InlineFunction.cpp revision 8833ef03b9ceaa52063116819fff8b3d16fd8933
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/IRBuilder.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
35  return InlineFunction(CallSite(CI), IFI);
36}
37bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
38  return InlineFunction(CallSite(II), IFI);
39}
40
41namespace {
42  /// A class for recording information about inlining through an invoke.
43  class InvokeInliningInfo {
44    BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
45    BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
46    LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
47    PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
48    SmallVector<Value*, 8> UnwindDestPHIValues;
49
50  public:
51    InvokeInliningInfo(InvokeInst *II)
52      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
53        CallerLPad(0), InnerEHValuesPHI(0) {
54      // If there are PHI nodes in the unwind destination block, we need to keep
55      // track of which values came into them from the invoke before removing
56      // the edge from this block.
57      llvm::BasicBlock *InvokeBB = II->getParent();
58      BasicBlock::iterator I = OuterResumeDest->begin();
59      for (; isa<PHINode>(I); ++I) {
60        // Save the value to use for this edge.
61        PHINode *PHI = cast<PHINode>(I);
62        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
63      }
64
65      CallerLPad = cast<LandingPadInst>(I);
66    }
67
68    /// getOuterResumeDest - The outer unwind destination is the target of
69    /// unwind edges introduced for calls within the inlined function.
70    BasicBlock *getOuterResumeDest() const {
71      return OuterResumeDest;
72    }
73
74    BasicBlock *getInnerResumeDest();
75
76    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
77
78    /// forwardResume - Forward the 'resume' instruction to the caller's landing
79    /// pad block. When the landing pad block has only one predecessor, this is
80    /// a simple branch. When there is more than one predecessor, we need to
81    /// split the landing pad block after the landingpad instruction and jump
82    /// to there.
83    void forwardResume(ResumeInst *RI);
84
85    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
86    /// destination block for the given basic block, using the values for the
87    /// original invoke's source block.
88    void addIncomingPHIValuesFor(BasicBlock *BB) const {
89      addIncomingPHIValuesForInto(BB, OuterResumeDest);
90    }
91
92    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
93      BasicBlock::iterator I = dest->begin();
94      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
95        PHINode *phi = cast<PHINode>(I);
96        phi->addIncoming(UnwindDestPHIValues[i], src);
97      }
98    }
99  };
100}
101
102/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
103BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
104  if (InnerResumeDest) return InnerResumeDest;
105
106  // Split the landing pad.
107  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
108  InnerResumeDest =
109    OuterResumeDest->splitBasicBlock(SplitPoint,
110                                     OuterResumeDest->getName() + ".body");
111
112  // The number of incoming edges we expect to the inner landing pad.
113  const unsigned PHICapacity = 2;
114
115  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
116  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
117  BasicBlock::iterator I = OuterResumeDest->begin();
118  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
119    PHINode *OuterPHI = cast<PHINode>(I);
120    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
121                                        OuterPHI->getName() + ".lpad-body",
122                                        InsertPoint);
123    OuterPHI->replaceAllUsesWith(InnerPHI);
124    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
125  }
126
127  // Create a PHI for the exception values.
128  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
129                                     "eh.lpad-body", InsertPoint);
130  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
131  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
132
133  // All done.
134  return InnerResumeDest;
135}
136
137/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
138/// block. When the landing pad block has only one predecessor, this is a simple
139/// branch. When there is more than one predecessor, we need to split the
140/// landing pad block after the landingpad instruction and jump to there.
141void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
142  BasicBlock *Dest = getInnerResumeDest();
143  BasicBlock *Src = RI->getParent();
144
145  BranchInst::Create(Dest, Src);
146
147  // Update the PHIs in the destination. They were inserted in an order which
148  // makes this work.
149  addIncomingPHIValuesForInto(Src, Dest);
150
151  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
152  RI->eraseFromParent();
153}
154
155/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
156/// an invoke, we have to turn all of the calls that can throw into
157/// invokes.  This function analyze BB to see if there are any calls, and if so,
158/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
159/// nodes in that block with the values specified in InvokeDestPHIValues.
160///
161/// Returns true to indicate that the next block should be skipped.
162static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
163                                                   InvokeInliningInfo &Invoke) {
164  LandingPadInst *LPI = Invoke.getLandingPadInst();
165
166  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
167    Instruction *I = BBI++;
168
169    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
170      unsigned NumClauses = LPI->getNumClauses();
171      L->reserveClauses(NumClauses);
172      for (unsigned i = 0; i != NumClauses; ++i)
173        L->addClause(LPI->getClause(i));
174    }
175
176    // We only need to check for function calls: inlined invoke
177    // instructions require no special handling.
178    CallInst *CI = dyn_cast<CallInst>(I);
179
180    // If this call cannot unwind, don't convert it to an invoke.
181    if (!CI || CI->doesNotThrow())
182      continue;
183
184    // Convert this function call into an invoke instruction.  First, split the
185    // basic block.
186    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
187
188    // Delete the unconditional branch inserted by splitBasicBlock
189    BB->getInstList().pop_back();
190
191    // Create the new invoke instruction.
192    ImmutableCallSite CS(CI);
193    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
194    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
195                                        Invoke.getOuterResumeDest(),
196                                        InvokeArgs, CI->getName(), BB);
197    II->setCallingConv(CI->getCallingConv());
198    II->setAttributes(CI->getAttributes());
199
200    // Make sure that anything using the call now uses the invoke!  This also
201    // updates the CallGraph if present, because it uses a WeakVH.
202    CI->replaceAllUsesWith(II);
203
204    // Delete the original call
205    Split->getInstList().pop_front();
206
207    // Update any PHI nodes in the exceptional block to indicate that there is
208    // now a new entry in them.
209    Invoke.addIncomingPHIValuesFor(BB);
210    return false;
211  }
212
213  return false;
214}
215
216/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
217/// in the body of the inlined function into invokes.
218///
219/// II is the invoke instruction being inlined.  FirstNewBlock is the first
220/// block of the inlined code (the last block is the end of the function),
221/// and InlineCodeInfo is information about the code that got inlined.
222static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
223                                ClonedCodeInfo &InlinedCodeInfo) {
224  BasicBlock *InvokeDest = II->getUnwindDest();
225
226  Function *Caller = FirstNewBlock->getParent();
227
228  // The inlined code is currently at the end of the function, scan from the
229  // start of the inlined code to its end, checking for stuff we need to
230  // rewrite.  If the code doesn't have calls or unwinds, we know there is
231  // nothing to rewrite.
232  if (!InlinedCodeInfo.ContainsCalls) {
233    // Now that everything is happy, we have one final detail.  The PHI nodes in
234    // the exception destination block still have entries due to the original
235    // invoke instruction.  Eliminate these entries (which might even delete the
236    // PHI node) now.
237    InvokeDest->removePredecessor(II->getParent());
238    return;
239  }
240
241  InvokeInliningInfo Invoke(II);
242
243  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
244    if (InlinedCodeInfo.ContainsCalls)
245      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
246        // Honor a request to skip the next block.
247        ++BB;
248        continue;
249      }
250
251    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
252      Invoke.forwardResume(RI);
253  }
254
255  // Now that everything is happy, we have one final detail.  The PHI nodes in
256  // the exception destination block still have entries due to the original
257  // invoke instruction.  Eliminate these entries (which might even delete the
258  // PHI node) now.
259  InvokeDest->removePredecessor(II->getParent());
260}
261
262/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
263/// into the caller, update the specified callgraph to reflect the changes we
264/// made.  Note that it's possible that not all code was copied over, so only
265/// some edges of the callgraph may remain.
266static void UpdateCallGraphAfterInlining(CallSite CS,
267                                         Function::iterator FirstNewBlock,
268                                         ValueToValueMapTy &VMap,
269                                         InlineFunctionInfo &IFI) {
270  CallGraph &CG = *IFI.CG;
271  const Function *Caller = CS.getInstruction()->getParent()->getParent();
272  const Function *Callee = CS.getCalledFunction();
273  CallGraphNode *CalleeNode = CG[Callee];
274  CallGraphNode *CallerNode = CG[Caller];
275
276  // Since we inlined some uninlined call sites in the callee into the caller,
277  // add edges from the caller to all of the callees of the callee.
278  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
279
280  // Consider the case where CalleeNode == CallerNode.
281  CallGraphNode::CalledFunctionsVector CallCache;
282  if (CalleeNode == CallerNode) {
283    CallCache.assign(I, E);
284    I = CallCache.begin();
285    E = CallCache.end();
286  }
287
288  for (; I != E; ++I) {
289    const Value *OrigCall = I->first;
290
291    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
292    // Only copy the edge if the call was inlined!
293    if (VMI == VMap.end() || VMI->second == 0)
294      continue;
295
296    // If the call was inlined, but then constant folded, there is no edge to
297    // add.  Check for this case.
298    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
299    if (NewCall == 0) continue;
300
301    // Remember that this call site got inlined for the client of
302    // InlineFunction.
303    IFI.InlinedCalls.push_back(NewCall);
304
305    // It's possible that inlining the callsite will cause it to go from an
306    // indirect to a direct call by resolving a function pointer.  If this
307    // happens, set the callee of the new call site to a more precise
308    // destination.  This can also happen if the call graph node of the caller
309    // was just unnecessarily imprecise.
310    if (I->second->getFunction() == 0)
311      if (Function *F = CallSite(NewCall).getCalledFunction()) {
312        // Indirect call site resolved to direct call.
313        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
314
315        continue;
316      }
317
318    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
319  }
320
321  // Update the call graph by deleting the edge from Callee to Caller.  We must
322  // do this after the loop above in case Caller and Callee are the same.
323  CallerNode->removeCallEdgeFor(CS);
324}
325
326/// HandleByValArgument - When inlining a call site that has a byval argument,
327/// we have to make the implicit memcpy explicit by adding it.
328static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
329                                  const Function *CalledFunc,
330                                  InlineFunctionInfo &IFI,
331                                  unsigned ByValAlignment) {
332  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
333
334  // If the called function is readonly, then it could not mutate the caller's
335  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
336  // temporary.
337  if (CalledFunc->onlyReadsMemory()) {
338    // If the byval argument has a specified alignment that is greater than the
339    // passed in pointer, then we either have to round up the input pointer or
340    // give up on this transformation.
341    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
342      return Arg;
343
344    // If the pointer is already known to be sufficiently aligned, or if we can
345    // round it up to a larger alignment, then we don't need a temporary.
346    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
347                                   IFI.TD) >= ByValAlignment)
348      return Arg;
349
350    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
351    // for code quality, but rarely happens and is required for correctness.
352  }
353
354  LLVMContext &Context = Arg->getContext();
355
356  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
357
358  // Create the alloca.  If we have TargetData, use nice alignment.
359  unsigned Align = 1;
360  if (IFI.TD)
361    Align = IFI.TD->getPrefTypeAlignment(AggTy);
362
363  // If the byval had an alignment specified, we *must* use at least that
364  // alignment, as it is required by the byval argument (and uses of the
365  // pointer inside the callee).
366  Align = std::max(Align, ByValAlignment);
367
368  Function *Caller = TheCall->getParent()->getParent();
369
370  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
371                                    &*Caller->begin()->begin());
372  // Emit a memcpy.
373  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
374  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
375                                                 Intrinsic::memcpy,
376                                                 Tys);
377  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
378  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
379
380  Value *Size;
381  if (IFI.TD == 0)
382    Size = ConstantExpr::getSizeOf(AggTy);
383  else
384    Size = ConstantInt::get(Type::getInt64Ty(Context),
385                            IFI.TD->getTypeStoreSize(AggTy));
386
387  // Always generate a memcpy of alignment 1 here because we don't know
388  // the alignment of the src pointer.  Other optimizations can infer
389  // better alignment.
390  Value *CallArgs[] = {
391    DestCast, SrcCast, Size,
392    ConstantInt::get(Type::getInt32Ty(Context), 1),
393    ConstantInt::getFalse(Context) // isVolatile
394  };
395  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
396
397  // Uses of the argument in the function should use our new alloca
398  // instead.
399  return NewAlloca;
400}
401
402// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
403// intrinsic.
404static bool isUsedByLifetimeMarker(Value *V) {
405  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
406       ++UI) {
407    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
408      switch (II->getIntrinsicID()) {
409      default: break;
410      case Intrinsic::lifetime_start:
411      case Intrinsic::lifetime_end:
412        return true;
413      }
414    }
415  }
416  return false;
417}
418
419// hasLifetimeMarkers - Check whether the given alloca already has
420// lifetime.start or lifetime.end intrinsics.
421static bool hasLifetimeMarkers(AllocaInst *AI) {
422  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
423  if (AI->getType() == Int8PtrTy)
424    return isUsedByLifetimeMarker(AI);
425
426  // Do a scan to find all the casts to i8*.
427  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
428       ++I) {
429    if (I->getType() != Int8PtrTy) continue;
430    if (I->stripPointerCasts() != AI) continue;
431    if (isUsedByLifetimeMarker(*I))
432      return true;
433  }
434  return false;
435}
436
437/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
438/// update InlinedAtEntry of a DebugLoc.
439static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
440                                    const DebugLoc &InlinedAtDL,
441                                    LLVMContext &Ctx) {
442  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
443    DebugLoc NewInlinedAtDL
444      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
445    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
446                         NewInlinedAtDL.getAsMDNode(Ctx));
447  }
448
449  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
450                       InlinedAtDL.getAsMDNode(Ctx));
451}
452
453/// fixupLineNumbers - Update inlined instructions' line numbers to
454/// to encode location where these instructions are inlined.
455static void fixupLineNumbers(Function *Fn, Function::iterator FI,
456                              Instruction *TheCall) {
457  DebugLoc TheCallDL = TheCall->getDebugLoc();
458  if (TheCallDL.isUnknown())
459    return;
460
461  for (; FI != Fn->end(); ++FI) {
462    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
463         BI != BE; ++BI) {
464      DebugLoc DL = BI->getDebugLoc();
465      if (!DL.isUnknown()) {
466        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
467        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
468          LLVMContext &Ctx = BI->getContext();
469          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
470          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
471                                                   InlinedAt, Ctx));
472        }
473      }
474    }
475  }
476}
477
478/// InlineFunction - This function inlines the called function into the basic
479/// block of the caller.  This returns false if it is not possible to inline
480/// this call.  The program is still in a well defined state if this occurs
481/// though.
482///
483/// Note that this only does one level of inlining.  For example, if the
484/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
485/// exists in the instruction stream.  Similarly this will inline a recursive
486/// function by one level.
487bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
488  Instruction *TheCall = CS.getInstruction();
489  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
490         "Instruction not in function!");
491
492  // If IFI has any state in it, zap it before we fill it in.
493  IFI.reset();
494
495  const Function *CalledFunc = CS.getCalledFunction();
496  if (CalledFunc == 0 ||          // Can't inline external function or indirect
497      CalledFunc->isDeclaration() || // call, or call to a vararg function!
498      CalledFunc->getFunctionType()->isVarArg()) return false;
499
500  // If the call to the callee is not a tail call, we must clear the 'tail'
501  // flags on any calls that we inline.
502  bool MustClearTailCallFlags =
503    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
504
505  // If the call to the callee cannot throw, set the 'nounwind' flag on any
506  // calls that we inline.
507  bool MarkNoUnwind = CS.doesNotThrow();
508
509  BasicBlock *OrigBB = TheCall->getParent();
510  Function *Caller = OrigBB->getParent();
511
512  // GC poses two hazards to inlining, which only occur when the callee has GC:
513  //  1. If the caller has no GC, then the callee's GC must be propagated to the
514  //     caller.
515  //  2. If the caller has a differing GC, it is invalid to inline.
516  if (CalledFunc->hasGC()) {
517    if (!Caller->hasGC())
518      Caller->setGC(CalledFunc->getGC());
519    else if (CalledFunc->getGC() != Caller->getGC())
520      return false;
521  }
522
523  // Get the personality function from the callee if it contains a landing pad.
524  Value *CalleePersonality = 0;
525  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
526       I != E; ++I)
527    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
528      const BasicBlock *BB = II->getUnwindDest();
529      const LandingPadInst *LP = BB->getLandingPadInst();
530      CalleePersonality = LP->getPersonalityFn();
531      break;
532    }
533
534  // Find the personality function used by the landing pads of the caller. If it
535  // exists, then check to see that it matches the personality function used in
536  // the callee.
537  if (CalleePersonality) {
538    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
539         I != E; ++I)
540      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
541        const BasicBlock *BB = II->getUnwindDest();
542        const LandingPadInst *LP = BB->getLandingPadInst();
543
544        // If the personality functions match, then we can perform the
545        // inlining. Otherwise, we can't inline.
546        // TODO: This isn't 100% true. Some personality functions are proper
547        //       supersets of others and can be used in place of the other.
548        if (LP->getPersonalityFn() != CalleePersonality)
549          return false;
550
551        break;
552      }
553  }
554
555  // Get an iterator to the last basic block in the function, which will have
556  // the new function inlined after it.
557  Function::iterator LastBlock = &Caller->back();
558
559  // Make sure to capture all of the return instructions from the cloned
560  // function.
561  SmallVector<ReturnInst*, 8> Returns;
562  ClonedCodeInfo InlinedFunctionInfo;
563  Function::iterator FirstNewBlock;
564
565  { // Scope to destroy VMap after cloning.
566    ValueToValueMapTy VMap;
567
568    assert(CalledFunc->arg_size() == CS.arg_size() &&
569           "No varargs calls can be inlined!");
570
571    // Calculate the vector of arguments to pass into the function cloner, which
572    // matches up the formal to the actual argument values.
573    CallSite::arg_iterator AI = CS.arg_begin();
574    unsigned ArgNo = 0;
575    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
576         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
577      Value *ActualArg = *AI;
578
579      // When byval arguments actually inlined, we need to make the copy implied
580      // by them explicit.  However, we don't do this if the callee is readonly
581      // or readnone, because the copy would be unneeded: the callee doesn't
582      // modify the struct.
583      if (CS.isByValArgument(ArgNo)) {
584        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
585                                        CalledFunc->getParamAlignment(ArgNo+1));
586
587        // Calls that we inline may use the new alloca, so we need to clear
588        // their 'tail' flags if HandleByValArgument introduced a new alloca and
589        // the callee has calls.
590        MustClearTailCallFlags |= ActualArg != *AI;
591      }
592
593      VMap[I] = ActualArg;
594    }
595
596    // We want the inliner to prune the code as it copies.  We would LOVE to
597    // have no dead or constant instructions leftover after inlining occurs
598    // (which can happen, e.g., because an argument was constant), but we'll be
599    // happy with whatever the cloner can do.
600    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
601                              /*ModuleLevelChanges=*/false, Returns, ".i",
602                              &InlinedFunctionInfo, IFI.TD, TheCall);
603
604    // Remember the first block that is newly cloned over.
605    FirstNewBlock = LastBlock; ++FirstNewBlock;
606
607    // Update the callgraph if requested.
608    if (IFI.CG)
609      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
610
611    // Update inlined instructions' line number information.
612    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
613  }
614
615  // If there are any alloca instructions in the block that used to be the entry
616  // block for the callee, move them to the entry block of the caller.  First
617  // calculate which instruction they should be inserted before.  We insert the
618  // instructions at the end of the current alloca list.
619  {
620    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
621    for (BasicBlock::iterator I = FirstNewBlock->begin(),
622         E = FirstNewBlock->end(); I != E; ) {
623      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
624      if (AI == 0) continue;
625
626      // If the alloca is now dead, remove it.  This often occurs due to code
627      // specialization.
628      if (AI->use_empty()) {
629        AI->eraseFromParent();
630        continue;
631      }
632
633      if (!isa<Constant>(AI->getArraySize()))
634        continue;
635
636      // Keep track of the static allocas that we inline into the caller.
637      IFI.StaticAllocas.push_back(AI);
638
639      // Scan for the block of allocas that we can move over, and move them
640      // all at once.
641      while (isa<AllocaInst>(I) &&
642             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
643        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
644        ++I;
645      }
646
647      // Transfer all of the allocas over in a block.  Using splice means
648      // that the instructions aren't removed from the symbol table, then
649      // reinserted.
650      Caller->getEntryBlock().getInstList().splice(InsertPoint,
651                                                   FirstNewBlock->getInstList(),
652                                                   AI, I);
653    }
654  }
655
656  // Leave lifetime markers for the static alloca's, scoping them to the
657  // function we just inlined.
658  if (!IFI.StaticAllocas.empty()) {
659    IRBuilder<> builder(FirstNewBlock->begin());
660    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
661      AllocaInst *AI = IFI.StaticAllocas[ai];
662
663      // If the alloca is already scoped to something smaller than the whole
664      // function then there's no need to add redundant, less accurate markers.
665      if (hasLifetimeMarkers(AI))
666        continue;
667
668      builder.CreateLifetimeStart(AI);
669      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
670        IRBuilder<> builder(Returns[ri]);
671        builder.CreateLifetimeEnd(AI);
672      }
673    }
674  }
675
676  // If the inlined code contained dynamic alloca instructions, wrap the inlined
677  // code with llvm.stacksave/llvm.stackrestore intrinsics.
678  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
679    Module *M = Caller->getParent();
680    // Get the two intrinsics we care about.
681    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
682    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
683
684    // Insert the llvm.stacksave.
685    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
686      .CreateCall(StackSave, "savedstack");
687
688    // Insert a call to llvm.stackrestore before any return instructions in the
689    // inlined function.
690    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
691      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
692    }
693  }
694
695  // If we are inlining tail call instruction through a call site that isn't
696  // marked 'tail', we must remove the tail marker for any calls in the inlined
697  // code.  Also, calls inlined through a 'nounwind' call site should be marked
698  // 'nounwind'.
699  if (InlinedFunctionInfo.ContainsCalls &&
700      (MustClearTailCallFlags || MarkNoUnwind)) {
701    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
702         BB != E; ++BB)
703      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
704        if (CallInst *CI = dyn_cast<CallInst>(I)) {
705          if (MustClearTailCallFlags)
706            CI->setTailCall(false);
707          if (MarkNoUnwind)
708            CI->setDoesNotThrow();
709        }
710  }
711
712  // If we are inlining for an invoke instruction, we must make sure to rewrite
713  // any call instructions into invoke instructions.
714  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
715    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
716
717  // If we cloned in _exactly one_ basic block, and if that block ends in a
718  // return instruction, we splice the body of the inlined callee directly into
719  // the calling basic block.
720  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
721    // Move all of the instructions right before the call.
722    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
723                                 FirstNewBlock->begin(), FirstNewBlock->end());
724    // Remove the cloned basic block.
725    Caller->getBasicBlockList().pop_back();
726
727    // If the call site was an invoke instruction, add a branch to the normal
728    // destination.
729    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
730      BranchInst::Create(II->getNormalDest(), TheCall);
731
732    // If the return instruction returned a value, replace uses of the call with
733    // uses of the returned value.
734    if (!TheCall->use_empty()) {
735      ReturnInst *R = Returns[0];
736      if (TheCall == R->getReturnValue())
737        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
738      else
739        TheCall->replaceAllUsesWith(R->getReturnValue());
740    }
741    // Since we are now done with the Call/Invoke, we can delete it.
742    TheCall->eraseFromParent();
743
744    // Since we are now done with the return instruction, delete it also.
745    Returns[0]->eraseFromParent();
746
747    // We are now done with the inlining.
748    return true;
749  }
750
751  // Otherwise, we have the normal case, of more than one block to inline or
752  // multiple return sites.
753
754  // We want to clone the entire callee function into the hole between the
755  // "starter" and "ender" blocks.  How we accomplish this depends on whether
756  // this is an invoke instruction or a call instruction.
757  BasicBlock *AfterCallBB;
758  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
759
760    // Add an unconditional branch to make this look like the CallInst case...
761    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
762
763    // Split the basic block.  This guarantees that no PHI nodes will have to be
764    // updated due to new incoming edges, and make the invoke case more
765    // symmetric to the call case.
766    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
767                                          CalledFunc->getName()+".exit");
768
769  } else {  // It's a call
770    // If this is a call instruction, we need to split the basic block that
771    // the call lives in.
772    //
773    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
774                                          CalledFunc->getName()+".exit");
775  }
776
777  // Change the branch that used to go to AfterCallBB to branch to the first
778  // basic block of the inlined function.
779  //
780  TerminatorInst *Br = OrigBB->getTerminator();
781  assert(Br && Br->getOpcode() == Instruction::Br &&
782         "splitBasicBlock broken!");
783  Br->setOperand(0, FirstNewBlock);
784
785
786  // Now that the function is correct, make it a little bit nicer.  In
787  // particular, move the basic blocks inserted from the end of the function
788  // into the space made by splitting the source basic block.
789  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
790                                     FirstNewBlock, Caller->end());
791
792  // Handle all of the return instructions that we just cloned in, and eliminate
793  // any users of the original call/invoke instruction.
794  Type *RTy = CalledFunc->getReturnType();
795
796  PHINode *PHI = 0;
797  if (Returns.size() > 1) {
798    // The PHI node should go at the front of the new basic block to merge all
799    // possible incoming values.
800    if (!TheCall->use_empty()) {
801      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
802                            AfterCallBB->begin());
803      // Anything that used the result of the function call should now use the
804      // PHI node as their operand.
805      TheCall->replaceAllUsesWith(PHI);
806    }
807
808    // Loop over all of the return instructions adding entries to the PHI node
809    // as appropriate.
810    if (PHI) {
811      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
812        ReturnInst *RI = Returns[i];
813        assert(RI->getReturnValue()->getType() == PHI->getType() &&
814               "Ret value not consistent in function!");
815        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
816      }
817    }
818
819
820    // Add a branch to the merge points and remove return instructions.
821    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
822      ReturnInst *RI = Returns[i];
823      BranchInst::Create(AfterCallBB, RI);
824      RI->eraseFromParent();
825    }
826  } else if (!Returns.empty()) {
827    // Otherwise, if there is exactly one return value, just replace anything
828    // using the return value of the call with the computed value.
829    if (!TheCall->use_empty()) {
830      if (TheCall == Returns[0]->getReturnValue())
831        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
832      else
833        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
834    }
835
836    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
837    BasicBlock *ReturnBB = Returns[0]->getParent();
838    ReturnBB->replaceAllUsesWith(AfterCallBB);
839
840    // Splice the code from the return block into the block that it will return
841    // to, which contains the code that was after the call.
842    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
843                                      ReturnBB->getInstList());
844
845    // Delete the return instruction now and empty ReturnBB now.
846    Returns[0]->eraseFromParent();
847    ReturnBB->eraseFromParent();
848  } else if (!TheCall->use_empty()) {
849    // No returns, but something is using the return value of the call.  Just
850    // nuke the result.
851    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
852  }
853
854  // Since we are now done with the Call/Invoke, we can delete it.
855  TheCall->eraseFromParent();
856
857  // We should always be able to fold the entry block of the function into the
858  // single predecessor of the block...
859  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
860  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
861
862  // Splice the code entry block into calling block, right before the
863  // unconditional branch.
864  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
865  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
866
867  // Remove the unconditional branch.
868  OrigBB->getInstList().erase(Br);
869
870  // Now we can remove the CalleeEntry block, which is now empty.
871  Caller->getBasicBlockList().erase(CalleeEntry);
872
873  // If we inserted a phi node, check to see if it has a single value (e.g. all
874  // the entries are the same or undef).  If so, remove the PHI so it doesn't
875  // block other optimizations.
876  if (PHI) {
877    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
878      PHI->replaceAllUsesWith(V);
879      PHI->eraseFromParent();
880    }
881  }
882
883  return true;
884}
885