InlineFunction.cpp revision 517576d6f96a0acde9bab79553d89f4ceba20cf6
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/CallSite.h"
29using namespace llvm;
30
31bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
32  return InlineFunction(CallSite(CI), CG, TD);
33}
34bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
35  return InlineFunction(CallSite(II), CG, TD);
36}
37
38/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
39/// in the body of the inlined function into invokes and turn unwind
40/// instructions into branches to the invoke unwind dest.
41///
42/// II is the invoke instruction being inlined.  FirstNewBlock is the first
43/// block of the inlined code (the last block is the end of the function),
44/// and InlineCodeInfo is information about the code that got inlined.
45static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
46                                ClonedCodeInfo &InlinedCodeInfo,
47                                CallGraph *CG) {
48  BasicBlock *InvokeDest = II->getUnwindDest();
49  std::vector<Value*> InvokeDestPHIValues;
50
51  // If there are PHI nodes in the unwind destination block, we need to
52  // keep track of which values came into them from this invoke, then remove
53  // the entry for this block.
54  BasicBlock *InvokeBlock = II->getParent();
55  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
56    PHINode *PN = cast<PHINode>(I);
57    // Save the value to use for this edge.
58    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
59  }
60
61  Function *Caller = FirstNewBlock->getParent();
62
63  // The inlined code is currently at the end of the function, scan from the
64  // start of the inlined code to its end, checking for stuff we need to
65  // rewrite.
66  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
67    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
68         BB != E; ++BB) {
69      if (InlinedCodeInfo.ContainsCalls) {
70        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
71          Instruction *I = BBI++;
72
73          // We only need to check for function calls: inlined invoke
74          // instructions require no special handling.
75          if (!isa<CallInst>(I)) continue;
76          CallInst *CI = cast<CallInst>(I);
77
78          // If this call cannot unwind, don't convert it to an invoke.
79          if (CI->doesNotThrow())
80            continue;
81
82          // Convert this function call into an invoke instruction.
83          // First, split the basic block.
84          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
85
86          // Next, create the new invoke instruction, inserting it at the end
87          // of the old basic block.
88          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
89          InvokeInst *II =
90            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
91                               InvokeArgs.begin(), InvokeArgs.end(),
92                               CI->getName(), BB->getTerminator());
93          II->setCallingConv(CI->getCallingConv());
94          II->setAttributes(CI->getAttributes());
95
96          // Make sure that anything using the call now uses the invoke!
97          CI->replaceAllUsesWith(II);
98
99          // Update the callgraph.
100          if (CG) {
101            // We should be able to do this:
102            //   (*CG)[Caller]->replaceCallSite(CI, II);
103            // but that fails if the old call site isn't in the call graph,
104            // which, because of LLVM bug 3601, it sometimes isn't.
105            CallGraphNode *CGN = (*CG)[Caller];
106            for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
107                 NI != NE; ++NI) {
108              if (NI->first == CI) {
109                NI->first = II;
110                break;
111              }
112            }
113          }
114
115          // Delete the unconditional branch inserted by splitBasicBlock
116          BB->getInstList().pop_back();
117          Split->getInstList().pop_front();  // Delete the original call
118
119          // Update any PHI nodes in the exceptional block to indicate that
120          // there is now a new entry in them.
121          unsigned i = 0;
122          for (BasicBlock::iterator I = InvokeDest->begin();
123               isa<PHINode>(I); ++I, ++i) {
124            PHINode *PN = cast<PHINode>(I);
125            PN->addIncoming(InvokeDestPHIValues[i], BB);
126          }
127
128          // This basic block is now complete, start scanning the next one.
129          break;
130        }
131      }
132
133      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
134        // An UnwindInst requires special handling when it gets inlined into an
135        // invoke site.  Once this happens, we know that the unwind would cause
136        // a control transfer to the invoke exception destination, so we can
137        // transform it into a direct branch to the exception destination.
138        BranchInst::Create(InvokeDest, UI);
139
140        // Delete the unwind instruction!
141        UI->eraseFromParent();
142
143        // Update any PHI nodes in the exceptional block to indicate that
144        // there is now a new entry in them.
145        unsigned i = 0;
146        for (BasicBlock::iterator I = InvokeDest->begin();
147             isa<PHINode>(I); ++I, ++i) {
148          PHINode *PN = cast<PHINode>(I);
149          PN->addIncoming(InvokeDestPHIValues[i], BB);
150        }
151      }
152    }
153  }
154
155  // Now that everything is happy, we have one final detail.  The PHI nodes in
156  // the exception destination block still have entries due to the original
157  // invoke instruction.  Eliminate these entries (which might even delete the
158  // PHI node) now.
159  InvokeDest->removePredecessor(II->getParent());
160}
161
162/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
163/// into the caller, update the specified callgraph to reflect the changes we
164/// made.  Note that it's possible that not all code was copied over, so only
165/// some edges of the callgraph may remain.
166static void UpdateCallGraphAfterInlining(CallSite CS,
167                                         Function::iterator FirstNewBlock,
168                                       DenseMap<const Value*, Value*> &ValueMap,
169                                         CallGraph &CG) {
170  const Function *Caller = CS.getInstruction()->getParent()->getParent();
171  const Function *Callee = CS.getCalledFunction();
172  CallGraphNode *CalleeNode = CG[Callee];
173  CallGraphNode *CallerNode = CG[Caller];
174
175  // Since we inlined some uninlined call sites in the callee into the caller,
176  // add edges from the caller to all of the callees of the callee.
177  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
178
179  // Consider the case where CalleeNode == CallerNode.
180  CallGraphNode::CalledFunctionsVector CallCache;
181  if (CalleeNode == CallerNode) {
182    CallCache.assign(I, E);
183    I = CallCache.begin();
184    E = CallCache.end();
185  }
186
187  for (; I != E; ++I) {
188    const Instruction *OrigCall = I->first.getInstruction();
189
190    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
191    // Only copy the edge if the call was inlined!
192    if (VMI != ValueMap.end() && VMI->second) {
193      // If the call was inlined, but then constant folded, there is no edge to
194      // add.  Check for this case.
195      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
196        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
197    }
198  }
199  // Update the call graph by deleting the edge from Callee to Caller.  We must
200  // do this after the loop above in case Caller and Callee are the same.
201  CallerNode->removeCallEdgeFor(CS);
202}
203
204/// findFnRegionEndMarker - This is a utility routine that is used by
205/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
206/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
207static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
208
209  GlobalVariable *FnStart = NULL;
210  const DbgRegionEndInst *FnEnd = NULL;
211  for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
212    for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
213         ++BI) {
214      if (FnStart == NULL)  {
215        if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
216          DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
217          assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
218          if (SP.describes(F))
219            FnStart = SP.getGV();
220        }
221      } else {
222        if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
223          if (REI->getContext() == FnStart)
224            FnEnd = REI;
225      }
226    }
227  return FnEnd;
228}
229
230// InlineFunction - This function inlines the called function into the basic
231// block of the caller.  This returns false if it is not possible to inline this
232// call.  The program is still in a well defined state if this occurs though.
233//
234// Note that this only does one level of inlining.  For example, if the
235// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
236// exists in the instruction stream.  Similiarly this will inline a recursive
237// function by one level.
238//
239bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
240  Instruction *TheCall = CS.getInstruction();
241  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
242         "Instruction not in function!");
243
244  const Function *CalledFunc = CS.getCalledFunction();
245  if (CalledFunc == 0 ||          // Can't inline external function or indirect
246      CalledFunc->isDeclaration() || // call, or call to a vararg function!
247      CalledFunc->getFunctionType()->isVarArg()) return false;
248
249
250  // If the call to the callee is not a tail call, we must clear the 'tail'
251  // flags on any calls that we inline.
252  bool MustClearTailCallFlags =
253    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
254
255  // If the call to the callee cannot throw, set the 'nounwind' flag on any
256  // calls that we inline.
257  bool MarkNoUnwind = CS.doesNotThrow();
258
259  BasicBlock *OrigBB = TheCall->getParent();
260  Function *Caller = OrigBB->getParent();
261
262  // GC poses two hazards to inlining, which only occur when the callee has GC:
263  //  1. If the caller has no GC, then the callee's GC must be propagated to the
264  //     caller.
265  //  2. If the caller has a differing GC, it is invalid to inline.
266  if (CalledFunc->hasGC()) {
267    if (!Caller->hasGC())
268      Caller->setGC(CalledFunc->getGC());
269    else if (CalledFunc->getGC() != Caller->getGC())
270      return false;
271  }
272
273  // Get an iterator to the last basic block in the function, which will have
274  // the new function inlined after it.
275  //
276  Function::iterator LastBlock = &Caller->back();
277
278  // Make sure to capture all of the return instructions from the cloned
279  // function.
280  std::vector<ReturnInst*> Returns;
281  ClonedCodeInfo InlinedFunctionInfo;
282  Function::iterator FirstNewBlock;
283
284  { // Scope to destroy ValueMap after cloning.
285    DenseMap<const Value*, Value*> ValueMap;
286
287    assert(CalledFunc->arg_size() == CS.arg_size() &&
288           "No varargs calls can be inlined!");
289
290    // Calculate the vector of arguments to pass into the function cloner, which
291    // matches up the formal to the actual argument values.
292    CallSite::arg_iterator AI = CS.arg_begin();
293    unsigned ArgNo = 0;
294    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
295         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
296      Value *ActualArg = *AI;
297
298      // When byval arguments actually inlined, we need to make the copy implied
299      // by them explicit.  However, we don't do this if the callee is readonly
300      // or readnone, because the copy would be unneeded: the callee doesn't
301      // modify the struct.
302      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
303          !CalledFunc->onlyReadsMemory()) {
304        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
305        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
306
307        // Create the alloca.  If we have TargetData, use nice alignment.
308        unsigned Align = 1;
309        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
310        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
311                                          Caller->begin()->begin());
312        // Emit a memcpy.
313        const Type *Tys[] = { Type::Int64Ty };
314        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
315                                                       Intrinsic::memcpy,
316                                                       Tys, 1);
317        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
318        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
319
320        Value *Size;
321        if (TD == 0)
322          Size = ConstantExpr::getSizeOf(AggTy);
323        else
324          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
325
326        // Always generate a memcpy of alignment 1 here because we don't know
327        // the alignment of the src pointer.  Other optimizations can infer
328        // better alignment.
329        Value *CallArgs[] = {
330          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
331        };
332        CallInst *TheMemCpy =
333          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
334
335        // If we have a call graph, update it.
336        if (CG) {
337          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
338          CallGraphNode *CallerNode = (*CG)[Caller];
339          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
340        }
341
342        // Uses of the argument in the function should use our new alloca
343        // instead.
344        ActualArg = NewAlloca;
345      }
346
347      ValueMap[I] = ActualArg;
348    }
349
350    // Adjust llvm.dbg.region.end. If the CalledFunc has region end
351    // marker then clone that marker after next stop point at the
352    // call site. The function body cloner does not clone original
353    // region end marker from the CalledFunc. This will ensure that
354    // inlined function's scope ends at the right place.
355    const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
356    if (DREI) {
357      for (BasicBlock::iterator BI = TheCall,
358             BE = TheCall->getParent()->end(); BI != BE; ++BI) {
359        if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
360          if (DbgRegionEndInst *NewDREI =
361              dyn_cast<DbgRegionEndInst>(DREI->clone()))
362            NewDREI->insertAfter(DSPI);
363          break;
364        }
365      }
366    }
367
368    // We want the inliner to prune the code as it copies.  We would LOVE to
369    // have no dead or constant instructions leftover after inlining occurs
370    // (which can happen, e.g., because an argument was constant), but we'll be
371    // happy with whatever the cloner can do.
372    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
373                              &InlinedFunctionInfo, TD);
374
375    // Remember the first block that is newly cloned over.
376    FirstNewBlock = LastBlock; ++FirstNewBlock;
377
378    // Update the callgraph if requested.
379    if (CG)
380      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
381  }
382
383  // If there are any alloca instructions in the block that used to be the entry
384  // block for the callee, move them to the entry block of the caller.  First
385  // calculate which instruction they should be inserted before.  We insert the
386  // instructions at the end of the current alloca list.
387  //
388  {
389    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
390    for (BasicBlock::iterator I = FirstNewBlock->begin(),
391           E = FirstNewBlock->end(); I != E; )
392      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
393        // If the alloca is now dead, remove it.  This often occurs due to code
394        // specialization.
395        if (AI->use_empty()) {
396          AI->eraseFromParent();
397          continue;
398        }
399
400        if (isa<Constant>(AI->getArraySize())) {
401          // Scan for the block of allocas that we can move over, and move them
402          // all at once.
403          while (isa<AllocaInst>(I) &&
404                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
405            ++I;
406
407          // Transfer all of the allocas over in a block.  Using splice means
408          // that the instructions aren't removed from the symbol table, then
409          // reinserted.
410          Caller->getEntryBlock().getInstList().splice(
411              InsertPoint,
412              FirstNewBlock->getInstList(),
413              AI, I);
414        }
415      }
416  }
417
418  // If the inlined code contained dynamic alloca instructions, wrap the inlined
419  // code with llvm.stacksave/llvm.stackrestore intrinsics.
420  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
421    Module *M = Caller->getParent();
422    // Get the two intrinsics we care about.
423    Constant *StackSave, *StackRestore;
424    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
425    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
426
427    // If we are preserving the callgraph, add edges to the stacksave/restore
428    // functions for the calls we insert.
429    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
430    if (CG) {
431      // We know that StackSave/StackRestore are Function*'s, because they are
432      // intrinsics which must have the right types.
433      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
434      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
435      CallerNode = (*CG)[Caller];
436    }
437
438    // Insert the llvm.stacksave.
439    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
440                                          FirstNewBlock->begin());
441    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
442
443    // Insert a call to llvm.stackrestore before any return instructions in the
444    // inlined function.
445    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
446      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
447      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
448    }
449
450    // Count the number of StackRestore calls we insert.
451    unsigned NumStackRestores = Returns.size();
452
453    // If we are inlining an invoke instruction, insert restores before each
454    // unwind.  These unwinds will be rewritten into branches later.
455    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
456      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
457           BB != E; ++BB)
458        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
459          CallInst::Create(StackRestore, SavedPtr, "", UI);
460          ++NumStackRestores;
461        }
462    }
463  }
464
465  // If we are inlining tail call instruction through a call site that isn't
466  // marked 'tail', we must remove the tail marker for any calls in the inlined
467  // code.  Also, calls inlined through a 'nounwind' call site should be marked
468  // 'nounwind'.
469  if (InlinedFunctionInfo.ContainsCalls &&
470      (MustClearTailCallFlags || MarkNoUnwind)) {
471    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
472         BB != E; ++BB)
473      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
474        if (CallInst *CI = dyn_cast<CallInst>(I)) {
475          if (MustClearTailCallFlags)
476            CI->setTailCall(false);
477          if (MarkNoUnwind)
478            CI->setDoesNotThrow();
479        }
480  }
481
482  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
483  // instructions are unreachable.
484  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
485    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
486         BB != E; ++BB) {
487      TerminatorInst *Term = BB->getTerminator();
488      if (isa<UnwindInst>(Term)) {
489        new UnreachableInst(Term);
490        BB->getInstList().erase(Term);
491      }
492    }
493
494  // If we are inlining for an invoke instruction, we must make sure to rewrite
495  // any inlined 'unwind' instructions into branches to the invoke exception
496  // destination, and call instructions into invoke instructions.
497  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
498    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
499
500  // If we cloned in _exactly one_ basic block, and if that block ends in a
501  // return instruction, we splice the body of the inlined callee directly into
502  // the calling basic block.
503  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
504    // Move all of the instructions right before the call.
505    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
506                                 FirstNewBlock->begin(), FirstNewBlock->end());
507    // Remove the cloned basic block.
508    Caller->getBasicBlockList().pop_back();
509
510    // If the call site was an invoke instruction, add a branch to the normal
511    // destination.
512    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
513      BranchInst::Create(II->getNormalDest(), TheCall);
514
515    // If the return instruction returned a value, replace uses of the call with
516    // uses of the returned value.
517    if (!TheCall->use_empty()) {
518      ReturnInst *R = Returns[0];
519      TheCall->replaceAllUsesWith(R->getReturnValue());
520    }
521    // Since we are now done with the Call/Invoke, we can delete it.
522    TheCall->eraseFromParent();
523
524    // Since we are now done with the return instruction, delete it also.
525    Returns[0]->eraseFromParent();
526
527    // We are now done with the inlining.
528    return true;
529  }
530
531  // Otherwise, we have the normal case, of more than one block to inline or
532  // multiple return sites.
533
534  // We want to clone the entire callee function into the hole between the
535  // "starter" and "ender" blocks.  How we accomplish this depends on whether
536  // this is an invoke instruction or a call instruction.
537  BasicBlock *AfterCallBB;
538  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
539
540    // Add an unconditional branch to make this look like the CallInst case...
541    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
542
543    // Split the basic block.  This guarantees that no PHI nodes will have to be
544    // updated due to new incoming edges, and make the invoke case more
545    // symmetric to the call case.
546    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
547                                          CalledFunc->getName()+".exit");
548
549  } else {  // It's a call
550    // If this is a call instruction, we need to split the basic block that
551    // the call lives in.
552    //
553    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
554                                          CalledFunc->getName()+".exit");
555  }
556
557  // Change the branch that used to go to AfterCallBB to branch to the first
558  // basic block of the inlined function.
559  //
560  TerminatorInst *Br = OrigBB->getTerminator();
561  assert(Br && Br->getOpcode() == Instruction::Br &&
562         "splitBasicBlock broken!");
563  Br->setOperand(0, FirstNewBlock);
564
565
566  // Now that the function is correct, make it a little bit nicer.  In
567  // particular, move the basic blocks inserted from the end of the function
568  // into the space made by splitting the source basic block.
569  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
570                                     FirstNewBlock, Caller->end());
571
572  // Handle all of the return instructions that we just cloned in, and eliminate
573  // any users of the original call/invoke instruction.
574  const Type *RTy = CalledFunc->getReturnType();
575
576  if (Returns.size() > 1) {
577    // The PHI node should go at the front of the new basic block to merge all
578    // possible incoming values.
579    PHINode *PHI = 0;
580    if (!TheCall->use_empty()) {
581      PHI = PHINode::Create(RTy, TheCall->getName(),
582                            AfterCallBB->begin());
583      // Anything that used the result of the function call should now use the
584      // PHI node as their operand.
585      TheCall->replaceAllUsesWith(PHI);
586    }
587
588    // Loop over all of the return instructions adding entries to the PHI node
589    // as appropriate.
590    if (PHI) {
591      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
592        ReturnInst *RI = Returns[i];
593        assert(RI->getReturnValue()->getType() == PHI->getType() &&
594               "Ret value not consistent in function!");
595        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
596      }
597    }
598
599    // Add a branch to the merge points and remove return instructions.
600    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
601      ReturnInst *RI = Returns[i];
602      BranchInst::Create(AfterCallBB, RI);
603      RI->eraseFromParent();
604    }
605  } else if (!Returns.empty()) {
606    // Otherwise, if there is exactly one return value, just replace anything
607    // using the return value of the call with the computed value.
608    if (!TheCall->use_empty())
609      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
610
611    // Splice the code from the return block into the block that it will return
612    // to, which contains the code that was after the call.
613    BasicBlock *ReturnBB = Returns[0]->getParent();
614    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
615                                      ReturnBB->getInstList());
616
617    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
618    ReturnBB->replaceAllUsesWith(AfterCallBB);
619
620    // Delete the return instruction now and empty ReturnBB now.
621    Returns[0]->eraseFromParent();
622    ReturnBB->eraseFromParent();
623  } else if (!TheCall->use_empty()) {
624    // No returns, but something is using the return value of the call.  Just
625    // nuke the result.
626    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
627  }
628
629  // Since we are now done with the Call/Invoke, we can delete it.
630  TheCall->eraseFromParent();
631
632  // We should always be able to fold the entry block of the function into the
633  // single predecessor of the block...
634  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
635  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
636
637  // Splice the code entry block into calling block, right before the
638  // unconditional branch.
639  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
640  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
641
642  // Remove the unconditional branch.
643  OrigBB->getInstList().erase(Br);
644
645  // Now we can remove the CalleeEntry block, which is now empty.
646  Caller->getBasicBlockList().erase(CalleeEntry);
647
648  return true;
649}
650