InlineFunction.cpp revision 1b49141821e98e4321bfe6234c7001c836b2a289
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// FIXME: This pass should transform alloca instructions in the called function
14// into alloca/dealloca pairs!  Or perhaps it should refuse to inline them!
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Utils/Cloning.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CallSite.h"
25using namespace llvm;
26
27bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
28bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
29
30// InlineFunction - This function inlines the called function into the basic
31// block of the caller.  This returns false if it is not possible to inline this
32// call.  The program is still in a well defined state if this occurs though.
33//
34// Note that this only does one level of inlining.  For example, if the
35// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
36// exists in the instruction stream.  Similiarly this will inline a recursive
37// function by one level.
38//
39bool llvm::InlineFunction(CallSite CS) {
40  Instruction *TheCall = CS.getInstruction();
41  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
42         "Instruction not in function!");
43
44  const Function *CalledFunc = CS.getCalledFunction();
45  if (CalledFunc == 0 ||          // Can't inline external function or indirect
46      CalledFunc->isExternal() || // call, or call to a vararg function!
47      CalledFunc->getFunctionType()->isVarArg()) return false;
48
49
50  // If the call to the callee is a non-tail call, we must clear the 'tail'
51  // flags on any calls that we inline.
52  bool MustClearTailCallFlags =
53    isa<CallInst>(TheCall) || !cast<CallInst>(TheCall)->isTailCall();
54
55  BasicBlock *OrigBB = TheCall->getParent();
56  Function *Caller = OrigBB->getParent();
57
58  // Get an iterator to the last basic block in the function, which will have
59  // the new function inlined after it.
60  //
61  Function::iterator LastBlock = &Caller->back();
62
63  // Make sure to capture all of the return instructions from the cloned
64  // function.
65  std::vector<ReturnInst*> Returns;
66  { // Scope to destroy ValueMap after cloning.
67    // Calculate the vector of arguments to pass into the function cloner...
68    std::map<const Value*, Value*> ValueMap;
69    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
70           std::distance(CS.arg_begin(), CS.arg_end()) &&
71           "No varargs calls can be inlined!");
72
73    CallSite::arg_iterator AI = CS.arg_begin();
74    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
75           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
76      ValueMap[I] = *AI;
77
78    // Clone the entire body of the callee into the caller.
79    CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
80  }
81
82  // Remember the first block that is newly cloned over.
83  Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
84
85  // If there are any alloca instructions in the block that used to be the entry
86  // block for the callee, move them to the entry block of the caller.  First
87  // calculate which instruction they should be inserted before.  We insert the
88  // instructions at the end of the current alloca list.
89  //
90  if (isa<AllocaInst>(FirstNewBlock->begin())) {
91    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
92    for (BasicBlock::iterator I = FirstNewBlock->begin(),
93           E = FirstNewBlock->end(); I != E; )
94      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
95        if (isa<Constant>(AI->getArraySize())) {
96          // Scan for the block of allocas that we can move over.
97          while (isa<AllocaInst>(I) &&
98                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
99            ++I;
100
101          // Transfer all of the allocas over in a block.  Using splice means
102          // that they instructions aren't removed from the symbol table, then
103          // reinserted.
104          Caller->front().getInstList().splice(InsertPoint,
105                                               FirstNewBlock->getInstList(),
106                                               AI, I);
107        }
108  }
109
110  // If we are inlining tail call instruction through an invoke or
111  if (MustClearTailCallFlags) {
112    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
113         BB != E; ++BB)
114      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
115        if (CallInst *CI = dyn_cast<CallInst>(I))
116          CI->setTailCall(false);
117  }
118
119  // If we are inlining for an invoke instruction, we must make sure to rewrite
120  // any inlined 'unwind' instructions into branches to the invoke exception
121  // destination, and call instructions into invoke instructions.
122  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
123    BasicBlock *InvokeDest = II->getUnwindDest();
124    std::vector<Value*> InvokeDestPHIValues;
125
126    // If there are PHI nodes in the exceptional destination block, we need to
127    // keep track of which values came into them from this invoke, then remove
128    // the entry for this block.
129    for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
130      PHINode *PN = cast<PHINode>(I);
131      // Save the value to use for this edge...
132      InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
133    }
134
135    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
136         BB != E; ++BB) {
137      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
138        // We only need to check for function calls: inlined invoke instructions
139        // require no special handling...
140        if (CallInst *CI = dyn_cast<CallInst>(I)) {
141          // Convert this function call into an invoke instruction... if it's
142          // not an intrinsic function call (which are known to not unwind).
143          if (CI->getCalledFunction() &&
144              CI->getCalledFunction()->getIntrinsicID()) {
145            ++I;
146          } else {
147            // First, split the basic block...
148            BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
149
150            // Next, create the new invoke instruction, inserting it at the end
151            // of the old basic block.
152            InvokeInst *II =
153              new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
154                            std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
155                             CI->getName(), BB->getTerminator());
156
157            // Make sure that anything using the call now uses the invoke!
158            CI->replaceAllUsesWith(II);
159
160            // Delete the unconditional branch inserted by splitBasicBlock
161            BB->getInstList().pop_back();
162            Split->getInstList().pop_front();  // Delete the original call
163
164            // Update any PHI nodes in the exceptional block to indicate that
165            // there is now a new entry in them.
166            unsigned i = 0;
167            for (BasicBlock::iterator I = InvokeDest->begin();
168                 isa<PHINode>(I); ++I, ++i) {
169              PHINode *PN = cast<PHINode>(I);
170              PN->addIncoming(InvokeDestPHIValues[i], BB);
171            }
172
173            // This basic block is now complete, start scanning the next one.
174            break;
175          }
176        } else {
177          ++I;
178        }
179      }
180
181      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
182        // An UnwindInst requires special handling when it gets inlined into an
183        // invoke site.  Once this happens, we know that the unwind would cause
184        // a control transfer to the invoke exception destination, so we can
185        // transform it into a direct branch to the exception destination.
186        new BranchInst(InvokeDest, UI);
187
188        // Delete the unwind instruction!
189        UI->getParent()->getInstList().pop_back();
190
191        // Update any PHI nodes in the exceptional block to indicate that
192        // there is now a new entry in them.
193        unsigned i = 0;
194        for (BasicBlock::iterator I = InvokeDest->begin();
195             isa<PHINode>(I); ++I, ++i) {
196          PHINode *PN = cast<PHINode>(I);
197          PN->addIncoming(InvokeDestPHIValues[i], BB);
198        }
199      }
200    }
201
202    // Now that everything is happy, we have one final detail.  The PHI nodes in
203    // the exception destination block still have entries due to the original
204    // invoke instruction.  Eliminate these entries (which might even delete the
205    // PHI node) now.
206    InvokeDest->removePredecessor(II->getParent());
207  }
208
209  // If we cloned in _exactly one_ basic block, and if that block ends in a
210  // return instruction, we splice the body of the inlined callee directly into
211  // the calling basic block.
212  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
213    // Move all of the instructions right before the call.
214    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
215                                 FirstNewBlock->begin(), FirstNewBlock->end());
216    // Remove the cloned basic block.
217    Caller->getBasicBlockList().pop_back();
218
219    // If the call site was an invoke instruction, add a branch to the normal
220    // destination.
221    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
222      new BranchInst(II->getNormalDest(), TheCall);
223
224    // If the return instruction returned a value, replace uses of the call with
225    // uses of the returned value.
226    if (!TheCall->use_empty())
227      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
228
229    // Since we are now done with the Call/Invoke, we can delete it.
230    TheCall->getParent()->getInstList().erase(TheCall);
231
232    // Since we are now done with the return instruction, delete it also.
233    Returns[0]->getParent()->getInstList().erase(Returns[0]);
234
235    // We are now done with the inlining.
236    return true;
237  }
238
239  // Otherwise, we have the normal case, of more than one block to inline or
240  // multiple return sites.
241
242  // We want to clone the entire callee function into the hole between the
243  // "starter" and "ender" blocks.  How we accomplish this depends on whether
244  // this is an invoke instruction or a call instruction.
245  BasicBlock *AfterCallBB;
246  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
247
248    // Add an unconditional branch to make this look like the CallInst case...
249    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
250
251    // Split the basic block.  This guarantees that no PHI nodes will have to be
252    // updated due to new incoming edges, and make the invoke case more
253    // symmetric to the call case.
254    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
255                                          CalledFunc->getName()+".exit");
256
257  } else {  // It's a call
258    // If this is a call instruction, we need to split the basic block that
259    // the call lives in.
260    //
261    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
262                                          CalledFunc->getName()+".exit");
263  }
264
265  // Change the branch that used to go to AfterCallBB to branch to the first
266  // basic block of the inlined function.
267  //
268  TerminatorInst *Br = OrigBB->getTerminator();
269  assert(Br && Br->getOpcode() == Instruction::Br &&
270         "splitBasicBlock broken!");
271  Br->setOperand(0, FirstNewBlock);
272
273
274  // Now that the function is correct, make it a little bit nicer.  In
275  // particular, move the basic blocks inserted from the end of the function
276  // into the space made by splitting the source basic block.
277  //
278  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
279                                     FirstNewBlock, Caller->end());
280
281  // Handle all of the return instructions that we just cloned in, and eliminate
282  // any users of the original call/invoke instruction.
283  if (Returns.size() > 1) {
284    // The PHI node should go at the front of the new basic block to merge all
285    // possible incoming values.
286    //
287    PHINode *PHI = 0;
288    if (!TheCall->use_empty()) {
289      PHI = new PHINode(CalledFunc->getReturnType(),
290                        TheCall->getName(), AfterCallBB->begin());
291
292      // Anything that used the result of the function call should now use the
293      // PHI node as their operand.
294      //
295      TheCall->replaceAllUsesWith(PHI);
296    }
297
298    // Loop over all of the return instructions, turning them into unconditional
299    // branches to the merge point now, and adding entries to the PHI node as
300    // appropriate.
301    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
302      ReturnInst *RI = Returns[i];
303
304      if (PHI) {
305        assert(RI->getReturnValue() && "Ret should have value!");
306        assert(RI->getReturnValue()->getType() == PHI->getType() &&
307               "Ret value not consistent in function!");
308        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
309      }
310
311      // Add a branch to the merge point where the PHI node lives if it exists.
312      new BranchInst(AfterCallBB, RI);
313
314      // Delete the return instruction now
315      RI->getParent()->getInstList().erase(RI);
316    }
317
318  } else if (!Returns.empty()) {
319    // Otherwise, if there is exactly one return value, just replace anything
320    // using the return value of the call with the computed value.
321    if (!TheCall->use_empty())
322      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
323
324    // Splice the code from the return block into the block that it will return
325    // to, which contains the code that was after the call.
326    BasicBlock *ReturnBB = Returns[0]->getParent();
327    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
328                                      ReturnBB->getInstList());
329
330    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
331    ReturnBB->replaceAllUsesWith(AfterCallBB);
332
333    // Delete the return instruction now and empty ReturnBB now.
334    Returns[0]->eraseFromParent();
335    ReturnBB->eraseFromParent();
336  } else if (!TheCall->use_empty()) {
337    // No returns, but something is using the return value of the call.  Just
338    // nuke the result.
339    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
340  }
341
342  // Since we are now done with the Call/Invoke, we can delete it.
343  TheCall->eraseFromParent();
344
345  // We should always be able to fold the entry block of the function into the
346  // single predecessor of the block...
347  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
348  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
349
350  // Splice the code entry block into calling block, right before the
351  // unconditional branch.
352  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
353  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
354
355  // Remove the unconditional branch.
356  OrigBB->getInstList().erase(Br);
357
358  // Now we can remove the CalleeEntry block, which is now empty.
359  Caller->getBasicBlockList().erase(CalleeEntry);
360  return true;
361}
362