InlineFunction.cpp revision 9580641d5facf436e549982a5b0a5b3b694f9dc0
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
49static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
50  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
51    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
52    if (exn) return exn;
53  }
54
55  return 0;
56}
57
58/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
59/// the given llvm.eh.exception call.
60static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
61  BasicBlock *exnBlock = exn->getParent();
62
63  EHSelectorInst *outOfBlockSelector = 0;
64  for (Instruction::use_iterator
65         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
66    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
67    if (!sel) continue;
68
69    // Immediately accept an eh.selector in the same block as the
70    // excepton call.
71    if (sel->getParent() == exnBlock) return sel;
72
73    // Otherwise, use the first selector we see.
74    if (!outOfBlockSelector) outOfBlockSelector = sel;
75  }
76
77  return outOfBlockSelector;
78}
79
80/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
81/// in the given landing pad.  In principle, llvm.eh.exception is
82/// required to be in the landing pad; in practice, SplitCriticalEdge
83/// can break that invariant, and then inlining can break it further.
84/// There's a real need for a reliable solution here, but until that
85/// happens, we have some fragile workarounds here.
86static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
87  // Look for an exception call in the actual landing pad.
88  EHExceptionInst *exn = findExceptionInBlock(lpad);
89  if (exn) return findSelectorForException(exn);
90
91  // Okay, if that failed, look for one in an obvious successor.  If
92  // we find one, we'll fix the IR by moving things back to the
93  // landing pad.
94
95  bool dominates = true; // does the lpad dominate the exn call
96  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
97  BasicBlock *lastDominated = 0; // and the block which branched to it
98
99  BasicBlock *exnBlock = lpad;
100
101  // We need to protect against lpads that lead into infinite loops.
102  SmallPtrSet<BasicBlock*,4> visited;
103  visited.insert(exnBlock);
104
105  do {
106    // We're not going to apply this hack to anything more complicated
107    // than a series of unconditional branches, so if the block
108    // doesn't terminate in an unconditional branch, just fail.  More
109    // complicated cases can arise when, say, sinking a call into a
110    // split unwind edge and then inlining it; but that can do almost
111    // *anything* to the CFG, including leaving the selector
112    // completely unreachable.  The only way to fix that properly is
113    // to (1) prohibit transforms which move the exception or selector
114    // values away from the landing pad, e.g. by producing them with
115    // instructions that are pinned to an edge like a phi, or
116    // producing them with not-really-instructions, and (2) making
117    // transforms which split edges deal with that.
118    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
119    if (!branch || branch->isConditional()) return 0;
120
121    BasicBlock *successor = branch->getSuccessor(0);
122
123    // Fail if we found an infinite loop.
124    if (!visited.insert(successor)) return 0;
125
126    // If the successor isn't dominated by exnBlock:
127    if (!successor->getSinglePredecessor()) {
128      // We don't want to have to deal with threading the exception
129      // through multiple levels of phi, so give up if we've already
130      // followed a non-dominating edge.
131      if (!dominates) return 0;
132
133      // Otherwise, remember this as a non-dominating edge.
134      dominates = false;
135      nonDominated = successor;
136      lastDominated = exnBlock;
137    }
138
139    exnBlock = successor;
140
141    // Can we stop here?
142    exn = findExceptionInBlock(exnBlock);
143  } while (!exn);
144
145  // Look for a selector call for the exception we found.
146  EHSelectorInst *selector = findSelectorForException(exn);
147  if (!selector) return 0;
148
149  // The easy case is when the landing pad still dominates the
150  // exception call, in which case we can just move both calls back to
151  // the landing pad.
152  if (dominates) {
153    selector->moveBefore(lpad->getFirstNonPHI());
154    exn->moveBefore(selector);
155    return selector;
156  }
157
158  // Otherwise, we have to split at the first non-dominating block.
159  // The CFG looks basically like this:
160  //    lpad:
161  //      phis_0
162  //      insnsAndBranches_1
163  //      br label %nonDominated
164  //    nonDominated:
165  //      phis_2
166  //      insns_3
167  //      %exn = call i8* @llvm.eh.exception()
168  //      insnsAndBranches_4
169  //      %selector = call @llvm.eh.selector(i8* %exn, ...
170  // We need to turn this into:
171  //    lpad:
172  //      phis_0
173  //      %exn0 = call i8* @llvm.eh.exception()
174  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
175  //      insnsAndBranches_1
176  //      br label %split // from lastDominated
177  //    nonDominated:
178  //      phis_2 (without edge from lastDominated)
179  //      %exn1 = call i8* @llvm.eh.exception()
180  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
181  //      br label %split
182  //    split:
183  //      phis_2 (edge from lastDominated, edge from split)
184  //      %exn = phi ...
185  //      %selector = phi ...
186  //      insns_3
187  //      insnsAndBranches_4
188
189  assert(nonDominated);
190  assert(lastDominated);
191
192  // First, make clones of the intrinsics to go in lpad.
193  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
194  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
195  lpadSelector->setArgOperand(0, lpadExn);
196  lpadSelector->insertBefore(lpad->getFirstNonPHI());
197  lpadExn->insertBefore(lpadSelector);
198
199  // Split the non-dominated block.
200  BasicBlock *split =
201    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
202                                  nonDominated->getName() + ".lpad-fix");
203
204  // Redirect the last dominated branch there.
205  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
206
207  // Move the existing intrinsics to the end of the old block.
208  selector->moveBefore(&nonDominated->back());
209  exn->moveBefore(selector);
210
211  Instruction *splitIP = &split->front();
212
213  // For all the phis in nonDominated, make a new phi in split to join
214  // that phi with the edge from lastDominated.
215  for (BasicBlock::iterator
216         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
217    PHINode *phi = dyn_cast<PHINode>(i);
218    if (!phi) break;
219
220    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
221                                        splitIP);
222    phi->replaceAllUsesWith(splitPhi);
223    splitPhi->addIncoming(phi, nonDominated);
224    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
225                          lastDominated);
226  }
227
228  // Make new phis for the exception and selector.
229  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
230  exn->replaceAllUsesWith(exnPhi);
231  selector->setArgOperand(0, exn); // except for this use
232  exnPhi->addIncoming(exn, nonDominated);
233  exnPhi->addIncoming(lpadExn, lastDominated);
234
235  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
236  selector->replaceAllUsesWith(selectorPhi);
237  selectorPhi->addIncoming(selector, nonDominated);
238  selectorPhi->addIncoming(lpadSelector, lastDominated);
239
240  return lpadSelector;
241}
242
243namespace {
244  /// A class for recording information about inlining through an invoke.
245  class InvokeInliningInfo {
246    BasicBlock *OuterUnwindDest;
247    EHSelectorInst *OuterSelector;
248    BasicBlock *InnerUnwindDest;
249    PHINode *InnerExceptionPHI;
250    PHINode *InnerSelectorPHI;
251    SmallVector<Value*, 8> UnwindDestPHIValues;
252
253    // New EH:
254    BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
255    BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
256    LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
257    PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
258
259  public:
260    InvokeInliningInfo(InvokeInst *II)
261      : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
262        InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
263
264        OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
265        CallerLPad(0), InnerEHValuesPHI(0) {
266      // If there are PHI nodes in the unwind destination block, we need to keep
267      // track of which values came into them from the invoke before removing
268      // the edge from this block.
269      llvm::BasicBlock *InvokeBB = II->getParent();
270      BasicBlock::iterator I = OuterUnwindDest->begin();
271      for (; isa<PHINode>(I); ++I) {
272        // Save the value to use for this edge.
273        PHINode *PHI = cast<PHINode>(I);
274        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
275      }
276
277      // FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
278      if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) {
279        CallerLPad = LPI;
280      }
281    }
282
283    /// The outer unwind destination is the target of unwind edges
284    /// introduced for calls within the inlined function.
285    BasicBlock *getOuterUnwindDest() const {
286      return OuterUnwindDest;
287    }
288
289    EHSelectorInst *getOuterSelector() {
290      if (!OuterSelector)
291        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
292      return OuterSelector;
293    }
294
295    BasicBlock *getInnerUnwindDest();
296    BasicBlock *getInnerUnwindDest_new();
297
298    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
299
300    bool forwardEHResume(CallInst *call, BasicBlock *src);
301
302    /// forwardResume - Forward the 'resume' instruction to the caller's landing
303    /// pad block. When the landing pad block has only one predecessor, this is
304    /// a simple branch. When there is more than one predecessor, we need to
305    /// split the landing pad block after the landingpad instruction and jump
306    /// to there.
307    void forwardResume(ResumeInst *RI);
308
309    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
310    /// destination block for the given basic block, using the values for the
311    /// original invoke's source block.
312    void addIncomingPHIValuesFor(BasicBlock *BB) const {
313      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
314    }
315    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
316      BasicBlock::iterator I = dest->begin();
317      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
318        PHINode *PHI = cast<PHINode>(I);
319        PHI->addIncoming(UnwindDestPHIValues[i], src);
320      }
321    }
322  };
323}
324
325/// Get or create a target for the branch out of rewritten calls to
326/// llvm.eh.resume.
327BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
328  if (InnerUnwindDest) return InnerUnwindDest;
329
330  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
331  // in the outer landing pad to immediately following the phis.
332  EHSelectorInst *selector = getOuterSelector();
333  if (!selector) return 0;
334
335  // The call to llvm.eh.exception *must* be in the landing pad.
336  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
337  assert(exn->getParent() == OuterUnwindDest);
338
339  // TODO: recognize when we've already done this, so that we don't
340  // get a linear number of these when inlining calls into lots of
341  // invokes with the same landing pad.
342
343  // Do the hoisting.
344  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
345  assert(splitPoint != selector && "selector-on-exception dominance broken!");
346  if (splitPoint == exn) {
347    selector->removeFromParent();
348    selector->insertAfter(exn);
349    splitPoint = selector->getNextNode();
350  } else {
351    exn->moveBefore(splitPoint);
352    selector->moveBefore(splitPoint);
353  }
354
355  // Split the landing pad.
356  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
357                                        OuterUnwindDest->getName() + ".body");
358
359  // The number of incoming edges we expect to the inner landing pad.
360  const unsigned phiCapacity = 2;
361
362  // Create corresponding new phis for all the phis in the outer landing pad.
363  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
364  BasicBlock::iterator I = OuterUnwindDest->begin();
365  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
366    PHINode *outerPhi = cast<PHINode>(I);
367    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
368                                        outerPhi->getName() + ".lpad-body",
369                                        insertPoint);
370    outerPhi->replaceAllUsesWith(innerPhi);
371    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
372  }
373
374  // Create a phi for the exception value...
375  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
376                                      "exn.lpad-body", insertPoint);
377  exn->replaceAllUsesWith(InnerExceptionPHI);
378  selector->setArgOperand(0, exn); // restore this use
379  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
380
381  // ...and the selector.
382  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
383                                     "selector.lpad-body", insertPoint);
384  selector->replaceAllUsesWith(InnerSelectorPHI);
385  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
386
387  // All done.
388  return InnerUnwindDest;
389}
390
391/// [LIBUNWIND] Try to forward the given call, which logically occurs
392/// at the end of the given block, as a branch to the inner unwind
393/// block.  Returns true if the call was forwarded.
394bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
395  // First, check whether this is a call to the intrinsic.
396  Function *fn = dyn_cast<Function>(call->getCalledValue());
397  if (!fn || fn->getName() != "llvm.eh.resume")
398    return false;
399
400  // At this point, we need to return true on all paths, because
401  // otherwise we'll construct an invoke of the intrinsic, which is
402  // not well-formed.
403
404  // Try to find or make an inner unwind dest, which will fail if we
405  // can't find a selector call for the outer unwind dest.
406  BasicBlock *dest = getInnerUnwindDest();
407  bool hasSelector = (dest != 0);
408
409  // If we failed, just use the outer unwind dest, dropping the
410  // exception and selector on the floor.
411  if (!hasSelector)
412    dest = OuterUnwindDest;
413
414  // Make a branch.
415  BranchInst::Create(dest, src);
416
417  // Update the phis in the destination.  They were inserted in an
418  // order which makes this work.
419  addIncomingPHIValuesForInto(src, dest);
420
421  if (hasSelector) {
422    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
423    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
424  }
425
426  return true;
427}
428
429/// Get or create a target for the branch from ResumeInsts.
430BasicBlock *InvokeInliningInfo::getInnerUnwindDest_new() {
431  if (InnerResumeDest) return InnerResumeDest;
432
433  // Split the landing pad.
434  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
435  InnerResumeDest =
436    OuterResumeDest->splitBasicBlock(SplitPoint,
437                                     OuterResumeDest->getName() + ".body");
438
439  // The number of incoming edges we expect to the inner landing pad.
440  const unsigned PHICapacity = 2;
441
442  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
443  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
444  BasicBlock::iterator I = OuterResumeDest->begin();
445  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
446    PHINode *OuterPHI = cast<PHINode>(I);
447    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
448                                        OuterPHI->getName() + ".lpad-body",
449                                        InsertPoint);
450    OuterPHI->replaceAllUsesWith(InnerPHI);
451    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
452  }
453
454  // Create a PHI for the exception values.
455  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
456                                     "eh.lpad-body", InsertPoint);
457  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
458  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
459
460  // All done.
461  return InnerResumeDest;
462}
463
464/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
465/// block. When the landing pad block has only one predecessor, this is a simple
466/// branch. When there is more than one predecessor, we need to split the
467/// landing pad block after the landingpad instruction and jump to there.
468void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
469  BasicBlock *Dest = getInnerUnwindDest_new();
470  BasicBlock *Src = RI->getParent();
471
472  BranchInst::Create(Dest, Src);
473
474  // Update the PHIs in the destination. They were inserted in an order which
475  // makes this work.
476  addIncomingPHIValuesForInto(Src, Dest);
477
478  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
479  RI->eraseFromParent();
480}
481
482/// [LIBUNWIND] Check whether this selector is "only cleanups":
483///   call i32 @llvm.eh.selector(blah, blah, i32 0)
484static bool isCleanupOnlySelector(EHSelectorInst *selector) {
485  if (selector->getNumArgOperands() != 3) return false;
486  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
487  return (val && val->isZero());
488}
489
490/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
491/// an invoke, we have to turn all of the calls that can throw into
492/// invokes.  This function analyze BB to see if there are any calls, and if so,
493/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
494/// nodes in that block with the values specified in InvokeDestPHIValues.
495///
496/// Returns true to indicate that the next block should be skipped.
497static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
498                                                   InvokeInliningInfo &Invoke) {
499  LandingPadInst *LPI = Invoke.getLandingPadInst();
500
501  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
502    Instruction *I = BBI++;
503
504    if (LPI) // FIXME: This won't be NULL in the new EH.
505      if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
506        unsigned NumClauses = LPI->getNumClauses();
507        L->reserveClauses(NumClauses);
508        for (unsigned i = 0; i != NumClauses; ++i)
509          L->addClause(LPI->getClauseType(i), LPI->getClauseValue(i));
510      }
511
512    // We only need to check for function calls: inlined invoke
513    // instructions require no special handling.
514    CallInst *CI = dyn_cast<CallInst>(I);
515    if (CI == 0) continue;
516
517    // LIBUNWIND: merge selector instructions.
518    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
519      EHSelectorInst *Outer = Invoke.getOuterSelector();
520      if (!Outer) continue;
521
522      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
523      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
524
525      // If both selectors contain only cleanups, we don't need to do
526      // anything.  TODO: this is really just a very specific instance
527      // of a much more general optimization.
528      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
529
530      // Otherwise, we just append the outer selector to the inner selector.
531      SmallVector<Value*, 16> NewSelector;
532      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
533        NewSelector.push_back(Inner->getArgOperand(i));
534      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
535        NewSelector.push_back(Outer->getArgOperand(i));
536
537      CallInst *NewInner =
538        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
539      // No need to copy attributes, calling convention, etc.
540      NewInner->takeName(Inner);
541      Inner->replaceAllUsesWith(NewInner);
542      Inner->eraseFromParent();
543      continue;
544    }
545
546    // If this call cannot unwind, don't convert it to an invoke.
547    if (CI->doesNotThrow())
548      continue;
549
550    // Convert this function call into an invoke instruction.
551    // First, split the basic block.
552    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
553
554    // Delete the unconditional branch inserted by splitBasicBlock
555    BB->getInstList().pop_back();
556
557    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
558    // directly to the new landing pad.
559    if (Invoke.forwardEHResume(CI, BB)) {
560      // TODO: 'Split' is now unreachable; clean it up.
561
562      // We want to leave the original call intact so that the call
563      // graph and other structures won't get misled.  We also have to
564      // avoid processing the next block, or we'll iterate here forever.
565      return true;
566    }
567
568    // Otherwise, create the new invoke instruction.
569    ImmutableCallSite CS(CI);
570    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
571    InvokeInst *II =
572      InvokeInst::Create(CI->getCalledValue(), Split,
573                         Invoke.getOuterUnwindDest(),
574                         InvokeArgs, CI->getName(), BB);
575    II->setCallingConv(CI->getCallingConv());
576    II->setAttributes(CI->getAttributes());
577
578    // Make sure that anything using the call now uses the invoke!  This also
579    // updates the CallGraph if present, because it uses a WeakVH.
580    CI->replaceAllUsesWith(II);
581
582    Split->getInstList().pop_front();  // Delete the original call
583
584    // Update any PHI nodes in the exceptional block to indicate that
585    // there is now a new entry in them.
586    Invoke.addIncomingPHIValuesFor(BB);
587    return false;
588  }
589
590  return false;
591}
592
593
594/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
595/// in the body of the inlined function into invokes and turn unwind
596/// instructions into branches to the invoke unwind dest.
597///
598/// II is the invoke instruction being inlined.  FirstNewBlock is the first
599/// block of the inlined code (the last block is the end of the function),
600/// and InlineCodeInfo is information about the code that got inlined.
601static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
602                                ClonedCodeInfo &InlinedCodeInfo) {
603  BasicBlock *InvokeDest = II->getUnwindDest();
604
605  Function *Caller = FirstNewBlock->getParent();
606
607  // The inlined code is currently at the end of the function, scan from the
608  // start of the inlined code to its end, checking for stuff we need to
609  // rewrite.  If the code doesn't have calls or unwinds, we know there is
610  // nothing to rewrite.
611  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
612    // Now that everything is happy, we have one final detail.  The PHI nodes in
613    // the exception destination block still have entries due to the original
614    // invoke instruction.  Eliminate these entries (which might even delete the
615    // PHI node) now.
616    InvokeDest->removePredecessor(II->getParent());
617    return;
618  }
619
620  InvokeInliningInfo Invoke(II);
621
622  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
623    if (InlinedCodeInfo.ContainsCalls)
624      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
625        // Honor a request to skip the next block.  We don't need to
626        // consider UnwindInsts in this case either.
627        ++BB;
628        continue;
629      }
630
631    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
632      // An UnwindInst requires special handling when it gets inlined into an
633      // invoke site.  Once this happens, we know that the unwind would cause
634      // a control transfer to the invoke exception destination, so we can
635      // transform it into a direct branch to the exception destination.
636      BranchInst::Create(InvokeDest, UI);
637
638      // Delete the unwind instruction!
639      UI->eraseFromParent();
640
641      // Update any PHI nodes in the exceptional block to indicate that
642      // there is now a new entry in them.
643      Invoke.addIncomingPHIValuesFor(BB);
644    }
645
646    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
647      Invoke.forwardResume(RI);
648    }
649  }
650
651  // Now that everything is happy, we have one final detail.  The PHI nodes in
652  // the exception destination block still have entries due to the original
653  // invoke instruction.  Eliminate these entries (which might even delete the
654  // PHI node) now.
655  InvokeDest->removePredecessor(II->getParent());
656}
657
658/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
659/// into the caller, update the specified callgraph to reflect the changes we
660/// made.  Note that it's possible that not all code was copied over, so only
661/// some edges of the callgraph may remain.
662static void UpdateCallGraphAfterInlining(CallSite CS,
663                                         Function::iterator FirstNewBlock,
664                                         ValueToValueMapTy &VMap,
665                                         InlineFunctionInfo &IFI) {
666  CallGraph &CG = *IFI.CG;
667  const Function *Caller = CS.getInstruction()->getParent()->getParent();
668  const Function *Callee = CS.getCalledFunction();
669  CallGraphNode *CalleeNode = CG[Callee];
670  CallGraphNode *CallerNode = CG[Caller];
671
672  // Since we inlined some uninlined call sites in the callee into the caller,
673  // add edges from the caller to all of the callees of the callee.
674  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
675
676  // Consider the case where CalleeNode == CallerNode.
677  CallGraphNode::CalledFunctionsVector CallCache;
678  if (CalleeNode == CallerNode) {
679    CallCache.assign(I, E);
680    I = CallCache.begin();
681    E = CallCache.end();
682  }
683
684  for (; I != E; ++I) {
685    const Value *OrigCall = I->first;
686
687    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
688    // Only copy the edge if the call was inlined!
689    if (VMI == VMap.end() || VMI->second == 0)
690      continue;
691
692    // If the call was inlined, but then constant folded, there is no edge to
693    // add.  Check for this case.
694    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
695    if (NewCall == 0) continue;
696
697    // Remember that this call site got inlined for the client of
698    // InlineFunction.
699    IFI.InlinedCalls.push_back(NewCall);
700
701    // It's possible that inlining the callsite will cause it to go from an
702    // indirect to a direct call by resolving a function pointer.  If this
703    // happens, set the callee of the new call site to a more precise
704    // destination.  This can also happen if the call graph node of the caller
705    // was just unnecessarily imprecise.
706    if (I->second->getFunction() == 0)
707      if (Function *F = CallSite(NewCall).getCalledFunction()) {
708        // Indirect call site resolved to direct call.
709        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
710
711        continue;
712      }
713
714    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
715  }
716
717  // Update the call graph by deleting the edge from Callee to Caller.  We must
718  // do this after the loop above in case Caller and Callee are the same.
719  CallerNode->removeCallEdgeFor(CS);
720}
721
722/// HandleByValArgument - When inlining a call site that has a byval argument,
723/// we have to make the implicit memcpy explicit by adding it.
724static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
725                                  const Function *CalledFunc,
726                                  InlineFunctionInfo &IFI,
727                                  unsigned ByValAlignment) {
728  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
729
730  // If the called function is readonly, then it could not mutate the caller's
731  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
732  // temporary.
733  if (CalledFunc->onlyReadsMemory()) {
734    // If the byval argument has a specified alignment that is greater than the
735    // passed in pointer, then we either have to round up the input pointer or
736    // give up on this transformation.
737    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
738      return Arg;
739
740    // If the pointer is already known to be sufficiently aligned, or if we can
741    // round it up to a larger alignment, then we don't need a temporary.
742    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
743                                   IFI.TD) >= ByValAlignment)
744      return Arg;
745
746    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
747    // for code quality, but rarely happens and is required for correctness.
748  }
749
750  LLVMContext &Context = Arg->getContext();
751
752  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
753
754  // Create the alloca.  If we have TargetData, use nice alignment.
755  unsigned Align = 1;
756  if (IFI.TD)
757    Align = IFI.TD->getPrefTypeAlignment(AggTy);
758
759  // If the byval had an alignment specified, we *must* use at least that
760  // alignment, as it is required by the byval argument (and uses of the
761  // pointer inside the callee).
762  Align = std::max(Align, ByValAlignment);
763
764  Function *Caller = TheCall->getParent()->getParent();
765
766  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
767                                    &*Caller->begin()->begin());
768  // Emit a memcpy.
769  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
770  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
771                                                 Intrinsic::memcpy,
772                                                 Tys);
773  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
774  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
775
776  Value *Size;
777  if (IFI.TD == 0)
778    Size = ConstantExpr::getSizeOf(AggTy);
779  else
780    Size = ConstantInt::get(Type::getInt64Ty(Context),
781                            IFI.TD->getTypeStoreSize(AggTy));
782
783  // Always generate a memcpy of alignment 1 here because we don't know
784  // the alignment of the src pointer.  Other optimizations can infer
785  // better alignment.
786  Value *CallArgs[] = {
787    DestCast, SrcCast, Size,
788    ConstantInt::get(Type::getInt32Ty(Context), 1),
789    ConstantInt::getFalse(Context) // isVolatile
790  };
791  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
792
793  // Uses of the argument in the function should use our new alloca
794  // instead.
795  return NewAlloca;
796}
797
798// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
799// intrinsic.
800static bool isUsedByLifetimeMarker(Value *V) {
801  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
802       ++UI) {
803    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
804      switch (II->getIntrinsicID()) {
805      default: break;
806      case Intrinsic::lifetime_start:
807      case Intrinsic::lifetime_end:
808        return true;
809      }
810    }
811  }
812  return false;
813}
814
815// hasLifetimeMarkers - Check whether the given alloca already has
816// lifetime.start or lifetime.end intrinsics.
817static bool hasLifetimeMarkers(AllocaInst *AI) {
818  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
819  if (AI->getType() == Int8PtrTy)
820    return isUsedByLifetimeMarker(AI);
821
822  // Do a scan to find all the casts to i8*.
823  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
824       ++I) {
825    if (I->getType() != Int8PtrTy) continue;
826    if (I->stripPointerCasts() != AI) continue;
827    if (isUsedByLifetimeMarker(*I))
828      return true;
829  }
830  return false;
831}
832
833/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
834/// update InlinedAtEntry of a DebugLoc.
835static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
836                                    const DebugLoc &InlinedAtDL,
837                                    LLVMContext &Ctx) {
838  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
839    DebugLoc NewInlinedAtDL
840      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
841    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
842                         NewInlinedAtDL.getAsMDNode(Ctx));
843  }
844
845  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
846                       InlinedAtDL.getAsMDNode(Ctx));
847}
848
849
850/// fixupLineNumbers - Update inlined instructions' line numbers to
851/// to encode location where these instructions are inlined.
852static void fixupLineNumbers(Function *Fn, Function::iterator FI,
853                              Instruction *TheCall) {
854  DebugLoc TheCallDL = TheCall->getDebugLoc();
855  if (TheCallDL.isUnknown())
856    return;
857
858  for (; FI != Fn->end(); ++FI) {
859    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
860         BI != BE; ++BI) {
861      DebugLoc DL = BI->getDebugLoc();
862      if (!DL.isUnknown()) {
863        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
864        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
865          LLVMContext &Ctx = BI->getContext();
866          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
867          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
868                                                   InlinedAt, Ctx));
869        }
870      }
871    }
872  }
873}
874
875// InlineFunction - This function inlines the called function into the basic
876// block of the caller.  This returns false if it is not possible to inline this
877// call.  The program is still in a well defined state if this occurs though.
878//
879// Note that this only does one level of inlining.  For example, if the
880// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
881// exists in the instruction stream.  Similarly this will inline a recursive
882// function by one level.
883//
884bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
885  Instruction *TheCall = CS.getInstruction();
886  LLVMContext &Context = TheCall->getContext();
887  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
888         "Instruction not in function!");
889
890  // If IFI has any state in it, zap it before we fill it in.
891  IFI.reset();
892
893  const Function *CalledFunc = CS.getCalledFunction();
894  if (CalledFunc == 0 ||          // Can't inline external function or indirect
895      CalledFunc->isDeclaration() || // call, or call to a vararg function!
896      CalledFunc->getFunctionType()->isVarArg()) return false;
897
898  // If the call to the callee is not a tail call, we must clear the 'tail'
899  // flags on any calls that we inline.
900  bool MustClearTailCallFlags =
901    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
902
903  // If the call to the callee cannot throw, set the 'nounwind' flag on any
904  // calls that we inline.
905  bool MarkNoUnwind = CS.doesNotThrow();
906
907  BasicBlock *OrigBB = TheCall->getParent();
908  Function *Caller = OrigBB->getParent();
909
910  // GC poses two hazards to inlining, which only occur when the callee has GC:
911  //  1. If the caller has no GC, then the callee's GC must be propagated to the
912  //     caller.
913  //  2. If the caller has a differing GC, it is invalid to inline.
914  if (CalledFunc->hasGC()) {
915    if (!Caller->hasGC())
916      Caller->setGC(CalledFunc->getGC());
917    else if (CalledFunc->getGC() != Caller->getGC())
918      return false;
919  }
920
921  // Find the personality function used by the landing pads of the caller. If it
922  // exists, then check to see that it matches the personality function used in
923  // the callee.
924  for (Function::const_iterator
925         I = Caller->begin(), E = Caller->end(); I != E; ++I)
926    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
927      const BasicBlock *BB = II->getUnwindDest();
928      // FIXME: This 'isa' here should become go away once the new EH system is
929      // in place.
930      if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
931        continue;
932      const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
933      const Value *CallerPersFn = LP->getPersonalityFn();
934
935      // If the personality functions match, then we can perform the
936      // inlining. Otherwise, we can't inline.
937      // TODO: This isn't 100% true. Some personality functions are proper
938      //       supersets of others and can be used in place of the other.
939      for (Function::const_iterator
940             I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I)
941        if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
942          const BasicBlock *BB = II->getUnwindDest();
943          // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
944          // the new EH system is in place.
945          if (const LandingPadInst *LP =
946              dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
947            if (CallerPersFn != LP->getPersonalityFn())
948              return false;
949          break;
950        }
951
952      break;
953    }
954
955  // Get an iterator to the last basic block in the function, which will have
956  // the new function inlined after it.
957  //
958  Function::iterator LastBlock = &Caller->back();
959
960  // Make sure to capture all of the return instructions from the cloned
961  // function.
962  SmallVector<ReturnInst*, 8> Returns;
963  ClonedCodeInfo InlinedFunctionInfo;
964  Function::iterator FirstNewBlock;
965
966  { // Scope to destroy VMap after cloning.
967    ValueToValueMapTy VMap;
968
969    assert(CalledFunc->arg_size() == CS.arg_size() &&
970           "No varargs calls can be inlined!");
971
972    // Calculate the vector of arguments to pass into the function cloner, which
973    // matches up the formal to the actual argument values.
974    CallSite::arg_iterator AI = CS.arg_begin();
975    unsigned ArgNo = 0;
976    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
977         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
978      Value *ActualArg = *AI;
979
980      // When byval arguments actually inlined, we need to make the copy implied
981      // by them explicit.  However, we don't do this if the callee is readonly
982      // or readnone, because the copy would be unneeded: the callee doesn't
983      // modify the struct.
984      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
985        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
986                                        CalledFunc->getParamAlignment(ArgNo+1));
987
988        // Calls that we inline may use the new alloca, so we need to clear
989        // their 'tail' flags if HandleByValArgument introduced a new alloca and
990        // the callee has calls.
991        MustClearTailCallFlags |= ActualArg != *AI;
992      }
993
994      VMap[I] = ActualArg;
995    }
996
997    // We want the inliner to prune the code as it copies.  We would LOVE to
998    // have no dead or constant instructions leftover after inlining occurs
999    // (which can happen, e.g., because an argument was constant), but we'll be
1000    // happy with whatever the cloner can do.
1001    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1002                              /*ModuleLevelChanges=*/false, Returns, ".i",
1003                              &InlinedFunctionInfo, IFI.TD, TheCall);
1004
1005    // Remember the first block that is newly cloned over.
1006    FirstNewBlock = LastBlock; ++FirstNewBlock;
1007
1008    // Update the callgraph if requested.
1009    if (IFI.CG)
1010      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1011
1012    // Update inlined instructions' line number information.
1013    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1014  }
1015
1016  // If there are any alloca instructions in the block that used to be the entry
1017  // block for the callee, move them to the entry block of the caller.  First
1018  // calculate which instruction they should be inserted before.  We insert the
1019  // instructions at the end of the current alloca list.
1020  //
1021  {
1022    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1023    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1024         E = FirstNewBlock->end(); I != E; ) {
1025      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1026      if (AI == 0) continue;
1027
1028      // If the alloca is now dead, remove it.  This often occurs due to code
1029      // specialization.
1030      if (AI->use_empty()) {
1031        AI->eraseFromParent();
1032        continue;
1033      }
1034
1035      if (!isa<Constant>(AI->getArraySize()))
1036        continue;
1037
1038      // Keep track of the static allocas that we inline into the caller.
1039      IFI.StaticAllocas.push_back(AI);
1040
1041      // Scan for the block of allocas that we can move over, and move them
1042      // all at once.
1043      while (isa<AllocaInst>(I) &&
1044             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1045        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1046        ++I;
1047      }
1048
1049      // Transfer all of the allocas over in a block.  Using splice means
1050      // that the instructions aren't removed from the symbol table, then
1051      // reinserted.
1052      Caller->getEntryBlock().getInstList().splice(InsertPoint,
1053                                                   FirstNewBlock->getInstList(),
1054                                                   AI, I);
1055    }
1056  }
1057
1058  // Leave lifetime markers for the static alloca's, scoping them to the
1059  // function we just inlined.
1060  if (!IFI.StaticAllocas.empty()) {
1061    IRBuilder<> builder(FirstNewBlock->begin());
1062    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1063      AllocaInst *AI = IFI.StaticAllocas[ai];
1064
1065      // If the alloca is already scoped to something smaller than the whole
1066      // function then there's no need to add redundant, less accurate markers.
1067      if (hasLifetimeMarkers(AI))
1068        continue;
1069
1070      builder.CreateLifetimeStart(AI);
1071      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
1072        IRBuilder<> builder(Returns[ri]);
1073        builder.CreateLifetimeEnd(AI);
1074      }
1075    }
1076  }
1077
1078  // If the inlined code contained dynamic alloca instructions, wrap the inlined
1079  // code with llvm.stacksave/llvm.stackrestore intrinsics.
1080  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1081    Module *M = Caller->getParent();
1082    // Get the two intrinsics we care about.
1083    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1084    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1085
1086    // Insert the llvm.stacksave.
1087    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
1088      .CreateCall(StackSave, "savedstack");
1089
1090    // Insert a call to llvm.stackrestore before any return instructions in the
1091    // inlined function.
1092    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1093      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
1094    }
1095
1096    // Count the number of StackRestore calls we insert.
1097    unsigned NumStackRestores = Returns.size();
1098
1099    // If we are inlining an invoke instruction, insert restores before each
1100    // unwind.  These unwinds will be rewritten into branches later.
1101    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
1102      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1103           BB != E; ++BB)
1104        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
1105          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
1106          ++NumStackRestores;
1107        }
1108    }
1109  }
1110
1111  // If we are inlining tail call instruction through a call site that isn't
1112  // marked 'tail', we must remove the tail marker for any calls in the inlined
1113  // code.  Also, calls inlined through a 'nounwind' call site should be marked
1114  // 'nounwind'.
1115  if (InlinedFunctionInfo.ContainsCalls &&
1116      (MustClearTailCallFlags || MarkNoUnwind)) {
1117    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1118         BB != E; ++BB)
1119      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1120        if (CallInst *CI = dyn_cast<CallInst>(I)) {
1121          if (MustClearTailCallFlags)
1122            CI->setTailCall(false);
1123          if (MarkNoUnwind)
1124            CI->setDoesNotThrow();
1125        }
1126  }
1127
1128  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
1129  // instructions are unreachable.
1130  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
1131    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1132         BB != E; ++BB) {
1133      TerminatorInst *Term = BB->getTerminator();
1134      if (isa<UnwindInst>(Term)) {
1135        new UnreachableInst(Context, Term);
1136        BB->getInstList().erase(Term);
1137      }
1138    }
1139
1140  // If we are inlining for an invoke instruction, we must make sure to rewrite
1141  // any inlined 'unwind' instructions into branches to the invoke exception
1142  // destination, and call instructions into invoke instructions.
1143  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1144    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1145
1146  // If we cloned in _exactly one_ basic block, and if that block ends in a
1147  // return instruction, we splice the body of the inlined callee directly into
1148  // the calling basic block.
1149  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1150    // Move all of the instructions right before the call.
1151    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1152                                 FirstNewBlock->begin(), FirstNewBlock->end());
1153    // Remove the cloned basic block.
1154    Caller->getBasicBlockList().pop_back();
1155
1156    // If the call site was an invoke instruction, add a branch to the normal
1157    // destination.
1158    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1159      BranchInst::Create(II->getNormalDest(), TheCall);
1160
1161    // If the return instruction returned a value, replace uses of the call with
1162    // uses of the returned value.
1163    if (!TheCall->use_empty()) {
1164      ReturnInst *R = Returns[0];
1165      if (TheCall == R->getReturnValue())
1166        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1167      else
1168        TheCall->replaceAllUsesWith(R->getReturnValue());
1169    }
1170    // Since we are now done with the Call/Invoke, we can delete it.
1171    TheCall->eraseFromParent();
1172
1173    // Since we are now done with the return instruction, delete it also.
1174    Returns[0]->eraseFromParent();
1175
1176    // We are now done with the inlining.
1177    return true;
1178  }
1179
1180  // Otherwise, we have the normal case, of more than one block to inline or
1181  // multiple return sites.
1182
1183  // We want to clone the entire callee function into the hole between the
1184  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1185  // this is an invoke instruction or a call instruction.
1186  BasicBlock *AfterCallBB;
1187  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1188
1189    // Add an unconditional branch to make this look like the CallInst case...
1190    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1191
1192    // Split the basic block.  This guarantees that no PHI nodes will have to be
1193    // updated due to new incoming edges, and make the invoke case more
1194    // symmetric to the call case.
1195    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1196                                          CalledFunc->getName()+".exit");
1197
1198  } else {  // It's a call
1199    // If this is a call instruction, we need to split the basic block that
1200    // the call lives in.
1201    //
1202    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1203                                          CalledFunc->getName()+".exit");
1204  }
1205
1206  // Change the branch that used to go to AfterCallBB to branch to the first
1207  // basic block of the inlined function.
1208  //
1209  TerminatorInst *Br = OrigBB->getTerminator();
1210  assert(Br && Br->getOpcode() == Instruction::Br &&
1211         "splitBasicBlock broken!");
1212  Br->setOperand(0, FirstNewBlock);
1213
1214
1215  // Now that the function is correct, make it a little bit nicer.  In
1216  // particular, move the basic blocks inserted from the end of the function
1217  // into the space made by splitting the source basic block.
1218  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1219                                     FirstNewBlock, Caller->end());
1220
1221  // Handle all of the return instructions that we just cloned in, and eliminate
1222  // any users of the original call/invoke instruction.
1223  Type *RTy = CalledFunc->getReturnType();
1224
1225  PHINode *PHI = 0;
1226  if (Returns.size() > 1) {
1227    // The PHI node should go at the front of the new basic block to merge all
1228    // possible incoming values.
1229    if (!TheCall->use_empty()) {
1230      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1231                            AfterCallBB->begin());
1232      // Anything that used the result of the function call should now use the
1233      // PHI node as their operand.
1234      TheCall->replaceAllUsesWith(PHI);
1235    }
1236
1237    // Loop over all of the return instructions adding entries to the PHI node
1238    // as appropriate.
1239    if (PHI) {
1240      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1241        ReturnInst *RI = Returns[i];
1242        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1243               "Ret value not consistent in function!");
1244        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1245      }
1246    }
1247
1248
1249    // Add a branch to the merge points and remove return instructions.
1250    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1251      ReturnInst *RI = Returns[i];
1252      BranchInst::Create(AfterCallBB, RI);
1253      RI->eraseFromParent();
1254    }
1255  } else if (!Returns.empty()) {
1256    // Otherwise, if there is exactly one return value, just replace anything
1257    // using the return value of the call with the computed value.
1258    if (!TheCall->use_empty()) {
1259      if (TheCall == Returns[0]->getReturnValue())
1260        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1261      else
1262        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1263    }
1264
1265    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1266    BasicBlock *ReturnBB = Returns[0]->getParent();
1267    ReturnBB->replaceAllUsesWith(AfterCallBB);
1268
1269    // Splice the code from the return block into the block that it will return
1270    // to, which contains the code that was after the call.
1271    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1272                                      ReturnBB->getInstList());
1273
1274    // Delete the return instruction now and empty ReturnBB now.
1275    Returns[0]->eraseFromParent();
1276    ReturnBB->eraseFromParent();
1277  } else if (!TheCall->use_empty()) {
1278    // No returns, but something is using the return value of the call.  Just
1279    // nuke the result.
1280    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1281  }
1282
1283  // Since we are now done with the Call/Invoke, we can delete it.
1284  TheCall->eraseFromParent();
1285
1286  // We should always be able to fold the entry block of the function into the
1287  // single predecessor of the block...
1288  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1289  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1290
1291  // Splice the code entry block into calling block, right before the
1292  // unconditional branch.
1293  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1294  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1295
1296  // Remove the unconditional branch.
1297  OrigBB->getInstList().erase(Br);
1298
1299  // Now we can remove the CalleeEntry block, which is now empty.
1300  Caller->getBasicBlockList().erase(CalleeEntry);
1301
1302  // If we inserted a phi node, check to see if it has a single value (e.g. all
1303  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1304  // block other optimizations.
1305  if (PHI)
1306    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1307      PHI->replaceAllUsesWith(V);
1308      PHI->eraseFromParent();
1309    }
1310
1311  return true;
1312}
1313