ((__always_inline__, __nodebug__)) functions which must use caller
897        // location for all instructions in their function body.
898
899        // Don't update static allocas, as they may get moved later.
900        if (auto *AI = dyn_cast<AllocaInst>(BI))
901          if (isa<Constant>(AI->getArraySize()))
902            continue;
903
904        BI->setDebugLoc(TheCallDL);
905      } else {
906        BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
907      }
908    }
909  }
910}
911
912/// This function inlines the called function into the basic block of the
913/// caller. This returns false if it is not possible to inline this call.
914/// The program is still in a well defined state if this occurs though.
915///
916/// Note that this only does one level of inlining.  For example, if the
917/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
918/// exists in the instruction stream.  Similarly this will inline a recursive
919/// function by one level.
920bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
921                          bool InsertLifetime) {
922  Instruction *TheCall = CS.getInstruction();
923  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
924         "Instruction not in function!");
925
926  // If IFI has any state in it, zap it before we fill it in.
927  IFI.reset();
928
929  const Function *CalledFunc = CS.getCalledFunction();
930  if (!CalledFunc ||              // Can't inline external function or indirect
931      CalledFunc->isDeclaration() || // call, or call to a vararg function!
932      CalledFunc->getFunctionType()->isVarArg()) return false;
933
934  // If the call to the callee cannot throw, set the 'nounwind' flag on any
935  // calls that we inline.
936  bool MarkNoUnwind = CS.doesNotThrow();
937
938  BasicBlock *OrigBB = TheCall->getParent();
939  Function *Caller = OrigBB->getParent();
940
941  // GC poses two hazards to inlining, which only occur when the callee has GC:
942  //  1. If the caller has no GC, then the callee's GC must be propagated to the
943  //     caller.
944  //  2. If the caller has a differing GC, it is invalid to inline.
945  if (CalledFunc->hasGC()) {
946    if (!Caller->hasGC())
947      Caller->setGC(CalledFunc->getGC());
948    else if (CalledFunc->getGC() != Caller->getGC())
949      return false;
950  }
951
952  // Get the personality function from the callee if it contains a landing pad.
953  Value *CalleePersonality = nullptr;
954  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
955       I != E; ++I)
956    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
957      const BasicBlock *BB = II->getUnwindDest();
958      const LandingPadInst *LP = BB->getLandingPadInst();
959      CalleePersonality = LP->getPersonalityFn();
960      break;
961    }
962
963  // Find the personality function used by the landing pads of the caller. If it
964  // exists, then check to see that it matches the personality function used in
965  // the callee.
966  if (CalleePersonality) {
967    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
968         I != E; ++I)
969      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
970        const BasicBlock *BB = II->getUnwindDest();
971        const LandingPadInst *LP = BB->getLandingPadInst();
972
973        // If the personality functions match, then we can perform the
974        // inlining. Otherwise, we can't inline.
975        // TODO: This isn't 100% true. Some personality functions are proper
976        //       supersets of others and can be used in place of the other.
977        if (LP->getPersonalityFn() != CalleePersonality)
978          return false;
979
980        break;
981      }
982  }
983
984  // Get an iterator to the last basic block in the function, which will have
985  // the new function inlined after it.
986  Function::iterator LastBlock = &Caller->back();
987
988  // Make sure to capture all of the return instructions from the cloned
989  // function.
990  SmallVector<ReturnInst*, 8> Returns;
991  ClonedCodeInfo InlinedFunctionInfo;
992  Function::iterator FirstNewBlock;
993
994  { // Scope to destroy VMap after cloning.
995    ValueToValueMapTy VMap;
996    // Keep a list of pair (dst, src) to emit byval initializations.
997    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
998
999    auto &DL = Caller->getParent()->getDataLayout();
1000
1001    assert(CalledFunc->arg_size() == CS.arg_size() &&
1002           "No varargs calls can be inlined!");
1003
1004    // Calculate the vector of arguments to pass into the function cloner, which
1005    // matches up the formal to the actual argument values.
1006    CallSite::arg_iterator AI = CS.arg_begin();
1007    unsigned ArgNo = 0;
1008    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1009         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1010      Value *ActualArg = *AI;
1011
1012      // When byval arguments actually inlined, we need to make the copy implied
1013      // by them explicit.  However, we don't do this if the callee is readonly
1014      // or readnone, because the copy would be unneeded: the callee doesn't
1015      // modify the struct.
1016      if (CS.isByValArgument(ArgNo)) {
1017        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1018                                        CalledFunc->getParamAlignment(ArgNo+1));
1019        if (ActualArg != *AI)
1020          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1021      }
1022
1023      VMap[I] = ActualArg;
1024    }
1025
1026    // Add alignment assumptions if necessary. We do this before the inlined
1027    // instructions are actually cloned into the caller so that we can easily
1028    // check what will be known at the start of the inlined code.
1029    AddAlignmentAssumptions(CS, IFI);
1030
1031    // We want the inliner to prune the code as it copies.  We would LOVE to
1032    // have no dead or constant instructions leftover after inlining occurs
1033    // (which can happen, e.g., because an argument was constant), but we'll be
1034    // happy with whatever the cloner can do.
1035    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1036                              /*ModuleLevelChanges=*/false, Returns, ".i",
1037                              &InlinedFunctionInfo, TheCall);
1038
1039    // Remember the first block that is newly cloned over.
1040    FirstNewBlock = LastBlock; ++FirstNewBlock;
1041
1042    // Inject byval arguments initialization.
1043    for (std::pair<Value*, Value*> &Init : ByValInit)
1044      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1045                              FirstNewBlock, IFI);
1046
1047    // Update the callgraph if requested.
1048    if (IFI.CG)
1049      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1050
1051    // Update inlined instructions' line number information.
1052    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1053
1054    // Clone existing noalias metadata if necessary.
1055    CloneAliasScopeMetadata(CS, VMap);
1056
1057    // Add noalias metadata if necessary.
1058    AddAliasScopeMetadata(CS, VMap, DL, IFI.AA);
1059
1060    // FIXME: We could register any cloned assumptions instead of clearing the
1061    // whole function's cache.
1062    if (IFI.ACT)
1063      IFI.ACT->getAssumptionCache(*Caller).clear();
1064  }
1065
1066  // If there are any alloca instructions in the block that used to be the entry
1067  // block for the callee, move them to the entry block of the caller.  First
1068  // calculate which instruction they should be inserted before.  We insert the
1069  // instructions at the end of the current alloca list.
1070  {
1071    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1072    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1073         E = FirstNewBlock->end(); I != E; ) {
1074      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1075      if (!AI) continue;
1076
1077      // If the alloca is now dead, remove it.  This often occurs due to code
1078      // specialization.
1079      if (AI->use_empty()) {
1080        AI->eraseFromParent();
1081        continue;
1082      }
1083
1084      if (!isa<Constant>(AI->getArraySize()))
1085        continue;
1086
1087      // Keep track of the static allocas that we inline into the caller.
1088      IFI.StaticAllocas.push_back(AI);
1089
1090      // Scan for the block of allocas that we can move over, and move them
1091      // all at once.
1092      while (isa<AllocaInst>(I) &&
1093             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1094        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1095        ++I;
1096      }
1097
1098      // Transfer all of the allocas over in a block.  Using splice means
1099      // that the instructions aren't removed from the symbol table, then
1100      // reinserted.
1101      Caller->getEntryBlock().getInstList().splice(InsertPoint,
1102                                                   FirstNewBlock->getInstList(),
1103                                                   AI, I);
1104    }
1105    // Move any dbg.declares describing the allocas into the entry basic block.
1106    DIBuilder DIB(*Caller->getParent());
1107    for (auto &AI : IFI.StaticAllocas)
1108      replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1109  }
1110
1111  bool InlinedMustTailCalls = false;
1112  if (InlinedFunctionInfo.ContainsCalls) {
1113    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1114    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1115      CallSiteTailKind = CI->getTailCallKind();
1116
1117    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1118         ++BB) {
1119      for (Instruction &I : *BB) {
1120        CallInst *CI = dyn_cast<CallInst>(&I);
1121        if (!CI)
1122          continue;
1123
1124        // We need to reduce the strength of any inlined tail calls.  For
1125        // musttail, we have to avoid introducing potential unbounded stack
1126        // growth.  For example, if functions 'f' and 'g' are mutually recursive
1127        // with musttail, we can inline 'g' into 'f' so long as we preserve
1128        // musttail on the cloned call to 'f'.  If either the inlined call site
1129        // or the cloned call site is *not* musttail, the program already has
1130        // one frame of stack growth, so it's safe to remove musttail.  Here is
1131        // a table of example transformations:
1132        //
1133        //    f -> musttail g -> musttail f  ==>  f -> musttail f
1134        //    f -> musttail g ->     tail f  ==>  f ->     tail f
1135        //    f ->          g -> musttail f  ==>  f ->          f
1136        //    f ->          g ->     tail f  ==>  f ->          f
1137        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1138        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1139        CI->setTailCallKind(ChildTCK);
1140        InlinedMustTailCalls |= CI->isMustTailCall();
1141
1142        // Calls inlined through a 'nounwind' call site should be marked
1143        // 'nounwind'.
1144        if (MarkNoUnwind)
1145          CI->setDoesNotThrow();
1146      }
1147    }
1148  }
1149
1150  // Leave lifetime markers for the static alloca's, scoping them to the
1151  // function we just inlined.
1152  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1153    IRBuilder<> builder(FirstNewBlock->begin());
1154    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1155      AllocaInst *AI = IFI.StaticAllocas[ai];
1156
1157      // If the alloca is already scoped to something smaller than the whole
1158      // function then there's no need to add redundant, less accurate markers.
1159      if (hasLifetimeMarkers(AI))
1160        continue;
1161
1162      // Try to determine the size of the allocation.
1163      ConstantInt *AllocaSize = nullptr;
1164      if (ConstantInt *AIArraySize =
1165          dyn_cast<ConstantInt>(AI->getArraySize())) {
1166        auto &DL = Caller->getParent()->getDataLayout();
1167        Type *AllocaType = AI->getAllocatedType();
1168        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1169        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1170        assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
1171        // Check that array size doesn't saturate uint64_t and doesn't
1172        // overflow when it's multiplied by type size.
1173        if (AllocaArraySize != ~0ULL &&
1174            UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1175          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1176                                        AllocaArraySize * AllocaTypeSize);
1177        }
1178      }
1179
1180      builder.CreateLifetimeStart(AI, AllocaSize);
1181      for (ReturnInst *RI : Returns) {
1182        // Don't insert llvm.lifetime.end calls between a musttail call and a
1183        // return.  The return kills all local allocas.
1184        if (InlinedMustTailCalls &&
1185            RI->getParent()->getTerminatingMustTailCall())
1186          continue;
1187        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1188      }
1189    }
1190  }
1191
1192  // If the inlined code contained dynamic alloca instructions, wrap the inlined
1193  // code with llvm.stacksave/llvm.stackrestore intrinsics.
1194  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1195    Module *M = Caller->getParent();
1196    // Get the two intrinsics we care about.
1197    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1198    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1199
1200    // Insert the llvm.stacksave.
1201    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
1202      .CreateCall(StackSave, "savedstack");
1203
1204    // Insert a call to llvm.stackrestore before any return instructions in the
1205    // inlined function.
1206    for (ReturnInst *RI : Returns) {
1207      // Don't insert llvm.stackrestore calls between a musttail call and a
1208      // return.  The return will restore the stack pointer.
1209      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1210        continue;
1211      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1212    }
1213  }
1214
1215  // If we are inlining for an invoke instruction, we must make sure to rewrite
1216  // any call instructions into invoke instructions.
1217  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1218    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1219
1220  // Handle any inlined musttail call sites.  In order for a new call site to be
1221  // musttail, the source of the clone and the inlined call site must have been
1222  // musttail.  Therefore it's safe to return without merging control into the
1223  // phi below.
1224  if (InlinedMustTailCalls) {
1225    // Check if we need to bitcast the result of any musttail calls.
1226    Type *NewRetTy = Caller->getReturnType();
1227    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1228
1229    // Handle the returns preceded by musttail calls separately.
1230    SmallVector<ReturnInst *, 8> NormalReturns;
1231    for (ReturnInst *RI : Returns) {
1232      CallInst *ReturnedMustTail =
1233          RI->getParent()->getTerminatingMustTailCall();
1234      if (!ReturnedMustTail) {
1235        NormalReturns.push_back(RI);
1236        continue;
1237      }
1238      if (!NeedBitCast)
1239        continue;
1240
1241      // Delete the old return and any preceding bitcast.
1242      BasicBlock *CurBB = RI->getParent();
1243      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1244      RI->eraseFromParent();
1245      if (OldCast)
1246        OldCast->eraseFromParent();
1247
1248      // Insert a new bitcast and return with the right type.
1249      IRBuilder<> Builder(CurBB);
1250      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1251    }
1252
1253    // Leave behind the normal returns so we can merge control flow.
1254    std::swap(Returns, NormalReturns);
1255  }
1256
1257  // If we cloned in _exactly one_ basic block, and if that block ends in a
1258  // return instruction, we splice the body of the inlined callee directly into
1259  // the calling basic block.
1260  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1261    // Move all of the instructions right before the call.
1262    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1263                                 FirstNewBlock->begin(), FirstNewBlock->end());
1264    // Remove the cloned basic block.
1265    Caller->getBasicBlockList().pop_back();
1266
1267    // If the call site was an invoke instruction, add a branch to the normal
1268    // destination.
1269    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1270      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1271      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1272    }
1273
1274    // If the return instruction returned a value, replace uses of the call with
1275    // uses of the returned value.
1276    if (!TheCall->use_empty()) {
1277      ReturnInst *R = Returns[0];
1278      if (TheCall == R->getReturnValue())
1279        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1280      else
1281        TheCall->replaceAllUsesWith(R->getReturnValue());
1282    }
1283    // Since we are now done with the Call/Invoke, we can delete it.
1284    TheCall->eraseFromParent();
1285
1286    // Since we are now done with the return instruction, delete it also.
1287    Returns[0]->eraseFromParent();
1288
1289    // We are now done with the inlining.
1290    return true;
1291  }
1292
1293  // Otherwise, we have the normal case, of more than one block to inline or
1294  // multiple return sites.
1295
1296  // We want to clone the entire callee function into the hole between the
1297  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1298  // this is an invoke instruction or a call instruction.
1299  BasicBlock *AfterCallBB;
1300  BranchInst *CreatedBranchToNormalDest = nullptr;
1301  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1302
1303    // Add an unconditional branch to make this look like the CallInst case...
1304    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1305
1306    // Split the basic block.  This guarantees that no PHI nodes will have to be
1307    // updated due to new incoming edges, and make the invoke case more
1308    // symmetric to the call case.
1309    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
1310                                          CalledFunc->getName()+".exit");
1311
1312  } else {  // It's a call
1313    // If this is a call instruction, we need to split the basic block that
1314    // the call lives in.
1315    //
1316    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1317                                          CalledFunc->getName()+".exit");
1318  }
1319
1320  // Change the branch that used to go to AfterCallBB to branch to the first
1321  // basic block of the inlined function.
1322  //
1323  TerminatorInst *Br = OrigBB->getTerminator();
1324  assert(Br && Br->getOpcode() == Instruction::Br &&
1325         "splitBasicBlock broken!");
1326  Br->setOperand(0, FirstNewBlock);
1327
1328
1329  // Now that the function is correct, make it a little bit nicer.  In
1330  // particular, move the basic blocks inserted from the end of the function
1331  // into the space made by splitting the source basic block.
1332  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1333                                     FirstNewBlock, Caller->end());
1334
1335  // Handle all of the return instructions that we just cloned in, and eliminate
1336  // any users of the original call/invoke instruction.
1337  Type *RTy = CalledFunc->getReturnType();
1338
1339  PHINode *PHI = nullptr;
1340  if (Returns.size() > 1) {
1341    // The PHI node should go at the front of the new basic block to merge all
1342    // possible incoming values.
1343    if (!TheCall->use_empty()) {
1344      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1345                            AfterCallBB->begin());
1346      // Anything that used the result of the function call should now use the
1347      // PHI node as their operand.
1348      TheCall->replaceAllUsesWith(PHI);
1349    }
1350
1351    // Loop over all of the return instructions adding entries to the PHI node
1352    // as appropriate.
1353    if (PHI) {
1354      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1355        ReturnInst *RI = Returns[i];
1356        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1357               "Ret value not consistent in function!");
1358        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1359      }
1360    }
1361
1362
1363    // Add a branch to the merge points and remove return instructions.
1364    DebugLoc Loc;
1365    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1366      ReturnInst *RI = Returns[i];
1367      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
1368      Loc = RI->getDebugLoc();
1369      BI->setDebugLoc(Loc);
1370      RI->eraseFromParent();
1371    }
1372    // We need to set the debug location to *somewhere* inside the
1373    // inlined function. The line number may be nonsensical, but the
1374    // instruction will at least be associated with the right
1375    // function.
1376    if (CreatedBranchToNormalDest)
1377      CreatedBranchToNormalDest->setDebugLoc(Loc);
1378  } else if (!Returns.empty()) {
1379    // Otherwise, if there is exactly one return value, just replace anything
1380    // using the return value of the call with the computed value.
1381    if (!TheCall->use_empty()) {
1382      if (TheCall == Returns[0]->getReturnValue())
1383        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1384      else
1385        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1386    }
1387
1388    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1389    BasicBlock *ReturnBB = Returns[0]->getParent();
1390    ReturnBB->replaceAllUsesWith(AfterCallBB);
1391
1392    // Splice the code from the return block into the block that it will return
1393    // to, which contains the code that was after the call.
1394    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1395                                      ReturnBB->getInstList());
1396
1397    if (CreatedBranchToNormalDest)
1398      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
1399
1400    // Delete the return instruction now and empty ReturnBB now.
1401    Returns[0]->eraseFromParent();
1402    ReturnBB->eraseFromParent();
1403  } else if (!TheCall->use_empty()) {
1404    // No returns, but something is using the return value of the call.  Just
1405    // nuke the result.
1406    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1407  }
1408
1409  // Since we are now done with the Call/Invoke, we can delete it.
1410  TheCall->eraseFromParent();
1411
1412  // If we inlined any musttail calls and the original return is now
1413  // unreachable, delete it.  It can only contain a bitcast and ret.
1414  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
1415    AfterCallBB->eraseFromParent();
1416
1417  // We should always be able to fold the entry block of the function into the
1418  // single predecessor of the block...
1419  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1420  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1421
1422  // Splice the code entry block into calling block, right before the
1423  // unconditional branch.
1424  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1425  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1426
1427  // Remove the unconditional branch.
1428  OrigBB->getInstList().erase(Br);
1429
1430  // Now we can remove the CalleeEntry block, which is now empty.
1431  Caller->getBasicBlockList().erase(CalleeEntry);
1432
1433  // If we inserted a phi node, check to see if it has a single value (e.g. all
1434  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1435  // block other optimizations.
1436  if (PHI) {
1437    auto &DL = Caller->getParent()->getDataLayout();
1438    if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
1439                                       &IFI.ACT->getAssumptionCache(*Caller))) {
1440      PHI->replaceAllUsesWith(V);
1441      PHI->eraseFromParent();
1442    }
1443  }
1444
1445  return true;
1446}
1447