InlineFunction.cpp revision baf3c404409d5e47b13984a7f95bfbd6d1f2e79e
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Attributes.h"
24#include "llvm/Analysis/CallGraph.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/CallSite.h"
30using namespace llvm;
31
32bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(CI), CG, TD);
34}
35bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
36  return InlineFunction(CallSite(II), CG, TD);
37}
38
39/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
40/// in the body of the inlined function into invokes and turn unwind
41/// instructions into branches to the invoke unwind dest.
42///
43/// II is the invoke instruction being inlined.  FirstNewBlock is the first
44/// block of the inlined code (the last block is the end of the function),
45/// and InlineCodeInfo is information about the code that got inlined.
46static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
47                                ClonedCodeInfo &InlinedCodeInfo,
48                                CallGraph *CG) {
49  BasicBlock *InvokeDest = II->getUnwindDest();
50  std::vector<Value*> InvokeDestPHIValues;
51
52  // If there are PHI nodes in the unwind destination block, we need to
53  // keep track of which values came into them from this invoke, then remove
54  // the entry for this block.
55  BasicBlock *InvokeBlock = II->getParent();
56  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
57    PHINode *PN = cast<PHINode>(I);
58    // Save the value to use for this edge.
59    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
60  }
61
62  Function *Caller = FirstNewBlock->getParent();
63
64  // The inlined code is currently at the end of the function, scan from the
65  // start of the inlined code to its end, checking for stuff we need to
66  // rewrite.
67  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
68    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
69         BB != E; ++BB) {
70      if (InlinedCodeInfo.ContainsCalls) {
71        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
72          Instruction *I = BBI++;
73
74          // We only need to check for function calls: inlined invoke
75          // instructions require no special handling.
76          if (!isa<CallInst>(I)) continue;
77          CallInst *CI = cast<CallInst>(I);
78
79          // If this call cannot unwind, don't convert it to an invoke.
80          if (CI->doesNotThrow())
81            continue;
82
83          // Convert this function call into an invoke instruction.
84          // First, split the basic block.
85          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
86
87          // Next, create the new invoke instruction, inserting it at the end
88          // of the old basic block.
89          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
90          InvokeInst *II =
91            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
92                               InvokeArgs.begin(), InvokeArgs.end(),
93                               CI->getName(), BB->getTerminator());
94          II->setCallingConv(CI->getCallingConv());
95          II->setAttributes(CI->getAttributes());
96
97          // Make sure that anything using the call now uses the invoke!
98          CI->replaceAllUsesWith(II);
99
100          // Update the callgraph.
101          if (CG) {
102            // We should be able to do this:
103            //   (*CG)[Caller]->replaceCallSite(CI, II);
104            // but that fails if the old call site isn't in the call graph,
105            // which, because of LLVM bug 3601, it sometimes isn't.
106            CallGraphNode *CGN = (*CG)[Caller];
107            for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
108                 NI != NE; ++NI) {
109              if (NI->first == CI) {
110                NI->first = II;
111                break;
112              }
113            }
114          }
115
116          // Delete the unconditional branch inserted by splitBasicBlock
117          BB->getInstList().pop_back();
118          Split->getInstList().pop_front();  // Delete the original call
119
120          // Update any PHI nodes in the exceptional block to indicate that
121          // there is now a new entry in them.
122          unsigned i = 0;
123          for (BasicBlock::iterator I = InvokeDest->begin();
124               isa<PHINode>(I); ++I, ++i) {
125            PHINode *PN = cast<PHINode>(I);
126            PN->addIncoming(InvokeDestPHIValues[i], BB);
127          }
128
129          // This basic block is now complete, start scanning the next one.
130          break;
131        }
132      }
133
134      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
135        // An UnwindInst requires special handling when it gets inlined into an
136        // invoke site.  Once this happens, we know that the unwind would cause
137        // a control transfer to the invoke exception destination, so we can
138        // transform it into a direct branch to the exception destination.
139        BranchInst::Create(InvokeDest, UI);
140
141        // Delete the unwind instruction!
142        UI->eraseFromParent();
143
144        // Update any PHI nodes in the exceptional block to indicate that
145        // there is now a new entry in them.
146        unsigned i = 0;
147        for (BasicBlock::iterator I = InvokeDest->begin();
148             isa<PHINode>(I); ++I, ++i) {
149          PHINode *PN = cast<PHINode>(I);
150          PN->addIncoming(InvokeDestPHIValues[i], BB);
151        }
152      }
153    }
154  }
155
156  // Now that everything is happy, we have one final detail.  The PHI nodes in
157  // the exception destination block still have entries due to the original
158  // invoke instruction.  Eliminate these entries (which might even delete the
159  // PHI node) now.
160  InvokeDest->removePredecessor(II->getParent());
161}
162
163/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
164/// into the caller, update the specified callgraph to reflect the changes we
165/// made.  Note that it's possible that not all code was copied over, so only
166/// some edges of the callgraph may remain.
167static void UpdateCallGraphAfterInlining(CallSite CS,
168                                         Function::iterator FirstNewBlock,
169                                       DenseMap<const Value*, Value*> &ValueMap,
170                                         CallGraph &CG) {
171  const Function *Caller = CS.getInstruction()->getParent()->getParent();
172  const Function *Callee = CS.getCalledFunction();
173  CallGraphNode *CalleeNode = CG[Callee];
174  CallGraphNode *CallerNode = CG[Caller];
175
176  // Since we inlined some uninlined call sites in the callee into the caller,
177  // add edges from the caller to all of the callees of the callee.
178  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
179
180  // Consider the case where CalleeNode == CallerNode.
181  CallGraphNode::CalledFunctionsVector CallCache;
182  if (CalleeNode == CallerNode) {
183    CallCache.assign(I, E);
184    I = CallCache.begin();
185    E = CallCache.end();
186  }
187
188  for (; I != E; ++I) {
189    const Instruction *OrigCall = I->first.getInstruction();
190
191    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
192    // Only copy the edge if the call was inlined!
193    if (VMI != ValueMap.end() && VMI->second) {
194      // If the call was inlined, but then constant folded, there is no edge to
195      // add.  Check for this case.
196      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
197        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
198    }
199  }
200  // Update the call graph by deleting the edge from Callee to Caller.  We must
201  // do this after the loop above in case Caller and Callee are the same.
202  CallerNode->removeCallEdgeFor(CS);
203}
204
205/// findFnRegionEndMarker - This is a utility routine that is used by
206/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
207/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
208static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
209
210  GlobalVariable *FnStart = NULL;
211  const DbgRegionEndInst *FnEnd = NULL;
212  for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
213    for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
214         ++BI) {
215      if (FnStart == NULL)  {
216        if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
217          DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
218          assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
219          if (SP.describes(F))
220            FnStart = SP.getGV();
221        }
222      } else {
223        if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
224          if (REI->getContext() == FnStart)
225            FnEnd = REI;
226      }
227    }
228  return FnEnd;
229}
230
231// InlineFunction - This function inlines the called function into the basic
232// block of the caller.  This returns false if it is not possible to inline this
233// call.  The program is still in a well defined state if this occurs though.
234//
235// Note that this only does one level of inlining.  For example, if the
236// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
237// exists in the instruction stream.  Similiarly this will inline a recursive
238// function by one level.
239//
240bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
241  Instruction *TheCall = CS.getInstruction();
242  LLVMContext &Context = TheCall->getContext();
243  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
244         "Instruction not in function!");
245
246  const Function *CalledFunc = CS.getCalledFunction();
247  if (CalledFunc == 0 ||          // Can't inline external function or indirect
248      CalledFunc->isDeclaration() || // call, or call to a vararg function!
249      CalledFunc->getFunctionType()->isVarArg()) return false;
250
251
252  // If the call to the callee is not a tail call, we must clear the 'tail'
253  // flags on any calls that we inline.
254  bool MustClearTailCallFlags =
255    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
256
257  // If the call to the callee cannot throw, set the 'nounwind' flag on any
258  // calls that we inline.
259  bool MarkNoUnwind = CS.doesNotThrow();
260
261  BasicBlock *OrigBB = TheCall->getParent();
262  Function *Caller = OrigBB->getParent();
263
264  // GC poses two hazards to inlining, which only occur when the callee has GC:
265  //  1. If the caller has no GC, then the callee's GC must be propagated to the
266  //     caller.
267  //  2. If the caller has a differing GC, it is invalid to inline.
268  if (CalledFunc->hasGC()) {
269    if (!Caller->hasGC())
270      Caller->setGC(CalledFunc->getGC());
271    else if (CalledFunc->getGC() != Caller->getGC())
272      return false;
273  }
274
275  // Get an iterator to the last basic block in the function, which will have
276  // the new function inlined after it.
277  //
278  Function::iterator LastBlock = &Caller->back();
279
280  // Make sure to capture all of the return instructions from the cloned
281  // function.
282  std::vector<ReturnInst*> Returns;
283  ClonedCodeInfo InlinedFunctionInfo;
284  Function::iterator FirstNewBlock;
285
286  { // Scope to destroy ValueMap after cloning.
287    DenseMap<const Value*, Value*> ValueMap;
288
289    assert(CalledFunc->arg_size() == CS.arg_size() &&
290           "No varargs calls can be inlined!");
291
292    // Calculate the vector of arguments to pass into the function cloner, which
293    // matches up the formal to the actual argument values.
294    CallSite::arg_iterator AI = CS.arg_begin();
295    unsigned ArgNo = 0;
296    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
297         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
298      Value *ActualArg = *AI;
299
300      // When byval arguments actually inlined, we need to make the copy implied
301      // by them explicit.  However, we don't do this if the callee is readonly
302      // or readnone, because the copy would be unneeded: the callee doesn't
303      // modify the struct.
304      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
305          !CalledFunc->onlyReadsMemory()) {
306        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
307        const Type *VoidPtrTy = Context.getPointerTypeUnqual(Type::Int8Ty);
308
309        // Create the alloca.  If we have TargetData, use nice alignment.
310        unsigned Align = 1;
311        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
312        Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
313                                          I->getName(),
314                                          &*Caller->begin()->begin());
315        // Emit a memcpy.
316        const Type *Tys[] = { Type::Int64Ty };
317        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
318                                                       Intrinsic::memcpy,
319                                                       Tys, 1);
320        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
321        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
322
323        Value *Size;
324        if (TD == 0)
325          Size = ConstantExpr::getSizeOf(AggTy);
326        else
327          Size = ConstantInt::get(Type::Int64Ty,
328                                         TD->getTypeStoreSize(AggTy));
329
330        // Always generate a memcpy of alignment 1 here because we don't know
331        // the alignment of the src pointer.  Other optimizations can infer
332        // better alignment.
333        Value *CallArgs[] = {
334          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
335        };
336        CallInst *TheMemCpy =
337          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
338
339        // If we have a call graph, update it.
340        if (CG) {
341          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
342          CallGraphNode *CallerNode = (*CG)[Caller];
343          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
344        }
345
346        // Uses of the argument in the function should use our new alloca
347        // instead.
348        ActualArg = NewAlloca;
349      }
350
351      ValueMap[I] = ActualArg;
352    }
353
354    // Adjust llvm.dbg.region.end. If the CalledFunc has region end
355    // marker then clone that marker after next stop point at the
356    // call site. The function body cloner does not clone original
357    // region end marker from the CalledFunc. This will ensure that
358    // inlined function's scope ends at the right place.
359    const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
360    if (DREI) {
361      for (BasicBlock::iterator BI = TheCall,
362             BE = TheCall->getParent()->end(); BI != BE; ++BI) {
363        if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
364          if (DbgRegionEndInst *NewDREI =
365              dyn_cast<DbgRegionEndInst>(DREI->clone(Context)))
366            NewDREI->insertAfter(DSPI);
367          break;
368        }
369      }
370    }
371
372    // We want the inliner to prune the code as it copies.  We would LOVE to
373    // have no dead or constant instructions leftover after inlining occurs
374    // (which can happen, e.g., because an argument was constant), but we'll be
375    // happy with whatever the cloner can do.
376    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
377                              &InlinedFunctionInfo, TD);
378
379    // Remember the first block that is newly cloned over.
380    FirstNewBlock = LastBlock; ++FirstNewBlock;
381
382    // Update the callgraph if requested.
383    if (CG)
384      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
385  }
386
387  // If there are any alloca instructions in the block that used to be the entry
388  // block for the callee, move them to the entry block of the caller.  First
389  // calculate which instruction they should be inserted before.  We insert the
390  // instructions at the end of the current alloca list.
391  //
392  {
393    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
394    for (BasicBlock::iterator I = FirstNewBlock->begin(),
395           E = FirstNewBlock->end(); I != E; )
396      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
397        // If the alloca is now dead, remove it.  This often occurs due to code
398        // specialization.
399        if (AI->use_empty()) {
400          AI->eraseFromParent();
401          continue;
402        }
403
404        if (isa<Constant>(AI->getArraySize())) {
405          // Scan for the block of allocas that we can move over, and move them
406          // all at once.
407          while (isa<AllocaInst>(I) &&
408                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
409            ++I;
410
411          // Transfer all of the allocas over in a block.  Using splice means
412          // that the instructions aren't removed from the symbol table, then
413          // reinserted.
414          Caller->getEntryBlock().getInstList().splice(
415              InsertPoint,
416              FirstNewBlock->getInstList(),
417              AI, I);
418        }
419      }
420  }
421
422  // If the inlined code contained dynamic alloca instructions, wrap the inlined
423  // code with llvm.stacksave/llvm.stackrestore intrinsics.
424  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
425    Module *M = Caller->getParent();
426    // Get the two intrinsics we care about.
427    Constant *StackSave, *StackRestore;
428    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
429    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
430
431    // If we are preserving the callgraph, add edges to the stacksave/restore
432    // functions for the calls we insert.
433    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
434    if (CG) {
435      // We know that StackSave/StackRestore are Function*'s, because they are
436      // intrinsics which must have the right types.
437      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
438      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
439      CallerNode = (*CG)[Caller];
440    }
441
442    // Insert the llvm.stacksave.
443    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
444                                          FirstNewBlock->begin());
445    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
446
447    // Insert a call to llvm.stackrestore before any return instructions in the
448    // inlined function.
449    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
450      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
451      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
452    }
453
454    // Count the number of StackRestore calls we insert.
455    unsigned NumStackRestores = Returns.size();
456
457    // If we are inlining an invoke instruction, insert restores before each
458    // unwind.  These unwinds will be rewritten into branches later.
459    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
460      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
461           BB != E; ++BB)
462        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
463          CallInst::Create(StackRestore, SavedPtr, "", UI);
464          ++NumStackRestores;
465        }
466    }
467  }
468
469  // If we are inlining tail call instruction through a call site that isn't
470  // marked 'tail', we must remove the tail marker for any calls in the inlined
471  // code.  Also, calls inlined through a 'nounwind' call site should be marked
472  // 'nounwind'.
473  if (InlinedFunctionInfo.ContainsCalls &&
474      (MustClearTailCallFlags || MarkNoUnwind)) {
475    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
476         BB != E; ++BB)
477      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
478        if (CallInst *CI = dyn_cast<CallInst>(I)) {
479          if (MustClearTailCallFlags)
480            CI->setTailCall(false);
481          if (MarkNoUnwind)
482            CI->setDoesNotThrow();
483        }
484  }
485
486  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
487  // instructions are unreachable.
488  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
489    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
490         BB != E; ++BB) {
491      TerminatorInst *Term = BB->getTerminator();
492      if (isa<UnwindInst>(Term)) {
493        new UnreachableInst(Term);
494        BB->getInstList().erase(Term);
495      }
496    }
497
498  // If we are inlining for an invoke instruction, we must make sure to rewrite
499  // any inlined 'unwind' instructions into branches to the invoke exception
500  // destination, and call instructions into invoke instructions.
501  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
502    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
503
504  // If we cloned in _exactly one_ basic block, and if that block ends in a
505  // return instruction, we splice the body of the inlined callee directly into
506  // the calling basic block.
507  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
508    // Move all of the instructions right before the call.
509    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
510                                 FirstNewBlock->begin(), FirstNewBlock->end());
511    // Remove the cloned basic block.
512    Caller->getBasicBlockList().pop_back();
513
514    // If the call site was an invoke instruction, add a branch to the normal
515    // destination.
516    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
517      BranchInst::Create(II->getNormalDest(), TheCall);
518
519    // If the return instruction returned a value, replace uses of the call with
520    // uses of the returned value.
521    if (!TheCall->use_empty()) {
522      ReturnInst *R = Returns[0];
523      if (TheCall == R->getReturnValue())
524        TheCall->replaceAllUsesWith(Context.getUndef(TheCall->getType()));
525      else
526        TheCall->replaceAllUsesWith(R->getReturnValue());
527    }
528    // Since we are now done with the Call/Invoke, we can delete it.
529    TheCall->eraseFromParent();
530
531    // Since we are now done with the return instruction, delete it also.
532    Returns[0]->eraseFromParent();
533
534    // We are now done with the inlining.
535    return true;
536  }
537
538  // Otherwise, we have the normal case, of more than one block to inline or
539  // multiple return sites.
540
541  // We want to clone the entire callee function into the hole between the
542  // "starter" and "ender" blocks.  How we accomplish this depends on whether
543  // this is an invoke instruction or a call instruction.
544  BasicBlock *AfterCallBB;
545  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
546
547    // Add an unconditional branch to make this look like the CallInst case...
548    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
549
550    // Split the basic block.  This guarantees that no PHI nodes will have to be
551    // updated due to new incoming edges, and make the invoke case more
552    // symmetric to the call case.
553    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
554                                          CalledFunc->getName()+".exit");
555
556  } else {  // It's a call
557    // If this is a call instruction, we need to split the basic block that
558    // the call lives in.
559    //
560    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
561                                          CalledFunc->getName()+".exit");
562  }
563
564  // Change the branch that used to go to AfterCallBB to branch to the first
565  // basic block of the inlined function.
566  //
567  TerminatorInst *Br = OrigBB->getTerminator();
568  assert(Br && Br->getOpcode() == Instruction::Br &&
569         "splitBasicBlock broken!");
570  Br->setOperand(0, FirstNewBlock);
571
572
573  // Now that the function is correct, make it a little bit nicer.  In
574  // particular, move the basic blocks inserted from the end of the function
575  // into the space made by splitting the source basic block.
576  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
577                                     FirstNewBlock, Caller->end());
578
579  // Handle all of the return instructions that we just cloned in, and eliminate
580  // any users of the original call/invoke instruction.
581  const Type *RTy = CalledFunc->getReturnType();
582
583  if (Returns.size() > 1) {
584    // The PHI node should go at the front of the new basic block to merge all
585    // possible incoming values.
586    PHINode *PHI = 0;
587    if (!TheCall->use_empty()) {
588      PHI = PHINode::Create(RTy, TheCall->getName(),
589                            AfterCallBB->begin());
590      // Anything that used the result of the function call should now use the
591      // PHI node as their operand.
592      TheCall->replaceAllUsesWith(PHI);
593    }
594
595    // Loop over all of the return instructions adding entries to the PHI node
596    // as appropriate.
597    if (PHI) {
598      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
599        ReturnInst *RI = Returns[i];
600        assert(RI->getReturnValue()->getType() == PHI->getType() &&
601               "Ret value not consistent in function!");
602        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
603      }
604    }
605
606    // Add a branch to the merge points and remove return instructions.
607    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
608      ReturnInst *RI = Returns[i];
609      BranchInst::Create(AfterCallBB, RI);
610      RI->eraseFromParent();
611    }
612  } else if (!Returns.empty()) {
613    // Otherwise, if there is exactly one return value, just replace anything
614    // using the return value of the call with the computed value.
615    if (!TheCall->use_empty()) {
616      if (TheCall == Returns[0]->getReturnValue())
617        TheCall->replaceAllUsesWith(Context.getUndef(TheCall->getType()));
618      else
619        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
620    }
621
622    // Splice the code from the return block into the block that it will return
623    // to, which contains the code that was after the call.
624    BasicBlock *ReturnBB = Returns[0]->getParent();
625    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
626                                      ReturnBB->getInstList());
627
628    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
629    ReturnBB->replaceAllUsesWith(AfterCallBB);
630
631    // Delete the return instruction now and empty ReturnBB now.
632    Returns[0]->eraseFromParent();
633    ReturnBB->eraseFromParent();
634  } else if (!TheCall->use_empty()) {
635    // No returns, but something is using the return value of the call.  Just
636    // nuke the result.
637    TheCall->replaceAllUsesWith(Context.getUndef(TheCall->getType()));
638  }
639
640  // Since we are now done with the Call/Invoke, we can delete it.
641  TheCall->eraseFromParent();
642
643  // We should always be able to fold the entry block of the function into the
644  // single predecessor of the block...
645  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
646  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
647
648  // Splice the code entry block into calling block, right before the
649  // unconditional branch.
650  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
651  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
652
653  // Remove the unconditional branch.
654  OrigBB->getInstList().erase(Br);
655
656  // Now we can remove the CalleeEntry block, which is now empty.
657  Caller->getBasicBlockList().erase(CalleeEntry);
658
659  return true;
660}
661