InlineFunction.cpp revision 607a7ab3da72a2eb53553a520507cbb8068dd1d8
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Attributes.h"
24#include "llvm/Analysis/CallGraph.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/CallSite.h"
30using namespace llvm;
31
32bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD,
33                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
34  return InlineFunction(CallSite(CI), CG, TD, StaticAllocas);
35}
36bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD,
37                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
38  return InlineFunction(CallSite(II), CG, TD, StaticAllocas);
39}
40
41
42/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
43/// an invoke, we have to turn all of the calls that can throw into
44/// invokes.  This function analyze BB to see if there are any calls, and if so,
45/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
46/// nodes in that block with the values specified in InvokeDestPHIValues.
47///
48static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
49                                                   BasicBlock *InvokeDest,
50                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
51  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
52    Instruction *I = BBI++;
53
54    // We only need to check for function calls: inlined invoke
55    // instructions require no special handling.
56    CallInst *CI = dyn_cast<CallInst>(I);
57    if (CI == 0) continue;
58
59    // If this call cannot unwind, don't convert it to an invoke.
60    if (CI->doesNotThrow())
61      continue;
62
63    // Convert this function call into an invoke instruction.
64    // First, split the basic block.
65    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
66
67    // Next, create the new invoke instruction, inserting it at the end
68    // of the old basic block.
69    SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
70    InvokeInst *II =
71      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
72                         InvokeArgs.begin(), InvokeArgs.end(),
73                         CI->getName(), BB->getTerminator());
74    II->setCallingConv(CI->getCallingConv());
75    II->setAttributes(CI->getAttributes());
76
77    // Make sure that anything using the call now uses the invoke!  This also
78    // updates the CallGraph if present.
79    CI->replaceAllUsesWith(II);
80
81    // Delete the unconditional branch inserted by splitBasicBlock
82    BB->getInstList().pop_back();
83    Split->getInstList().pop_front();  // Delete the original call
84
85    // Update any PHI nodes in the exceptional block to indicate that
86    // there is now a new entry in them.
87    unsigned i = 0;
88    for (BasicBlock::iterator I = InvokeDest->begin();
89         isa<PHINode>(I); ++I, ++i)
90      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
91
92    // This basic block is now complete, the caller will continue scanning the
93    // next one.
94    return;
95  }
96}
97
98
99/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
100/// in the body of the inlined function into invokes and turn unwind
101/// instructions into branches to the invoke unwind dest.
102///
103/// II is the invoke instruction being inlined.  FirstNewBlock is the first
104/// block of the inlined code (the last block is the end of the function),
105/// and InlineCodeInfo is information about the code that got inlined.
106static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
107                                ClonedCodeInfo &InlinedCodeInfo) {
108  BasicBlock *InvokeDest = II->getUnwindDest();
109  SmallVector<Value*, 8> InvokeDestPHIValues;
110
111  // If there are PHI nodes in the unwind destination block, we need to
112  // keep track of which values came into them from this invoke, then remove
113  // the entry for this block.
114  BasicBlock *InvokeBlock = II->getParent();
115  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
116    PHINode *PN = cast<PHINode>(I);
117    // Save the value to use for this edge.
118    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
119  }
120
121  Function *Caller = FirstNewBlock->getParent();
122
123  // The inlined code is currently at the end of the function, scan from the
124  // start of the inlined code to its end, checking for stuff we need to
125  // rewrite.  If the code doesn't have calls or unwinds, we know there is
126  // nothing to rewrite.
127  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
128    // Now that everything is happy, we have one final detail.  The PHI nodes in
129    // the exception destination block still have entries due to the original
130    // invoke instruction.  Eliminate these entries (which might even delete the
131    // PHI node) now.
132    InvokeDest->removePredecessor(II->getParent());
133    return;
134  }
135
136  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
137    if (InlinedCodeInfo.ContainsCalls)
138      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
139                                             InvokeDestPHIValues);
140
141    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
142      // An UnwindInst requires special handling when it gets inlined into an
143      // invoke site.  Once this happens, we know that the unwind would cause
144      // a control transfer to the invoke exception destination, so we can
145      // transform it into a direct branch to the exception destination.
146      BranchInst::Create(InvokeDest, UI);
147
148      // Delete the unwind instruction!
149      UI->eraseFromParent();
150
151      // Update any PHI nodes in the exceptional block to indicate that
152      // there is now a new entry in them.
153      unsigned i = 0;
154      for (BasicBlock::iterator I = InvokeDest->begin();
155           isa<PHINode>(I); ++I, ++i) {
156        PHINode *PN = cast<PHINode>(I);
157        PN->addIncoming(InvokeDestPHIValues[i], BB);
158      }
159    }
160  }
161
162  // Now that everything is happy, we have one final detail.  The PHI nodes in
163  // the exception destination block still have entries due to the original
164  // invoke instruction.  Eliminate these entries (which might even delete the
165  // PHI node) now.
166  InvokeDest->removePredecessor(II->getParent());
167}
168
169/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
170/// into the caller, update the specified callgraph to reflect the changes we
171/// made.  Note that it's possible that not all code was copied over, so only
172/// some edges of the callgraph may remain.
173static void UpdateCallGraphAfterInlining(CallSite CS,
174                                         Function::iterator FirstNewBlock,
175                                       DenseMap<const Value*, Value*> &ValueMap,
176                                         CallGraph &CG) {
177  const Function *Caller = CS.getInstruction()->getParent()->getParent();
178  const Function *Callee = CS.getCalledFunction();
179  CallGraphNode *CalleeNode = CG[Callee];
180  CallGraphNode *CallerNode = CG[Caller];
181
182  // Since we inlined some uninlined call sites in the callee into the caller,
183  // add edges from the caller to all of the callees of the callee.
184  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
185
186  // Consider the case where CalleeNode == CallerNode.
187  CallGraphNode::CalledFunctionsVector CallCache;
188  if (CalleeNode == CallerNode) {
189    CallCache.assign(I, E);
190    I = CallCache.begin();
191    E = CallCache.end();
192  }
193
194  for (; I != E; ++I) {
195    const Value *OrigCall = I->first;
196
197    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
198    // Only copy the edge if the call was inlined!
199    if (VMI == ValueMap.end() || VMI->second == 0)
200      continue;
201
202    // If the call was inlined, but then constant folded, there is no edge to
203    // add.  Check for this case.
204    if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
205      CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
206  }
207
208  // Update the call graph by deleting the edge from Callee to Caller.  We must
209  // do this after the loop above in case Caller and Callee are the same.
210  CallerNode->removeCallEdgeFor(CS);
211}
212
213// InlineFunction - This function inlines the called function into the basic
214// block of the caller.  This returns false if it is not possible to inline this
215// call.  The program is still in a well defined state if this occurs though.
216//
217// Note that this only does one level of inlining.  For example, if the
218// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
219// exists in the instruction stream.  Similiarly this will inline a recursive
220// function by one level.
221//
222bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
223                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
224  Instruction *TheCall = CS.getInstruction();
225  LLVMContext &Context = TheCall->getContext();
226  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
227         "Instruction not in function!");
228
229  const Function *CalledFunc = CS.getCalledFunction();
230  if (CalledFunc == 0 ||          // Can't inline external function or indirect
231      CalledFunc->isDeclaration() || // call, or call to a vararg function!
232      CalledFunc->getFunctionType()->isVarArg()) return false;
233
234
235  // If the call to the callee is not a tail call, we must clear the 'tail'
236  // flags on any calls that we inline.
237  bool MustClearTailCallFlags =
238    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
239
240  // If the call to the callee cannot throw, set the 'nounwind' flag on any
241  // calls that we inline.
242  bool MarkNoUnwind = CS.doesNotThrow();
243
244  BasicBlock *OrigBB = TheCall->getParent();
245  Function *Caller = OrigBB->getParent();
246
247  // GC poses two hazards to inlining, which only occur when the callee has GC:
248  //  1. If the caller has no GC, then the callee's GC must be propagated to the
249  //     caller.
250  //  2. If the caller has a differing GC, it is invalid to inline.
251  if (CalledFunc->hasGC()) {
252    if (!Caller->hasGC())
253      Caller->setGC(CalledFunc->getGC());
254    else if (CalledFunc->getGC() != Caller->getGC())
255      return false;
256  }
257
258  // Get an iterator to the last basic block in the function, which will have
259  // the new function inlined after it.
260  //
261  Function::iterator LastBlock = &Caller->back();
262
263  // Make sure to capture all of the return instructions from the cloned
264  // function.
265  SmallVector<ReturnInst*, 8> Returns;
266  ClonedCodeInfo InlinedFunctionInfo;
267  Function::iterator FirstNewBlock;
268
269  { // Scope to destroy ValueMap after cloning.
270    DenseMap<const Value*, Value*> ValueMap;
271
272    assert(CalledFunc->arg_size() == CS.arg_size() &&
273           "No varargs calls can be inlined!");
274
275    // Calculate the vector of arguments to pass into the function cloner, which
276    // matches up the formal to the actual argument values.
277    CallSite::arg_iterator AI = CS.arg_begin();
278    unsigned ArgNo = 0;
279    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
280         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
281      Value *ActualArg = *AI;
282
283      // When byval arguments actually inlined, we need to make the copy implied
284      // by them explicit.  However, we don't do this if the callee is readonly
285      // or readnone, because the copy would be unneeded: the callee doesn't
286      // modify the struct.
287      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
288          !CalledFunc->onlyReadsMemory()) {
289        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
290        const Type *VoidPtrTy =
291            Type::getInt8PtrTy(Context);
292
293        // Create the alloca.  If we have TargetData, use nice alignment.
294        unsigned Align = 1;
295        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
296        Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
297                                          I->getName(),
298                                          &*Caller->begin()->begin());
299        // Emit a memcpy.
300        const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
301        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
302                                                       Intrinsic::memcpy,
303                                                       Tys, 3);
304        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
305        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
306
307        Value *Size;
308        if (TD == 0)
309          Size = ConstantExpr::getSizeOf(AggTy);
310        else
311          Size = ConstantInt::get(Type::getInt64Ty(Context),
312                                  TD->getTypeStoreSize(AggTy));
313
314        // Always generate a memcpy of alignment 1 here because we don't know
315        // the alignment of the src pointer.  Other optimizations can infer
316        // better alignment.
317        Value *CallArgs[] = {
318          DestCast, SrcCast, Size,
319          ConstantInt::get(Type::getInt32Ty(Context), 1),
320          ConstantInt::get(Type::getInt1Ty(Context), 0)
321        };
322        CallInst *TheMemCpy =
323          CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
324
325        // If we have a call graph, update it.
326        if (CG) {
327          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
328          CallGraphNode *CallerNode = (*CG)[Caller];
329          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
330        }
331
332        // Uses of the argument in the function should use our new alloca
333        // instead.
334        ActualArg = NewAlloca;
335      }
336
337      ValueMap[I] = ActualArg;
338    }
339
340    // We want the inliner to prune the code as it copies.  We would LOVE to
341    // have no dead or constant instructions leftover after inlining occurs
342    // (which can happen, e.g., because an argument was constant), but we'll be
343    // happy with whatever the cloner can do.
344    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
345                              &InlinedFunctionInfo, TD, TheCall);
346
347    // Remember the first block that is newly cloned over.
348    FirstNewBlock = LastBlock; ++FirstNewBlock;
349
350    // Update the callgraph if requested.
351    if (CG)
352      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
353  }
354
355  // If there are any alloca instructions in the block that used to be the entry
356  // block for the callee, move them to the entry block of the caller.  First
357  // calculate which instruction they should be inserted before.  We insert the
358  // instructions at the end of the current alloca list.
359  //
360  {
361    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
362    for (BasicBlock::iterator I = FirstNewBlock->begin(),
363         E = FirstNewBlock->end(); I != E; ) {
364      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
365      if (AI == 0) continue;
366
367      // If the alloca is now dead, remove it.  This often occurs due to code
368      // specialization.
369      if (AI->use_empty()) {
370        AI->eraseFromParent();
371        continue;
372      }
373
374      if (!isa<Constant>(AI->getArraySize()))
375        continue;
376
377      // Keep track of the static allocas that we inline into the caller if the
378      // StaticAllocas pointer is non-null.
379      if (StaticAllocas) StaticAllocas->push_back(AI);
380
381      // Scan for the block of allocas that we can move over, and move them
382      // all at once.
383      while (isa<AllocaInst>(I) &&
384             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
385        if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I));
386        ++I;
387      }
388
389      // Transfer all of the allocas over in a block.  Using splice means
390      // that the instructions aren't removed from the symbol table, then
391      // reinserted.
392      Caller->getEntryBlock().getInstList().splice(InsertPoint,
393                                                   FirstNewBlock->getInstList(),
394                                                   AI, I);
395    }
396  }
397
398  // If the inlined code contained dynamic alloca instructions, wrap the inlined
399  // code with llvm.stacksave/llvm.stackrestore intrinsics.
400  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
401    Module *M = Caller->getParent();
402    // Get the two intrinsics we care about.
403    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
404    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
405
406    // If we are preserving the callgraph, add edges to the stacksave/restore
407    // functions for the calls we insert.
408    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
409    if (CG) {
410      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
411      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
412      CallerNode = (*CG)[Caller];
413    }
414
415    // Insert the llvm.stacksave.
416    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
417                                          FirstNewBlock->begin());
418    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
419
420    // Insert a call to llvm.stackrestore before any return instructions in the
421    // inlined function.
422    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
423      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
424      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
425    }
426
427    // Count the number of StackRestore calls we insert.
428    unsigned NumStackRestores = Returns.size();
429
430    // If we are inlining an invoke instruction, insert restores before each
431    // unwind.  These unwinds will be rewritten into branches later.
432    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
433      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
434           BB != E; ++BB)
435        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
436          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
437          if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
438          ++NumStackRestores;
439        }
440    }
441  }
442
443  // If we are inlining tail call instruction through a call site that isn't
444  // marked 'tail', we must remove the tail marker for any calls in the inlined
445  // code.  Also, calls inlined through a 'nounwind' call site should be marked
446  // 'nounwind'.
447  if (InlinedFunctionInfo.ContainsCalls &&
448      (MustClearTailCallFlags || MarkNoUnwind)) {
449    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
450         BB != E; ++BB)
451      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
452        if (CallInst *CI = dyn_cast<CallInst>(I)) {
453          if (MustClearTailCallFlags)
454            CI->setTailCall(false);
455          if (MarkNoUnwind)
456            CI->setDoesNotThrow();
457        }
458  }
459
460  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
461  // instructions are unreachable.
462  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
463    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
464         BB != E; ++BB) {
465      TerminatorInst *Term = BB->getTerminator();
466      if (isa<UnwindInst>(Term)) {
467        new UnreachableInst(Context, Term);
468        BB->getInstList().erase(Term);
469      }
470    }
471
472  // If we are inlining for an invoke instruction, we must make sure to rewrite
473  // any inlined 'unwind' instructions into branches to the invoke exception
474  // destination, and call instructions into invoke instructions.
475  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
476    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
477
478  // If we cloned in _exactly one_ basic block, and if that block ends in a
479  // return instruction, we splice the body of the inlined callee directly into
480  // the calling basic block.
481  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
482    // Move all of the instructions right before the call.
483    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
484                                 FirstNewBlock->begin(), FirstNewBlock->end());
485    // Remove the cloned basic block.
486    Caller->getBasicBlockList().pop_back();
487
488    // If the call site was an invoke instruction, add a branch to the normal
489    // destination.
490    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
491      BranchInst::Create(II->getNormalDest(), TheCall);
492
493    // If the return instruction returned a value, replace uses of the call with
494    // uses of the returned value.
495    if (!TheCall->use_empty()) {
496      ReturnInst *R = Returns[0];
497      if (TheCall == R->getReturnValue())
498        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
499      else
500        TheCall->replaceAllUsesWith(R->getReturnValue());
501    }
502    // Since we are now done with the Call/Invoke, we can delete it.
503    TheCall->eraseFromParent();
504
505    // Since we are now done with the return instruction, delete it also.
506    Returns[0]->eraseFromParent();
507
508    // We are now done with the inlining.
509    return true;
510  }
511
512  // Otherwise, we have the normal case, of more than one block to inline or
513  // multiple return sites.
514
515  // We want to clone the entire callee function into the hole between the
516  // "starter" and "ender" blocks.  How we accomplish this depends on whether
517  // this is an invoke instruction or a call instruction.
518  BasicBlock *AfterCallBB;
519  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
520
521    // Add an unconditional branch to make this look like the CallInst case...
522    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
523
524    // Split the basic block.  This guarantees that no PHI nodes will have to be
525    // updated due to new incoming edges, and make the invoke case more
526    // symmetric to the call case.
527    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
528                                          CalledFunc->getName()+".exit");
529
530  } else {  // It's a call
531    // If this is a call instruction, we need to split the basic block that
532    // the call lives in.
533    //
534    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
535                                          CalledFunc->getName()+".exit");
536  }
537
538  // Change the branch that used to go to AfterCallBB to branch to the first
539  // basic block of the inlined function.
540  //
541  TerminatorInst *Br = OrigBB->getTerminator();
542  assert(Br && Br->getOpcode() == Instruction::Br &&
543         "splitBasicBlock broken!");
544  Br->setOperand(0, FirstNewBlock);
545
546
547  // Now that the function is correct, make it a little bit nicer.  In
548  // particular, move the basic blocks inserted from the end of the function
549  // into the space made by splitting the source basic block.
550  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
551                                     FirstNewBlock, Caller->end());
552
553  // Handle all of the return instructions that we just cloned in, and eliminate
554  // any users of the original call/invoke instruction.
555  const Type *RTy = CalledFunc->getReturnType();
556
557  if (Returns.size() > 1) {
558    // The PHI node should go at the front of the new basic block to merge all
559    // possible incoming values.
560    PHINode *PHI = 0;
561    if (!TheCall->use_empty()) {
562      PHI = PHINode::Create(RTy, TheCall->getName(),
563                            AfterCallBB->begin());
564      // Anything that used the result of the function call should now use the
565      // PHI node as their operand.
566      TheCall->replaceAllUsesWith(PHI);
567    }
568
569    // Loop over all of the return instructions adding entries to the PHI node
570    // as appropriate.
571    if (PHI) {
572      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
573        ReturnInst *RI = Returns[i];
574        assert(RI->getReturnValue()->getType() == PHI->getType() &&
575               "Ret value not consistent in function!");
576        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
577      }
578
579      // Now that we inserted the PHI, check to see if it has a single value
580      // (e.g. all the entries are the same or undef).  If so, remove the PHI so
581      // it doesn't block other optimizations.
582      if (Value *V = PHI->hasConstantValue()) {
583        PHI->replaceAllUsesWith(V);
584        PHI->eraseFromParent();
585      }
586    }
587
588
589    // Add a branch to the merge points and remove return instructions.
590    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
591      ReturnInst *RI = Returns[i];
592      BranchInst::Create(AfterCallBB, RI);
593      RI->eraseFromParent();
594    }
595  } else if (!Returns.empty()) {
596    // Otherwise, if there is exactly one return value, just replace anything
597    // using the return value of the call with the computed value.
598    if (!TheCall->use_empty()) {
599      if (TheCall == Returns[0]->getReturnValue())
600        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
601      else
602        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
603    }
604
605    // Splice the code from the return block into the block that it will return
606    // to, which contains the code that was after the call.
607    BasicBlock *ReturnBB = Returns[0]->getParent();
608    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
609                                      ReturnBB->getInstList());
610
611    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
612    ReturnBB->replaceAllUsesWith(AfterCallBB);
613
614    // Delete the return instruction now and empty ReturnBB now.
615    Returns[0]->eraseFromParent();
616    ReturnBB->eraseFromParent();
617  } else if (!TheCall->use_empty()) {
618    // No returns, but something is using the return value of the call.  Just
619    // nuke the result.
620    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
621  }
622
623  // Since we are now done with the Call/Invoke, we can delete it.
624  TheCall->eraseFromParent();
625
626  // We should always be able to fold the entry block of the function into the
627  // single predecessor of the block...
628  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
629  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
630
631  // Splice the code entry block into calling block, right before the
632  // unconditional branch.
633  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
634  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
635
636  // Remove the unconditional branch.
637  OrigBB->getInstList().erase(Br);
638
639  // Now we can remove the CalleeEntry block, which is now empty.
640  Caller->getBasicBlockList().erase(CalleeEntry);
641
642  return true;
643}
644