InlineFunction.cpp revision aeff385e3e21a3cde564ef49da1bdd7b745aa44c
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/CallSite.h"
29using namespace llvm;
30
31bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
32  return InlineFunction(CallSite(CI), IFI);
33}
34bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
35  return InlineFunction(CallSite(II), IFI);
36}
37
38
39/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
40/// an invoke, we have to turn all of the calls that can throw into
41/// invokes.  This function analyze BB to see if there are any calls, and if so,
42/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
43/// nodes in that block with the values specified in InvokeDestPHIValues.
44///
45static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
46                                                   BasicBlock *InvokeDest,
47                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
48  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
49    Instruction *I = BBI++;
50
51    // We only need to check for function calls: inlined invoke
52    // instructions require no special handling.
53    CallInst *CI = dyn_cast<CallInst>(I);
54    if (CI == 0) continue;
55
56    // If this call cannot unwind, don't convert it to an invoke.
57    if (CI->doesNotThrow())
58      continue;
59
60    // Convert this function call into an invoke instruction.
61    // First, split the basic block.
62    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
63
64    // Next, create the new invoke instruction, inserting it at the end
65    // of the old basic block.
66    ImmutableCallSite CS(CI);
67    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
68    InvokeInst *II =
69      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
70                         InvokeArgs.begin(), InvokeArgs.end(),
71                         CI->getName(), BB->getTerminator());
72    II->setCallingConv(CI->getCallingConv());
73    II->setAttributes(CI->getAttributes());
74
75    // Make sure that anything using the call now uses the invoke!  This also
76    // updates the CallGraph if present, because it uses a WeakVH.
77    CI->replaceAllUsesWith(II);
78
79    // Delete the unconditional branch inserted by splitBasicBlock
80    BB->getInstList().pop_back();
81    Split->getInstList().pop_front();  // Delete the original call
82
83    // Update any PHI nodes in the exceptional block to indicate that
84    // there is now a new entry in them.
85    unsigned i = 0;
86    for (BasicBlock::iterator I = InvokeDest->begin();
87         isa<PHINode>(I); ++I, ++i)
88      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
89
90    // This basic block is now complete, the caller will continue scanning the
91    // next one.
92    return;
93  }
94}
95
96
97/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
98/// in the body of the inlined function into invokes and turn unwind
99/// instructions into branches to the invoke unwind dest.
100///
101/// II is the invoke instruction being inlined.  FirstNewBlock is the first
102/// block of the inlined code (the last block is the end of the function),
103/// and InlineCodeInfo is information about the code that got inlined.
104static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
105                                ClonedCodeInfo &InlinedCodeInfo) {
106  BasicBlock *InvokeDest = II->getUnwindDest();
107  SmallVector<Value*, 8> InvokeDestPHIValues;
108
109  // If there are PHI nodes in the unwind destination block, we need to
110  // keep track of which values came into them from this invoke, then remove
111  // the entry for this block.
112  BasicBlock *InvokeBlock = II->getParent();
113  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
114    PHINode *PN = cast<PHINode>(I);
115    // Save the value to use for this edge.
116    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
117  }
118
119  Function *Caller = FirstNewBlock->getParent();
120
121  // The inlined code is currently at the end of the function, scan from the
122  // start of the inlined code to its end, checking for stuff we need to
123  // rewrite.  If the code doesn't have calls or unwinds, we know there is
124  // nothing to rewrite.
125  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
126    // Now that everything is happy, we have one final detail.  The PHI nodes in
127    // the exception destination block still have entries due to the original
128    // invoke instruction.  Eliminate these entries (which might even delete the
129    // PHI node) now.
130    InvokeDest->removePredecessor(II->getParent());
131    return;
132  }
133
134  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
135    if (InlinedCodeInfo.ContainsCalls)
136      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
137                                             InvokeDestPHIValues);
138
139    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
140      // An UnwindInst requires special handling when it gets inlined into an
141      // invoke site.  Once this happens, we know that the unwind would cause
142      // a control transfer to the invoke exception destination, so we can
143      // transform it into a direct branch to the exception destination.
144      BranchInst::Create(InvokeDest, UI);
145
146      // Delete the unwind instruction!
147      UI->eraseFromParent();
148
149      // Update any PHI nodes in the exceptional block to indicate that
150      // there is now a new entry in them.
151      unsigned i = 0;
152      for (BasicBlock::iterator I = InvokeDest->begin();
153           isa<PHINode>(I); ++I, ++i) {
154        PHINode *PN = cast<PHINode>(I);
155        PN->addIncoming(InvokeDestPHIValues[i], BB);
156      }
157    }
158  }
159
160  // Now that everything is happy, we have one final detail.  The PHI nodes in
161  // the exception destination block still have entries due to the original
162  // invoke instruction.  Eliminate these entries (which might even delete the
163  // PHI node) now.
164  InvokeDest->removePredecessor(II->getParent());
165}
166
167/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
168/// into the caller, update the specified callgraph to reflect the changes we
169/// made.  Note that it's possible that not all code was copied over, so only
170/// some edges of the callgraph may remain.
171static void UpdateCallGraphAfterInlining(CallSite CS,
172                                         Function::iterator FirstNewBlock,
173                                         ValueMap<const Value*, Value*> &VMap,
174                                         InlineFunctionInfo &IFI) {
175  CallGraph &CG = *IFI.CG;
176  const Function *Caller = CS.getInstruction()->getParent()->getParent();
177  const Function *Callee = CS.getCalledFunction();
178  CallGraphNode *CalleeNode = CG[Callee];
179  CallGraphNode *CallerNode = CG[Caller];
180
181  // Since we inlined some uninlined call sites in the callee into the caller,
182  // add edges from the caller to all of the callees of the callee.
183  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
184
185  // Consider the case where CalleeNode == CallerNode.
186  CallGraphNode::CalledFunctionsVector CallCache;
187  if (CalleeNode == CallerNode) {
188    CallCache.assign(I, E);
189    I = CallCache.begin();
190    E = CallCache.end();
191  }
192
193  for (; I != E; ++I) {
194    const Value *OrigCall = I->first;
195
196    ValueMap<const Value*, Value*>::iterator VMI = VMap.find(OrigCall);
197    // Only copy the edge if the call was inlined!
198    if (VMI == VMap.end() || VMI->second == 0)
199      continue;
200
201    // If the call was inlined, but then constant folded, there is no edge to
202    // add.  Check for this case.
203    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
204    if (NewCall == 0) continue;
205
206    // Remember that this call site got inlined for the client of
207    // InlineFunction.
208    IFI.InlinedCalls.push_back(NewCall);
209
210    // It's possible that inlining the callsite will cause it to go from an
211    // indirect to a direct call by resolving a function pointer.  If this
212    // happens, set the callee of the new call site to a more precise
213    // destination.  This can also happen if the call graph node of the caller
214    // was just unnecessarily imprecise.
215    if (I->second->getFunction() == 0)
216      if (Function *F = CallSite(NewCall).getCalledFunction()) {
217        // Indirect call site resolved to direct call.
218        CallerNode->addCalledFunction(CallSite::get(NewCall), CG[F]);
219
220        continue;
221      }
222
223    CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
224  }
225
226  // Update the call graph by deleting the edge from Callee to Caller.  We must
227  // do this after the loop above in case Caller and Callee are the same.
228  CallerNode->removeCallEdgeFor(CS);
229}
230
231// InlineFunction - This function inlines the called function into the basic
232// block of the caller.  This returns false if it is not possible to inline this
233// call.  The program is still in a well defined state if this occurs though.
234//
235// Note that this only does one level of inlining.  For example, if the
236// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
237// exists in the instruction stream.  Similiarly this will inline a recursive
238// function by one level.
239//
240bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
241  Instruction *TheCall = CS.getInstruction();
242  LLVMContext &Context = TheCall->getContext();
243  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
244         "Instruction not in function!");
245
246  // If IFI has any state in it, zap it before we fill it in.
247  IFI.reset();
248
249  const Function *CalledFunc = CS.getCalledFunction();
250  if (CalledFunc == 0 ||          // Can't inline external function or indirect
251      CalledFunc->isDeclaration() || // call, or call to a vararg function!
252      CalledFunc->getFunctionType()->isVarArg()) return false;
253
254
255  // If the call to the callee is not a tail call, we must clear the 'tail'
256  // flags on any calls that we inline.
257  bool MustClearTailCallFlags =
258    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
259
260  // If the call to the callee cannot throw, set the 'nounwind' flag on any
261  // calls that we inline.
262  bool MarkNoUnwind = CS.doesNotThrow();
263
264  BasicBlock *OrigBB = TheCall->getParent();
265  Function *Caller = OrigBB->getParent();
266
267  // GC poses two hazards to inlining, which only occur when the callee has GC:
268  //  1. If the caller has no GC, then the callee's GC must be propagated to the
269  //     caller.
270  //  2. If the caller has a differing GC, it is invalid to inline.
271  if (CalledFunc->hasGC()) {
272    if (!Caller->hasGC())
273      Caller->setGC(CalledFunc->getGC());
274    else if (CalledFunc->getGC() != Caller->getGC())
275      return false;
276  }
277
278  // Get an iterator to the last basic block in the function, which will have
279  // the new function inlined after it.
280  //
281  Function::iterator LastBlock = &Caller->back();
282
283  // Make sure to capture all of the return instructions from the cloned
284  // function.
285  SmallVector<ReturnInst*, 8> Returns;
286  ClonedCodeInfo InlinedFunctionInfo;
287  Function::iterator FirstNewBlock;
288
289  { // Scope to destroy VMap after cloning.
290    ValueMap<const Value*, Value*> VMap;
291
292    assert(CalledFunc->arg_size() == CS.arg_size() &&
293           "No varargs calls can be inlined!");
294
295    // Calculate the vector of arguments to pass into the function cloner, which
296    // matches up the formal to the actual argument values.
297    CallSite::arg_iterator AI = CS.arg_begin();
298    unsigned ArgNo = 0;
299    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
300         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
301      Value *ActualArg = *AI;
302
303      // When byval arguments actually inlined, we need to make the copy implied
304      // by them explicit.  However, we don't do this if the callee is readonly
305      // or readnone, because the copy would be unneeded: the callee doesn't
306      // modify the struct.
307      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
308          !CalledFunc->onlyReadsMemory()) {
309        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
310        const Type *VoidPtrTy =
311            Type::getInt8PtrTy(Context);
312
313        // Create the alloca.  If we have TargetData, use nice alignment.
314        unsigned Align = 1;
315        if (IFI.TD) Align = IFI.TD->getPrefTypeAlignment(AggTy);
316        Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
317                                          I->getName(),
318                                          &*Caller->begin()->begin());
319        // Emit a memcpy.
320        const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
321        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
322                                                       Intrinsic::memcpy,
323                                                       Tys, 3);
324        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
325        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
326
327        Value *Size;
328        if (IFI.TD == 0)
329          Size = ConstantExpr::getSizeOf(AggTy);
330        else
331          Size = ConstantInt::get(Type::getInt64Ty(Context),
332                                  IFI.TD->getTypeStoreSize(AggTy));
333
334        // Always generate a memcpy of alignment 1 here because we don't know
335        // the alignment of the src pointer.  Other optimizations can infer
336        // better alignment.
337        Value *CallArgs[] = {
338          DestCast, SrcCast, Size,
339          ConstantInt::get(Type::getInt32Ty(Context), 1),
340          ConstantInt::get(Type::getInt1Ty(Context), 0)
341        };
342        CallInst *TheMemCpy =
343          CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
344
345        // If we have a call graph, update it.
346        if (CallGraph *CG = IFI.CG) {
347          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
348          CallGraphNode *CallerNode = (*CG)[Caller];
349          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
350        }
351
352        // Uses of the argument in the function should use our new alloca
353        // instead.
354        ActualArg = NewAlloca;
355
356        // Calls that we inline may use the new alloca, so we need to clear
357        // their 'tail' flags.
358        MustClearTailCallFlags = true;
359      }
360
361      VMap[I] = ActualArg;
362    }
363
364    // We want the inliner to prune the code as it copies.  We would LOVE to
365    // have no dead or constant instructions leftover after inlining occurs
366    // (which can happen, e.g., because an argument was constant), but we'll be
367    // happy with whatever the cloner can do.
368    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, Returns, ".i",
369                              &InlinedFunctionInfo, IFI.TD, TheCall);
370
371    // Remember the first block that is newly cloned over.
372    FirstNewBlock = LastBlock; ++FirstNewBlock;
373
374    // Update the callgraph if requested.
375    if (IFI.CG)
376      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
377  }
378
379  // If there are any alloca instructions in the block that used to be the entry
380  // block for the callee, move them to the entry block of the caller.  First
381  // calculate which instruction they should be inserted before.  We insert the
382  // instructions at the end of the current alloca list.
383  //
384  {
385    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
386    for (BasicBlock::iterator I = FirstNewBlock->begin(),
387         E = FirstNewBlock->end(); I != E; ) {
388      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
389      if (AI == 0) continue;
390
391      // If the alloca is now dead, remove it.  This often occurs due to code
392      // specialization.
393      if (AI->use_empty()) {
394        AI->eraseFromParent();
395        continue;
396      }
397
398      if (!isa<Constant>(AI->getArraySize()))
399        continue;
400
401      // Keep track of the static allocas that we inline into the caller if the
402      // StaticAllocas pointer is non-null.
403      IFI.StaticAllocas.push_back(AI);
404
405      // Scan for the block of allocas that we can move over, and move them
406      // all at once.
407      while (isa<AllocaInst>(I) &&
408             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
409        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
410        ++I;
411      }
412
413      // Transfer all of the allocas over in a block.  Using splice means
414      // that the instructions aren't removed from the symbol table, then
415      // reinserted.
416      Caller->getEntryBlock().getInstList().splice(InsertPoint,
417                                                   FirstNewBlock->getInstList(),
418                                                   AI, I);
419    }
420  }
421
422  // If the inlined code contained dynamic alloca instructions, wrap the inlined
423  // code with llvm.stacksave/llvm.stackrestore intrinsics.
424  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
425    Module *M = Caller->getParent();
426    // Get the two intrinsics we care about.
427    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
428    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
429
430    // If we are preserving the callgraph, add edges to the stacksave/restore
431    // functions for the calls we insert.
432    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
433    if (CallGraph *CG = IFI.CG) {
434      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
435      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
436      CallerNode = (*CG)[Caller];
437    }
438
439    // Insert the llvm.stacksave.
440    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
441                                          FirstNewBlock->begin());
442    if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
443
444    // Insert a call to llvm.stackrestore before any return instructions in the
445    // inlined function.
446    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
447      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
448      if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
449    }
450
451    // Count the number of StackRestore calls we insert.
452    unsigned NumStackRestores = Returns.size();
453
454    // If we are inlining an invoke instruction, insert restores before each
455    // unwind.  These unwinds will be rewritten into branches later.
456    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
457      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
458           BB != E; ++BB)
459        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
460          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
461          if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
462          ++NumStackRestores;
463        }
464    }
465  }
466
467  // If we are inlining tail call instruction through a call site that isn't
468  // marked 'tail', we must remove the tail marker for any calls in the inlined
469  // code.  Also, calls inlined through a 'nounwind' call site should be marked
470  // 'nounwind'.
471  if (InlinedFunctionInfo.ContainsCalls &&
472      (MustClearTailCallFlags || MarkNoUnwind)) {
473    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
474         BB != E; ++BB)
475      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
476        if (CallInst *CI = dyn_cast<CallInst>(I)) {
477          if (MustClearTailCallFlags)
478            CI->setTailCall(false);
479          if (MarkNoUnwind)
480            CI->setDoesNotThrow();
481        }
482  }
483
484  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
485  // instructions are unreachable.
486  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
487    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
488         BB != E; ++BB) {
489      TerminatorInst *Term = BB->getTerminator();
490      if (isa<UnwindInst>(Term)) {
491        new UnreachableInst(Context, Term);
492        BB->getInstList().erase(Term);
493      }
494    }
495
496  // If we are inlining for an invoke instruction, we must make sure to rewrite
497  // any inlined 'unwind' instructions into branches to the invoke exception
498  // destination, and call instructions into invoke instructions.
499  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
500    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
501
502  // If we cloned in _exactly one_ basic block, and if that block ends in a
503  // return instruction, we splice the body of the inlined callee directly into
504  // the calling basic block.
505  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
506    // Move all of the instructions right before the call.
507    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
508                                 FirstNewBlock->begin(), FirstNewBlock->end());
509    // Remove the cloned basic block.
510    Caller->getBasicBlockList().pop_back();
511
512    // If the call site was an invoke instruction, add a branch to the normal
513    // destination.
514    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
515      BranchInst::Create(II->getNormalDest(), TheCall);
516
517    // If the return instruction returned a value, replace uses of the call with
518    // uses of the returned value.
519    if (!TheCall->use_empty()) {
520      ReturnInst *R = Returns[0];
521      if (TheCall == R->getReturnValue())
522        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
523      else
524        TheCall->replaceAllUsesWith(R->getReturnValue());
525    }
526    // Since we are now done with the Call/Invoke, we can delete it.
527    TheCall->eraseFromParent();
528
529    // Since we are now done with the return instruction, delete it also.
530    Returns[0]->eraseFromParent();
531
532    // We are now done with the inlining.
533    return true;
534  }
535
536  // Otherwise, we have the normal case, of more than one block to inline or
537  // multiple return sites.
538
539  // We want to clone the entire callee function into the hole between the
540  // "starter" and "ender" blocks.  How we accomplish this depends on whether
541  // this is an invoke instruction or a call instruction.
542  BasicBlock *AfterCallBB;
543  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
544
545    // Add an unconditional branch to make this look like the CallInst case...
546    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
547
548    // Split the basic block.  This guarantees that no PHI nodes will have to be
549    // updated due to new incoming edges, and make the invoke case more
550    // symmetric to the call case.
551    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
552                                          CalledFunc->getName()+".exit");
553
554  } else {  // It's a call
555    // If this is a call instruction, we need to split the basic block that
556    // the call lives in.
557    //
558    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
559                                          CalledFunc->getName()+".exit");
560  }
561
562  // Change the branch that used to go to AfterCallBB to branch to the first
563  // basic block of the inlined function.
564  //
565  TerminatorInst *Br = OrigBB->getTerminator();
566  assert(Br && Br->getOpcode() == Instruction::Br &&
567         "splitBasicBlock broken!");
568  Br->setOperand(0, FirstNewBlock);
569
570
571  // Now that the function is correct, make it a little bit nicer.  In
572  // particular, move the basic blocks inserted from the end of the function
573  // into the space made by splitting the source basic block.
574  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
575                                     FirstNewBlock, Caller->end());
576
577  // Handle all of the return instructions that we just cloned in, and eliminate
578  // any users of the original call/invoke instruction.
579  const Type *RTy = CalledFunc->getReturnType();
580
581  if (Returns.size() > 1) {
582    // The PHI node should go at the front of the new basic block to merge all
583    // possible incoming values.
584    PHINode *PHI = 0;
585    if (!TheCall->use_empty()) {
586      PHI = PHINode::Create(RTy, TheCall->getName(),
587                            AfterCallBB->begin());
588      // Anything that used the result of the function call should now use the
589      // PHI node as their operand.
590      TheCall->replaceAllUsesWith(PHI);
591    }
592
593    // Loop over all of the return instructions adding entries to the PHI node
594    // as appropriate.
595    if (PHI) {
596      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
597        ReturnInst *RI = Returns[i];
598        assert(RI->getReturnValue()->getType() == PHI->getType() &&
599               "Ret value not consistent in function!");
600        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
601      }
602
603      // Now that we inserted the PHI, check to see if it has a single value
604      // (e.g. all the entries are the same or undef).  If so, remove the PHI so
605      // it doesn't block other optimizations.
606      if (Value *V = PHI->hasConstantValue()) {
607        PHI->replaceAllUsesWith(V);
608        PHI->eraseFromParent();
609      }
610    }
611
612
613    // Add a branch to the merge points and remove return instructions.
614    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
615      ReturnInst *RI = Returns[i];
616      BranchInst::Create(AfterCallBB, RI);
617      RI->eraseFromParent();
618    }
619  } else if (!Returns.empty()) {
620    // Otherwise, if there is exactly one return value, just replace anything
621    // using the return value of the call with the computed value.
622    if (!TheCall->use_empty()) {
623      if (TheCall == Returns[0]->getReturnValue())
624        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
625      else
626        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
627    }
628
629    // Splice the code from the return block into the block that it will return
630    // to, which contains the code that was after the call.
631    BasicBlock *ReturnBB = Returns[0]->getParent();
632    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
633                                      ReturnBB->getInstList());
634
635    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
636    ReturnBB->replaceAllUsesWith(AfterCallBB);
637
638    // Delete the return instruction now and empty ReturnBB now.
639    Returns[0]->eraseFromParent();
640    ReturnBB->eraseFromParent();
641  } else if (!TheCall->use_empty()) {
642    // No returns, but something is using the return value of the call.  Just
643    // nuke the result.
644    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
645  }
646
647  // Since we are now done with the Call/Invoke, we can delete it.
648  TheCall->eraseFromParent();
649
650  // We should always be able to fold the entry block of the function into the
651  // single predecessor of the block...
652  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
653  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
654
655  // Splice the code entry block into calling block, right before the
656  // unconditional branch.
657  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
658  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
659
660  // Remove the unconditional branch.
661  OrigBB->getInstList().erase(Br);
662
663  // Now we can remove the CalleeEntry block, which is now empty.
664  Caller->getBasicBlockList().erase(CalleeEntry);
665
666  return true;
667}
668