InlineFunction.cpp revision 28c531cdbb403c59f492d3361ec9e8581f2a7ab2
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Attributes.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/CallSite.h"
27using namespace llvm;
28
29bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(CI), CG, TD);
31}
32bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(II), CG, TD);
34}
35
36/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
37/// in the body of the inlined function into invokes and turn unwind
38/// instructions into branches to the invoke unwind dest.
39///
40/// II is the invoke instruction being inlined.  FirstNewBlock is the first
41/// block of the inlined code (the last block is the end of the function),
42/// and InlineCodeInfo is information about the code that got inlined.
43static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
44                                ClonedCodeInfo &InlinedCodeInfo,
45                                CallGraph *CG) {
46  BasicBlock *InvokeDest = II->getUnwindDest();
47  std::vector<Value*> InvokeDestPHIValues;
48
49  // If there are PHI nodes in the unwind destination block, we need to
50  // keep track of which values came into them from this invoke, then remove
51  // the entry for this block.
52  BasicBlock *InvokeBlock = II->getParent();
53  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
54    PHINode *PN = cast<PHINode>(I);
55    // Save the value to use for this edge.
56    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
57  }
58
59  Function *Caller = FirstNewBlock->getParent();
60
61  // The inlined code is currently at the end of the function, scan from the
62  // start of the inlined code to its end, checking for stuff we need to
63  // rewrite.
64  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
65    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
66         BB != E; ++BB) {
67      if (InlinedCodeInfo.ContainsCalls) {
68        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
69          Instruction *I = BBI++;
70
71          // We only need to check for function calls: inlined invoke
72          // instructions require no special handling.
73          if (!isa<CallInst>(I)) continue;
74          CallInst *CI = cast<CallInst>(I);
75
76          // If this call cannot unwind, don't convert it to an invoke.
77          if (CI->doesNotThrow())
78            continue;
79
80          // Convert this function call into an invoke instruction.
81          // First, split the basic block.
82          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
83
84          // Next, create the new invoke instruction, inserting it at the end
85          // of the old basic block.
86          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
87          InvokeInst *II =
88            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
89                               InvokeArgs.begin(), InvokeArgs.end(),
90                               CI->getName(), BB->getTerminator());
91          II->setCallingConv(CI->getCallingConv());
92          II->setAttributes(CI->getAttributes());
93
94          // Make sure that anything using the call now uses the invoke!
95          CI->replaceAllUsesWith(II);
96
97          // Update the callgraph.
98          if (CG) {
99            // We should be able to do this:
100            //   (*CG)[Caller]->replaceCallSite(CI, II);
101            // but that fails if the old call site isn't in the call graph,
102            // which, because of LLVM bug 3601, it sometimes isn't.
103            CallGraphNode *CGN = (*CG)[Caller];
104            for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
105                 NI != NE; ++NI) {
106              if (NI->first == CI) {
107                NI->first = II;
108                break;
109              }
110            }
111          }
112
113          // Delete the unconditional branch inserted by splitBasicBlock
114          BB->getInstList().pop_back();
115          Split->getInstList().pop_front();  // Delete the original call
116
117          // Update any PHI nodes in the exceptional block to indicate that
118          // there is now a new entry in them.
119          unsigned i = 0;
120          for (BasicBlock::iterator I = InvokeDest->begin();
121               isa<PHINode>(I); ++I, ++i) {
122            PHINode *PN = cast<PHINode>(I);
123            PN->addIncoming(InvokeDestPHIValues[i], BB);
124          }
125
126          // This basic block is now complete, start scanning the next one.
127          break;
128        }
129      }
130
131      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
132        // An UnwindInst requires special handling when it gets inlined into an
133        // invoke site.  Once this happens, we know that the unwind would cause
134        // a control transfer to the invoke exception destination, so we can
135        // transform it into a direct branch to the exception destination.
136        BranchInst::Create(InvokeDest, UI);
137
138        // Delete the unwind instruction!
139        UI->eraseFromParent();
140
141        // Update any PHI nodes in the exceptional block to indicate that
142        // there is now a new entry in them.
143        unsigned i = 0;
144        for (BasicBlock::iterator I = InvokeDest->begin();
145             isa<PHINode>(I); ++I, ++i) {
146          PHINode *PN = cast<PHINode>(I);
147          PN->addIncoming(InvokeDestPHIValues[i], BB);
148        }
149      }
150    }
151  }
152
153  // Now that everything is happy, we have one final detail.  The PHI nodes in
154  // the exception destination block still have entries due to the original
155  // invoke instruction.  Eliminate these entries (which might even delete the
156  // PHI node) now.
157  InvokeDest->removePredecessor(II->getParent());
158}
159
160/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
161/// into the caller, update the specified callgraph to reflect the changes we
162/// made.  Note that it's possible that not all code was copied over, so only
163/// some edges of the callgraph may remain.
164static void UpdateCallGraphAfterInlining(CallSite CS,
165                                         Function::iterator FirstNewBlock,
166                                       DenseMap<const Value*, Value*> &ValueMap,
167                                         CallGraph &CG) {
168  const Function *Caller = CS.getInstruction()->getParent()->getParent();
169  const Function *Callee = CS.getCalledFunction();
170  CallGraphNode *CalleeNode = CG[Callee];
171  CallGraphNode *CallerNode = CG[Caller];
172
173  // Since we inlined some uninlined call sites in the callee into the caller,
174  // add edges from the caller to all of the callees of the callee.
175  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
176
177  // Consider the case where CalleeNode == CallerNode.
178  CallGraphNode::CalledFunctionsVector CallCache;
179  if (CalleeNode == CallerNode) {
180    CallCache.assign(I, E);
181    I = CallCache.begin();
182    E = CallCache.end();
183  }
184
185  for (; I != E; ++I) {
186    const Instruction *OrigCall = I->first.getInstruction();
187
188    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
189    // Only copy the edge if the call was inlined!
190    if (VMI != ValueMap.end() && VMI->second) {
191      // If the call was inlined, but then constant folded, there is no edge to
192      // add.  Check for this case.
193      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
194        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
195    }
196  }
197  // Update the call graph by deleting the edge from Callee to Caller.  We must
198  // do this after the loop above in case Caller and Callee are the same.
199  CallerNode->removeCallEdgeFor(CS);
200}
201
202
203// InlineFunction - This function inlines the called function into the basic
204// block of the caller.  This returns false if it is not possible to inline this
205// call.  The program is still in a well defined state if this occurs though.
206//
207// Note that this only does one level of inlining.  For example, if the
208// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
209// exists in the instruction stream.  Similiarly this will inline a recursive
210// function by one level.
211//
212bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
213  Instruction *TheCall = CS.getInstruction();
214  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
215         "Instruction not in function!");
216
217  const Function *CalledFunc = CS.getCalledFunction();
218  if (CalledFunc == 0 ||          // Can't inline external function or indirect
219      CalledFunc->isDeclaration() || // call, or call to a vararg function!
220      CalledFunc->getFunctionType()->isVarArg()) return false;
221
222
223  // If the call to the callee is not a tail call, we must clear the 'tail'
224  // flags on any calls that we inline.
225  bool MustClearTailCallFlags =
226    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
227
228  // If the call to the callee cannot throw, set the 'nounwind' flag on any
229  // calls that we inline.
230  bool MarkNoUnwind = CS.doesNotThrow();
231
232  BasicBlock *OrigBB = TheCall->getParent();
233  Function *Caller = OrigBB->getParent();
234
235  // GC poses two hazards to inlining, which only occur when the callee has GC:
236  //  1. If the caller has no GC, then the callee's GC must be propagated to the
237  //     caller.
238  //  2. If the caller has a differing GC, it is invalid to inline.
239  if (CalledFunc->hasGC()) {
240    if (!Caller->hasGC())
241      Caller->setGC(CalledFunc->getGC());
242    else if (CalledFunc->getGC() != Caller->getGC())
243      return false;
244  }
245
246  // Get an iterator to the last basic block in the function, which will have
247  // the new function inlined after it.
248  //
249  Function::iterator LastBlock = &Caller->back();
250
251  // Make sure to capture all of the return instructions from the cloned
252  // function.
253  std::vector<ReturnInst*> Returns;
254  ClonedCodeInfo InlinedFunctionInfo;
255  Function::iterator FirstNewBlock;
256
257  { // Scope to destroy ValueMap after cloning.
258    DenseMap<const Value*, Value*> ValueMap;
259
260    assert(CalledFunc->arg_size() == CS.arg_size() &&
261           "No varargs calls can be inlined!");
262
263    // Calculate the vector of arguments to pass into the function cloner, which
264    // matches up the formal to the actual argument values.
265    CallSite::arg_iterator AI = CS.arg_begin();
266    unsigned ArgNo = 0;
267    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
268         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
269      Value *ActualArg = *AI;
270
271      // When byval arguments actually inlined, we need to make the copy implied
272      // by them explicit.  However, we don't do this if the callee is readonly
273      // or readnone, because the copy would be unneeded: the callee doesn't
274      // modify the struct.
275      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
276          !CalledFunc->onlyReadsMemory()) {
277        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
278        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
279
280        // Create the alloca.  If we have TargetData, use nice alignment.
281        unsigned Align = 1;
282        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
283        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
284                                          Caller->begin()->begin());
285        // Emit a memcpy.
286        const Type *Tys[] = { Type::Int64Ty };
287        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
288                                                       Intrinsic::memcpy,
289                                                       Tys, 1);
290        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
291        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
292
293        Value *Size;
294        if (TD == 0)
295          Size = ConstantExpr::getSizeOf(AggTy);
296        else
297          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
298
299        // Always generate a memcpy of alignment 1 here because we don't know
300        // the alignment of the src pointer.  Other optimizations can infer
301        // better alignment.
302        Value *CallArgs[] = {
303          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
304        };
305        CallInst *TheMemCpy =
306          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
307
308        // If we have a call graph, update it.
309        if (CG) {
310          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
311          CallGraphNode *CallerNode = (*CG)[Caller];
312          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
313        }
314
315        // Uses of the argument in the function should use our new alloca
316        // instead.
317        ActualArg = NewAlloca;
318      }
319
320      ValueMap[I] = ActualArg;
321    }
322
323    // We want the inliner to prune the code as it copies.  We would LOVE to
324    // have no dead or constant instructions leftover after inlining occurs
325    // (which can happen, e.g., because an argument was constant), but we'll be
326    // happy with whatever the cloner can do.
327    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
328                              &InlinedFunctionInfo, TD);
329
330    // Remember the first block that is newly cloned over.
331    FirstNewBlock = LastBlock; ++FirstNewBlock;
332
333    // Update the callgraph if requested.
334    if (CG)
335      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
336  }
337
338  // If there are any alloca instructions in the block that used to be the entry
339  // block for the callee, move them to the entry block of the caller.  First
340  // calculate which instruction they should be inserted before.  We insert the
341  // instructions at the end of the current alloca list.
342  //
343  {
344    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
345    for (BasicBlock::iterator I = FirstNewBlock->begin(),
346           E = FirstNewBlock->end(); I != E; )
347      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
348        // If the alloca is now dead, remove it.  This often occurs due to code
349        // specialization.
350        if (AI->use_empty()) {
351          AI->eraseFromParent();
352          continue;
353        }
354
355        if (isa<Constant>(AI->getArraySize())) {
356          // Scan for the block of allocas that we can move over, and move them
357          // all at once.
358          while (isa<AllocaInst>(I) &&
359                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
360            ++I;
361
362          // Transfer all of the allocas over in a block.  Using splice means
363          // that the instructions aren't removed from the symbol table, then
364          // reinserted.
365          Caller->getEntryBlock().getInstList().splice(
366              InsertPoint,
367              FirstNewBlock->getInstList(),
368              AI, I);
369        }
370      }
371  }
372
373  // If the inlined code contained dynamic alloca instructions, wrap the inlined
374  // code with llvm.stacksave/llvm.stackrestore intrinsics.
375  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
376    Module *M = Caller->getParent();
377    // Get the two intrinsics we care about.
378    Constant *StackSave, *StackRestore;
379    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
380    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
381
382    // If we are preserving the callgraph, add edges to the stacksave/restore
383    // functions for the calls we insert.
384    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
385    if (CG) {
386      // We know that StackSave/StackRestore are Function*'s, because they are
387      // intrinsics which must have the right types.
388      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
389      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
390      CallerNode = (*CG)[Caller];
391    }
392
393    // Insert the llvm.stacksave.
394    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
395                                          FirstNewBlock->begin());
396    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
397
398    // Insert a call to llvm.stackrestore before any return instructions in the
399    // inlined function.
400    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
401      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
402      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
403    }
404
405    // Count the number of StackRestore calls we insert.
406    unsigned NumStackRestores = Returns.size();
407
408    // If we are inlining an invoke instruction, insert restores before each
409    // unwind.  These unwinds will be rewritten into branches later.
410    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
411      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
412           BB != E; ++BB)
413        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
414          CallInst::Create(StackRestore, SavedPtr, "", UI);
415          ++NumStackRestores;
416        }
417    }
418  }
419
420  // If we are inlining tail call instruction through a call site that isn't
421  // marked 'tail', we must remove the tail marker for any calls in the inlined
422  // code.  Also, calls inlined through a 'nounwind' call site should be marked
423  // 'nounwind'.
424  if (InlinedFunctionInfo.ContainsCalls &&
425      (MustClearTailCallFlags || MarkNoUnwind)) {
426    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
427         BB != E; ++BB)
428      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
429        if (CallInst *CI = dyn_cast<CallInst>(I)) {
430          if (MustClearTailCallFlags)
431            CI->setTailCall(false);
432          if (MarkNoUnwind)
433            CI->setDoesNotThrow();
434        }
435  }
436
437  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
438  // instructions are unreachable.
439  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
440    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
441         BB != E; ++BB) {
442      TerminatorInst *Term = BB->getTerminator();
443      if (isa<UnwindInst>(Term)) {
444        new UnreachableInst(Term);
445        BB->getInstList().erase(Term);
446      }
447    }
448
449  // If we are inlining for an invoke instruction, we must make sure to rewrite
450  // any inlined 'unwind' instructions into branches to the invoke exception
451  // destination, and call instructions into invoke instructions.
452  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
453    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
454
455  // If we cloned in _exactly one_ basic block, and if that block ends in a
456  // return instruction, we splice the body of the inlined callee directly into
457  // the calling basic block.
458  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
459    // Move all of the instructions right before the call.
460    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
461                                 FirstNewBlock->begin(), FirstNewBlock->end());
462    // Remove the cloned basic block.
463    Caller->getBasicBlockList().pop_back();
464
465    // If the call site was an invoke instruction, add a branch to the normal
466    // destination.
467    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
468      BranchInst::Create(II->getNormalDest(), TheCall);
469
470    // If the return instruction returned a value, replace uses of the call with
471    // uses of the returned value.
472    if (!TheCall->use_empty()) {
473      ReturnInst *R = Returns[0];
474      TheCall->replaceAllUsesWith(R->getReturnValue());
475    }
476    // Since we are now done with the Call/Invoke, we can delete it.
477    TheCall->eraseFromParent();
478
479    // Since we are now done with the return instruction, delete it also.
480    Returns[0]->eraseFromParent();
481
482    // We are now done with the inlining.
483    return true;
484  }
485
486  // Otherwise, we have the normal case, of more than one block to inline or
487  // multiple return sites.
488
489  // We want to clone the entire callee function into the hole between the
490  // "starter" and "ender" blocks.  How we accomplish this depends on whether
491  // this is an invoke instruction or a call instruction.
492  BasicBlock *AfterCallBB;
493  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
494
495    // Add an unconditional branch to make this look like the CallInst case...
496    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
497
498    // Split the basic block.  This guarantees that no PHI nodes will have to be
499    // updated due to new incoming edges, and make the invoke case more
500    // symmetric to the call case.
501    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
502                                          CalledFunc->getName()+".exit");
503
504  } else {  // It's a call
505    // If this is a call instruction, we need to split the basic block that
506    // the call lives in.
507    //
508    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
509                                          CalledFunc->getName()+".exit");
510  }
511
512  // Change the branch that used to go to AfterCallBB to branch to the first
513  // basic block of the inlined function.
514  //
515  TerminatorInst *Br = OrigBB->getTerminator();
516  assert(Br && Br->getOpcode() == Instruction::Br &&
517         "splitBasicBlock broken!");
518  Br->setOperand(0, FirstNewBlock);
519
520
521  // Now that the function is correct, make it a little bit nicer.  In
522  // particular, move the basic blocks inserted from the end of the function
523  // into the space made by splitting the source basic block.
524  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
525                                     FirstNewBlock, Caller->end());
526
527  // Handle all of the return instructions that we just cloned in, and eliminate
528  // any users of the original call/invoke instruction.
529  const Type *RTy = CalledFunc->getReturnType();
530
531  if (Returns.size() > 1) {
532    // The PHI node should go at the front of the new basic block to merge all
533    // possible incoming values.
534    PHINode *PHI = 0;
535    if (!TheCall->use_empty()) {
536      PHI = PHINode::Create(RTy, TheCall->getName(),
537                            AfterCallBB->begin());
538      // Anything that used the result of the function call should now use the
539      // PHI node as their operand.
540      TheCall->replaceAllUsesWith(PHI);
541    }
542
543    // Loop over all of the return instructions adding entries to the PHI node
544    // as appropriate.
545    if (PHI) {
546      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
547        ReturnInst *RI = Returns[i];
548        assert(RI->getReturnValue()->getType() == PHI->getType() &&
549               "Ret value not consistent in function!");
550        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
551      }
552    }
553
554    // Add a branch to the merge points and remove return instructions.
555    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
556      ReturnInst *RI = Returns[i];
557      BranchInst::Create(AfterCallBB, RI);
558      RI->eraseFromParent();
559    }
560  } else if (!Returns.empty()) {
561    // Otherwise, if there is exactly one return value, just replace anything
562    // using the return value of the call with the computed value.
563    if (!TheCall->use_empty())
564      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
565
566    // Splice the code from the return block into the block that it will return
567    // to, which contains the code that was after the call.
568    BasicBlock *ReturnBB = Returns[0]->getParent();
569    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
570                                      ReturnBB->getInstList());
571
572    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
573    ReturnBB->replaceAllUsesWith(AfterCallBB);
574
575    // Delete the return instruction now and empty ReturnBB now.
576    Returns[0]->eraseFromParent();
577    ReturnBB->eraseFromParent();
578  } else if (!TheCall->use_empty()) {
579    // No returns, but something is using the return value of the call.  Just
580    // nuke the result.
581    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
582  }
583
584  // Since we are now done with the Call/Invoke, we can delete it.
585  TheCall->eraseFromParent();
586
587  // We should always be able to fold the entry block of the function into the
588  // single predecessor of the block...
589  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
590  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
591
592  // Splice the code entry block into calling block, right before the
593  // unconditional branch.
594  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
595  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
596
597  // Remove the unconditional branch.
598  OrigBB->getInstList().erase(Br);
599
600  // Now we can remove the CalleeEntry block, which is now empty.
601  Caller->getBasicBlockList().erase(CalleeEntry);
602
603  return true;
604}
605