InlineFunction.cpp revision 6af31aab63583e61b7c7b51bc285541750bd834f
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CallSite.h"
26using namespace llvm;
27
28bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
29  return InlineFunction(CallSite(CI), CG, TD);
30}
31bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
32  return InlineFunction(CallSite(II), CG, TD);
33}
34
35/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
36/// in the body of the inlined function into invokes and turn unwind
37/// instructions into branches to the invoke unwind dest.
38///
39/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
40/// block of the inlined code (the last block is the end of the function),
41/// and InlineCodeInfo is information about the code that got inlined.
42static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
43                                ClonedCodeInfo &InlinedCodeInfo) {
44  BasicBlock *InvokeDest = II->getUnwindDest();
45  std::vector<Value*> InvokeDestPHIValues;
46
47  // If there are PHI nodes in the unwind destination block, we need to
48  // keep track of which values came into them from this invoke, then remove
49  // the entry for this block.
50  BasicBlock *InvokeBlock = II->getParent();
51  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
52    PHINode *PN = cast<PHINode>(I);
53    // Save the value to use for this edge.
54    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
55  }
56
57  Function *Caller = FirstNewBlock->getParent();
58
59  // The inlined code is currently at the end of the function, scan from the
60  // start of the inlined code to its end, checking for stuff we need to
61  // rewrite.
62  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
63    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
64         BB != E; ++BB) {
65      if (InlinedCodeInfo.ContainsCalls) {
66        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
67          Instruction *I = BBI++;
68
69          // We only need to check for function calls: inlined invoke
70          // instructions require no special handling.
71          if (!isa<CallInst>(I)) continue;
72          CallInst *CI = cast<CallInst>(I);
73
74          // If this call cannot unwind, don't convert it to an invoke.
75          if (CI->doesNotThrow())
76            continue;
77
78          // Convert this function call into an invoke instruction.
79          // First, split the basic block.
80          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
81
82          // Next, create the new invoke instruction, inserting it at the end
83          // of the old basic block.
84          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
85          InvokeInst *II =
86            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
87                           InvokeArgs.begin(), InvokeArgs.end(),
88                           CI->getName(), BB->getTerminator());
89          II->setCallingConv(CI->getCallingConv());
90          II->setParamAttrs(CI->getParamAttrs());
91
92          // Make sure that anything using the call now uses the invoke!
93          CI->replaceAllUsesWith(II);
94
95          // Delete the unconditional branch inserted by splitBasicBlock
96          BB->getInstList().pop_back();
97          Split->getInstList().pop_front();  // Delete the original call
98
99          // Update any PHI nodes in the exceptional block to indicate that
100          // there is now a new entry in them.
101          unsigned i = 0;
102          for (BasicBlock::iterator I = InvokeDest->begin();
103               isa<PHINode>(I); ++I, ++i) {
104            PHINode *PN = cast<PHINode>(I);
105            PN->addIncoming(InvokeDestPHIValues[i], BB);
106          }
107
108          // This basic block is now complete, start scanning the next one.
109          break;
110        }
111      }
112
113      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
114        // An UnwindInst requires special handling when it gets inlined into an
115        // invoke site.  Once this happens, we know that the unwind would cause
116        // a control transfer to the invoke exception destination, so we can
117        // transform it into a direct branch to the exception destination.
118        new BranchInst(InvokeDest, UI);
119
120        // Delete the unwind instruction!
121        UI->getParent()->getInstList().pop_back();
122
123        // Update any PHI nodes in the exceptional block to indicate that
124        // there is now a new entry in them.
125        unsigned i = 0;
126        for (BasicBlock::iterator I = InvokeDest->begin();
127             isa<PHINode>(I); ++I, ++i) {
128          PHINode *PN = cast<PHINode>(I);
129          PN->addIncoming(InvokeDestPHIValues[i], BB);
130        }
131      }
132    }
133  }
134
135  // Now that everything is happy, we have one final detail.  The PHI nodes in
136  // the exception destination block still have entries due to the original
137  // invoke instruction.  Eliminate these entries (which might even delete the
138  // PHI node) now.
139  InvokeDest->removePredecessor(II->getParent());
140}
141
142/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
143/// into the caller, update the specified callgraph to reflect the changes we
144/// made.  Note that it's possible that not all code was copied over, so only
145/// some edges of the callgraph will be remain.
146static void UpdateCallGraphAfterInlining(const Function *Caller,
147                                         const Function *Callee,
148                                         Function::iterator FirstNewBlock,
149                                       DenseMap<const Value*, Value*> &ValueMap,
150                                         CallGraph &CG) {
151  // Update the call graph by deleting the edge from Callee to Caller
152  CallGraphNode *CalleeNode = CG[Callee];
153  CallGraphNode *CallerNode = CG[Caller];
154  CallerNode->removeCallEdgeTo(CalleeNode);
155
156  // Since we inlined some uninlined call sites in the callee into the caller,
157  // add edges from the caller to all of the callees of the callee.
158  for (CallGraphNode::iterator I = CalleeNode->begin(),
159       E = CalleeNode->end(); I != E; ++I) {
160    const Instruction *OrigCall = I->first.getInstruction();
161
162    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
163    // Only copy the edge if the call was inlined!
164    if (VMI != ValueMap.end() && VMI->second) {
165      // If the call was inlined, but then constant folded, there is no edge to
166      // add.  Check for this case.
167      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
168        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
169    }
170  }
171}
172
173
174// InlineFunction - This function inlines the called function into the basic
175// block of the caller.  This returns false if it is not possible to inline this
176// call.  The program is still in a well defined state if this occurs though.
177//
178// Note that this only does one level of inlining.  For example, if the
179// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
180// exists in the instruction stream.  Similiarly this will inline a recursive
181// function by one level.
182//
183bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
184  Instruction *TheCall = CS.getInstruction();
185  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
186         "Instruction not in function!");
187
188  const Function *CalledFunc = CS.getCalledFunction();
189  if (CalledFunc == 0 ||          // Can't inline external function or indirect
190      CalledFunc->isDeclaration() || // call, or call to a vararg function!
191      CalledFunc->getFunctionType()->isVarArg()) return false;
192
193
194  // If the call to the callee is a non-tail call, we must clear the 'tail'
195  // flags on any calls that we inline.
196  bool MustClearTailCallFlags =
197    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
198
199  // If the call to the callee cannot throw, set the 'nounwind' flag on any
200  // calls that we inline.
201  bool MarkNoUnwind = CS.doesNotThrow();
202
203  BasicBlock *OrigBB = TheCall->getParent();
204  Function *Caller = OrigBB->getParent();
205  BasicBlock *UnwindBB = OrigBB->getUnwindDest();
206
207  // GC poses two hazards to inlining, which only occur when the callee has GC:
208  //  1. If the caller has no GC, then the callee's GC must be propagated to the
209  //     caller.
210  //  2. If the caller has a differing GC, it is invalid to inline.
211  if (CalledFunc->hasCollector()) {
212    if (!Caller->hasCollector())
213      Caller->setCollector(CalledFunc->getCollector());
214    else if (CalledFunc->getCollector() != Caller->getCollector())
215      return false;
216  }
217
218  // Get an iterator to the last basic block in the function, which will have
219  // the new function inlined after it.
220  //
221  Function::iterator LastBlock = &Caller->back();
222
223  // Make sure to capture all of the return instructions from the cloned
224  // function.
225  std::vector<ReturnInst*> Returns;
226  ClonedCodeInfo InlinedFunctionInfo;
227  Function::iterator FirstNewBlock;
228
229  { // Scope to destroy ValueMap after cloning.
230    DenseMap<const Value*, Value*> ValueMap;
231
232    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
233           std::distance(CS.arg_begin(), CS.arg_end()) &&
234           "No varargs calls can be inlined!");
235
236    // Calculate the vector of arguments to pass into the function cloner, which
237    // matches up the formal to the actual argument values.
238    CallSite::arg_iterator AI = CS.arg_begin();
239    unsigned ArgNo = 0;
240    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
241         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
242      Value *ActualArg = *AI;
243
244      // When byval arguments actually inlined, we need to make the copy implied
245      // by them explicit.  However, we don't do this if the callee is readonly
246      // or readnone, because the copy would be unneeded: the callee doesn't
247      // modify the struct.
248      if (CalledFunc->paramHasAttr(ArgNo+1, ParamAttr::ByVal) &&
249          !CalledFunc->onlyReadsMemory()) {
250        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
251        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
252
253        // Create the alloca.  If we have TargetData, use nice alignment.
254        unsigned Align = 1;
255        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
256        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
257                                          Caller->begin()->begin());
258        // Emit a memcpy.
259        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
260                                                       Intrinsic::memcpy_i64);
261        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
262        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
263
264        Value *Size;
265        if (TD == 0)
266          Size = ConstantExpr::getSizeOf(AggTy);
267        else
268          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
269
270        // Always generate a memcpy of alignment 1 here because we don't know
271        // the alignment of the src pointer.  Other optimizations can infer
272        // better alignment.
273        Value *CallArgs[] = {
274          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
275        };
276        CallInst *TheMemCpy =
277          new CallInst(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
278
279        // If we have a call graph, update it.
280        if (CG) {
281          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
282          CallGraphNode *CallerNode = (*CG)[Caller];
283          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
284        }
285
286        // Uses of the argument in the function should use our new alloca
287        // instead.
288        ActualArg = NewAlloca;
289      }
290
291      ValueMap[I] = ActualArg;
292    }
293
294    // We want the inliner to prune the code as it copies.  We would LOVE to
295    // have no dead or constant instructions leftover after inlining occurs
296    // (which can happen, e.g., because an argument was constant), but we'll be
297    // happy with whatever the cloner can do.
298    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
299                              &InlinedFunctionInfo, TD);
300
301    // Remember the first block that is newly cloned over.
302    FirstNewBlock = LastBlock; ++FirstNewBlock;
303
304    // Update the callgraph if requested.
305    if (CG)
306      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
307                                   *CG);
308  }
309
310  // If there are any alloca instructions in the block that used to be the entry
311  // block for the callee, move them to the entry block of the caller.  First
312  // calculate which instruction they should be inserted before.  We insert the
313  // instructions at the end of the current alloca list.
314  //
315  {
316    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
317    for (BasicBlock::iterator I = FirstNewBlock->begin(),
318           E = FirstNewBlock->end(); I != E; )
319      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
320        // If the alloca is now dead, remove it.  This often occurs due to code
321        // specialization.
322        if (AI->use_empty()) {
323          AI->eraseFromParent();
324          continue;
325        }
326
327        if (isa<Constant>(AI->getArraySize())) {
328          // Scan for the block of allocas that we can move over, and move them
329          // all at once.
330          while (isa<AllocaInst>(I) &&
331                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
332            ++I;
333
334          // Transfer all of the allocas over in a block.  Using splice means
335          // that the instructions aren't removed from the symbol table, then
336          // reinserted.
337          Caller->getEntryBlock().getInstList().splice(
338              InsertPoint,
339              FirstNewBlock->getInstList(),
340              AI, I);
341        }
342      }
343  }
344
345  // If the inlined code contained dynamic alloca instructions, wrap the inlined
346  // code with llvm.stacksave/llvm.stackrestore intrinsics.
347  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
348    Module *M = Caller->getParent();
349    const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
350    // Get the two intrinsics we care about.
351    Constant *StackSave, *StackRestore;
352    StackSave    = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
353    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
354                                          BytePtr, NULL);
355
356    // If we are preserving the callgraph, add edges to the stacksave/restore
357    // functions for the calls we insert.
358    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
359    if (CG) {
360      // We know that StackSave/StackRestore are Function*'s, because they are
361      // intrinsics which must have the right types.
362      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
363      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
364      CallerNode = (*CG)[Caller];
365    }
366
367    // Insert the llvm.stacksave.
368    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
369                                      FirstNewBlock->begin());
370    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
371
372    // Insert a call to llvm.stackrestore before any return instructions in the
373    // inlined function.
374    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
375      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
376      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
377    }
378
379    // Count the number of StackRestore calls we insert.
380    unsigned NumStackRestores = Returns.size();
381
382    // If we are inlining an invoke instruction, insert restores before each
383    // unwind.  These unwinds will be rewritten into branches later.
384    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
385      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
386           BB != E; ++BB)
387        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
388          new CallInst(StackRestore, SavedPtr, "", UI);
389          ++NumStackRestores;
390        }
391    }
392  }
393
394  // If we are inlining tail call instruction through a call site that isn't
395  // marked 'tail', we must remove the tail marker for any calls in the inlined
396  // code.  Also, calls inlined through a 'nounwind' call site should be marked
397  // 'nounwind'.
398  if (InlinedFunctionInfo.ContainsCalls &&
399      (MustClearTailCallFlags || MarkNoUnwind)) {
400    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
401         BB != E; ++BB)
402      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
403        if (CallInst *CI = dyn_cast<CallInst>(I)) {
404          if (MustClearTailCallFlags)
405            CI->setTailCall(false);
406          if (MarkNoUnwind)
407            CI->setDoesNotThrow();
408        }
409  }
410
411  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
412  // instructions are unreachable.
413  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
414    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
415         BB != E; ++BB) {
416      TerminatorInst *Term = BB->getTerminator();
417      if (isa<UnwindInst>(Term)) {
418        new UnreachableInst(Term);
419        BB->getInstList().erase(Term);
420      }
421    }
422
423  // If we are inlining a function that unwinds into a BB with an unwind dest,
424  // turn the inlined unwinds into branches to the unwind dest.
425  if (InlinedFunctionInfo.ContainsUnwinds && UnwindBB && isa<CallInst>(TheCall))
426    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
427         BB != E; ++BB) {
428      TerminatorInst *Term = BB->getTerminator();
429      if (isa<UnwindInst>(Term)) {
430        new BranchInst(UnwindBB, Term);
431        BB->getInstList().erase(Term);
432      }
433    }
434
435  // If we are inlining for an invoke instruction, we must make sure to rewrite
436  // any inlined 'unwind' instructions into branches to the invoke exception
437  // destination, and call instructions into invoke instructions.
438  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
439    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
440
441  // If we cloned in _exactly one_ basic block, and if that block ends in a
442  // return instruction, we splice the body of the inlined callee directly into
443  // the calling basic block.
444  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
445    // Move all of the instructions right before the call.
446    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
447                                 FirstNewBlock->begin(), FirstNewBlock->end());
448    // Remove the cloned basic block.
449    Caller->getBasicBlockList().pop_back();
450
451    // If the call site was an invoke instruction, add a branch to the normal
452    // destination.
453    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
454      new BranchInst(II->getNormalDest(), TheCall);
455
456    // If the return instruction returned a value, replace uses of the call with
457    // uses of the returned value.
458    if (!TheCall->use_empty()) {
459      ReturnInst *R = Returns[0];
460      if (R->getNumOperands() > 1) {
461        // Multiple return values.
462        while (!TheCall->use_empty()) {
463          GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
464          Value *RV = R->getOperand(GR->getIndex());
465          GR->replaceAllUsesWith(RV);
466          GR->eraseFromParent();
467        }
468      } else
469        TheCall->replaceAllUsesWith(R->getReturnValue());
470    }
471    // Since we are now done with the Call/Invoke, we can delete it.
472    TheCall->getParent()->getInstList().erase(TheCall);
473
474    // Since we are now done with the return instruction, delete it also.
475    Returns[0]->getParent()->getInstList().erase(Returns[0]);
476
477    // We are now done with the inlining.
478    return true;
479  }
480
481  // Otherwise, we have the normal case, of more than one block to inline or
482  // multiple return sites.
483
484  // We want to clone the entire callee function into the hole between the
485  // "starter" and "ender" blocks.  How we accomplish this depends on whether
486  // this is an invoke instruction or a call instruction.
487  BasicBlock *AfterCallBB;
488  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
489
490    // Add an unconditional branch to make this look like the CallInst case...
491    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
492
493    // Split the basic block.  This guarantees that no PHI nodes will have to be
494    // updated due to new incoming edges, and make the invoke case more
495    // symmetric to the call case.
496    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
497                                          CalledFunc->getName()+".exit");
498
499  } else {  // It's a call
500    // If this is a call instruction, we need to split the basic block that
501    // the call lives in.
502    //
503    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
504                                          CalledFunc->getName()+".exit");
505  }
506
507  // Change the branch that used to go to AfterCallBB to branch to the first
508  // basic block of the inlined function.
509  //
510  TerminatorInst *Br = OrigBB->getTerminator();
511  assert(Br && Br->getOpcode() == Instruction::Br &&
512         "splitBasicBlock broken!");
513  Br->setOperand(0, FirstNewBlock);
514
515
516  // Now that the function is correct, make it a little bit nicer.  In
517  // particular, move the basic blocks inserted from the end of the function
518  // into the space made by splitting the source basic block.
519  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
520                                     FirstNewBlock, Caller->end());
521
522  // Handle all of the return instructions that we just cloned in, and eliminate
523  // any users of the original call/invoke instruction.
524  if (!Returns.empty()) {
525    // The PHI node should go at the front of the new basic block to merge all
526    // possible incoming values.
527    SmallVector<PHINode *, 4> PHIs;
528    if (!TheCall->use_empty()) {
529      const Type *RTy = CalledFunc->getReturnType();
530      if (const StructType *STy = dyn_cast<StructType>(RTy)) {
531        unsigned NumRetVals = STy->getNumElements();
532        // Create new phi nodes such that phi node number in the PHIs vector
533        // match corresponding return value operand number.
534        for (unsigned i = 0; i < NumRetVals; ++i) {
535          PHINode *PHI = new PHINode(STy->getElementType(i),
536                                     TheCall->getName(), AfterCallBB->begin());
537          PHIs.push_back(PHI);
538        }
539        // TheCall results are used by GetResult instructions.
540        while (!TheCall->use_empty()) {
541          GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
542          GR->replaceAllUsesWith(PHIs[GR->getIndex()]);
543          GR->eraseFromParent();
544        }
545      } else {
546        PHINode *PHI = new PHINode(RTy, TheCall->getName(), AfterCallBB->begin());
547        PHIs.push_back(PHI);
548        // Anything that used the result of the function call should now use the
549        // PHI node as their operand.
550        TheCall->replaceAllUsesWith(PHI);
551      }
552    }
553
554    // Loop over all of the return instructions adding entries to the PHI node as
555    // appropriate.
556    if (!PHIs.empty()) {
557      const Type *RTy = CalledFunc->getReturnType();
558      if (const StructType *STy = dyn_cast<StructType>(RTy)) {
559        unsigned NumRetVals = STy->getNumElements();
560        for (unsigned j = 0; j < NumRetVals; ++j) {
561          PHINode *PHI = PHIs[j];
562          // Each PHI node will receive one value from each return instruction.
563          for(unsigned i = 0, e = Returns.size(); i != e; ++i) {
564            ReturnInst *RI = Returns[i];
565            PHI->addIncoming(RI->getReturnValue(j /*PHI number matches operand number*/),
566                             RI->getParent());
567          }
568        }
569      } else {
570        for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
571          ReturnInst *RI = Returns[i];
572          assert(PHIs.size() == 1 && "Invalid number of PHI nodes");
573          assert(RI->getReturnValue() && "Ret should have value!");
574          assert(RI->getReturnValue()->getType() == PHIs[0]->getType() &&
575                 "Ret value not consistent in function!");
576          PHIs[0]->addIncoming(RI->getReturnValue(), RI->getParent());
577        }
578      }
579    }
580
581    // Add a branch to the merge points and remove retrun instructions.
582    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
583      ReturnInst *RI = Returns[i];
584      new BranchInst(AfterCallBB, RI);
585      RI->getParent()->getInstList().erase(RI);
586    }
587  } else if (!TheCall->use_empty()) {
588    // No returns, but something is using the return value of the call.  Just
589    // nuke the result.
590    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
591  }
592
593  // Since we are now done with the Call/Invoke, we can delete it.
594  TheCall->eraseFromParent();
595
596  // We should always be able to fold the entry block of the function into the
597  // single predecessor of the block...
598  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
599  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
600
601  // Splice the code entry block into calling block, right before the
602  // unconditional branch.
603  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
604  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
605
606  // Remove the unconditional branch.
607  OrigBB->getInstList().erase(Br);
608
609  // Now we can remove the CalleeEntry block, which is now empty.
610  Caller->getBasicBlockList().erase(CalleeEntry);
611
612  return true;
613}
614