InlineFunction.cpp revision c5b206b6be61d0d933b98b6af5e22f42edd48ad1
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/Support/CallSite.h"
23using namespace llvm;
24
25bool llvm::InlineFunction(CallInst *CI, CallGraph *CG) {
26  return InlineFunction(CallSite(CI), CG);
27}
28bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG) {
29  return InlineFunction(CallSite(II), CG);
30}
31
32/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
33/// in the body of the inlined function into invokes and turn unwind
34/// instructions into branches to the invoke unwind dest.
35///
36/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
37/// block of the inlined code (the last block is the end of the function),
38/// and InlineCodeInfo is information about the code that got inlined.
39static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
40                                ClonedCodeInfo &InlinedCodeInfo) {
41  BasicBlock *InvokeDest = II->getUnwindDest();
42  std::vector<Value*> InvokeDestPHIValues;
43
44  // If there are PHI nodes in the unwind destination block, we need to
45  // keep track of which values came into them from this invoke, then remove
46  // the entry for this block.
47  BasicBlock *InvokeBlock = II->getParent();
48  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
49    PHINode *PN = cast<PHINode>(I);
50    // Save the value to use for this edge.
51    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
52  }
53
54  Function *Caller = FirstNewBlock->getParent();
55
56  // The inlined code is currently at the end of the function, scan from the
57  // start of the inlined code to its end, checking for stuff we need to
58  // rewrite.
59  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
60    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
61         BB != E; ++BB) {
62      if (InlinedCodeInfo.ContainsCalls) {
63        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
64          Instruction *I = BBI++;
65
66          // We only need to check for function calls: inlined invoke
67          // instructions require no special handling.
68          if (!isa<CallInst>(I)) continue;
69          CallInst *CI = cast<CallInst>(I);
70
71          // If this is an intrinsic function call, don't convert it to an
72          // invoke.
73          if (CI->getCalledFunction() &&
74              CI->getCalledFunction()->getIntrinsicID())
75            continue;
76
77          // Convert this function call into an invoke instruction.
78          // First, split the basic block.
79          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
80
81          // Next, create the new invoke instruction, inserting it at the end
82          // of the old basic block.
83          InvokeInst *II =
84            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85                           std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
86                           CI->getName(), BB->getTerminator());
87          II->setCallingConv(CI->getCallingConv());
88
89          // Make sure that anything using the call now uses the invoke!
90          CI->replaceAllUsesWith(II);
91
92          // Delete the unconditional branch inserted by splitBasicBlock
93          BB->getInstList().pop_back();
94          Split->getInstList().pop_front();  // Delete the original call
95
96          // Update any PHI nodes in the exceptional block to indicate that
97          // there is now a new entry in them.
98          unsigned i = 0;
99          for (BasicBlock::iterator I = InvokeDest->begin();
100               isa<PHINode>(I); ++I, ++i) {
101            PHINode *PN = cast<PHINode>(I);
102            PN->addIncoming(InvokeDestPHIValues[i], BB);
103          }
104
105          // This basic block is now complete, start scanning the next one.
106          break;
107        }
108      }
109
110      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
111        // An UnwindInst requires special handling when it gets inlined into an
112        // invoke site.  Once this happens, we know that the unwind would cause
113        // a control transfer to the invoke exception destination, so we can
114        // transform it into a direct branch to the exception destination.
115        new BranchInst(InvokeDest, UI);
116
117        // Delete the unwind instruction!
118        UI->getParent()->getInstList().pop_back();
119
120        // Update any PHI nodes in the exceptional block to indicate that
121        // there is now a new entry in them.
122        unsigned i = 0;
123        for (BasicBlock::iterator I = InvokeDest->begin();
124             isa<PHINode>(I); ++I, ++i) {
125          PHINode *PN = cast<PHINode>(I);
126          PN->addIncoming(InvokeDestPHIValues[i], BB);
127        }
128      }
129    }
130  }
131
132  // Now that everything is happy, we have one final detail.  The PHI nodes in
133  // the exception destination block still have entries due to the original
134  // invoke instruction.  Eliminate these entries (which might even delete the
135  // PHI node) now.
136  InvokeDest->removePredecessor(II->getParent());
137}
138
139/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
140/// into the caller, update the specified callgraph to reflect the changes we
141/// made.  Note that it's possible that not all code was copied over, so only
142/// some edges of the callgraph will be remain.
143static void UpdateCallGraphAfterInlining(const Function *Caller,
144                                         const Function *Callee,
145                                         Function::iterator FirstNewBlock,
146                                       std::map<const Value*, Value*> &ValueMap,
147                                         CallGraph &CG) {
148  // Update the call graph by deleting the edge from Callee to Caller
149  CallGraphNode *CalleeNode = CG[Callee];
150  CallGraphNode *CallerNode = CG[Caller];
151  CallerNode->removeCallEdgeTo(CalleeNode);
152
153  // Since we inlined some uninlined call sites in the callee into the caller,
154  // add edges from the caller to all of the callees of the callee.
155  for (CallGraphNode::iterator I = CalleeNode->begin(),
156       E = CalleeNode->end(); I != E; ++I) {
157    const Instruction *OrigCall = I->first.getInstruction();
158
159    std::map<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
160    // Only copy the edge if the call was inlined!
161    if (VMI != ValueMap.end() && VMI->second) {
162      // If the call was inlined, but then constant folded, there is no edge to
163      // add.  Check for this case.
164      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
165        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
166    }
167  }
168}
169
170
171// InlineFunction - This function inlines the called function into the basic
172// block of the caller.  This returns false if it is not possible to inline this
173// call.  The program is still in a well defined state if this occurs though.
174//
175// Note that this only does one level of inlining.  For example, if the
176// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
177// exists in the instruction stream.  Similiarly this will inline a recursive
178// function by one level.
179//
180bool llvm::InlineFunction(CallSite CS, CallGraph *CG) {
181  Instruction *TheCall = CS.getInstruction();
182  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
183         "Instruction not in function!");
184
185  const Function *CalledFunc = CS.getCalledFunction();
186  if (CalledFunc == 0 ||          // Can't inline external function or indirect
187      CalledFunc->isExternal() || // call, or call to a vararg function!
188      CalledFunc->getFunctionType()->isVarArg()) return false;
189
190
191  // If the call to the callee is a non-tail call, we must clear the 'tail'
192  // flags on any calls that we inline.
193  bool MustClearTailCallFlags =
194    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
195
196  BasicBlock *OrigBB = TheCall->getParent();
197  Function *Caller = OrigBB->getParent();
198
199  // Get an iterator to the last basic block in the function, which will have
200  // the new function inlined after it.
201  //
202  Function::iterator LastBlock = &Caller->back();
203
204  // Make sure to capture all of the return instructions from the cloned
205  // function.
206  std::vector<ReturnInst*> Returns;
207  ClonedCodeInfo InlinedFunctionInfo;
208  Function::iterator FirstNewBlock;
209
210  { // Scope to destroy ValueMap after cloning.
211    std::map<const Value*, Value*> ValueMap;
212
213    // Calculate the vector of arguments to pass into the function cloner, which
214    // matches up the formal to the actual argument values.
215    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
216           std::distance(CS.arg_begin(), CS.arg_end()) &&
217           "No varargs calls can be inlined!");
218    CallSite::arg_iterator AI = CS.arg_begin();
219    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
220           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
221      ValueMap[I] = *AI;
222
223    // We want the inliner to prune the code as it copies.  We would LOVE to
224    // have no dead or constant instructions leftover after inlining occurs
225    // (which can happen, e.g., because an argument was constant), but we'll be
226    // happy with whatever the cloner can do.
227    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
228                              &InlinedFunctionInfo);
229
230    // Remember the first block that is newly cloned over.
231    FirstNewBlock = LastBlock; ++FirstNewBlock;
232
233    // Update the callgraph if requested.
234    if (CG)
235      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
236                                   *CG);
237  }
238
239  // If there are any alloca instructions in the block that used to be the entry
240  // block for the callee, move them to the entry block of the caller.  First
241  // calculate which instruction they should be inserted before.  We insert the
242  // instructions at the end of the current alloca list.
243  //
244  {
245    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
246    for (BasicBlock::iterator I = FirstNewBlock->begin(),
247           E = FirstNewBlock->end(); I != E; )
248      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
249        // If the alloca is now dead, remove it.  This often occurs due to code
250        // specialization.
251        if (AI->use_empty()) {
252          AI->eraseFromParent();
253          continue;
254        }
255
256        if (isa<Constant>(AI->getArraySize())) {
257          // Scan for the block of allocas that we can move over, and move them
258          // all at once.
259          while (isa<AllocaInst>(I) &&
260                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
261            ++I;
262
263          // Transfer all of the allocas over in a block.  Using splice means
264          // that they instructions aren't removed from the symbol table, then
265          // reinserted.
266          Caller->front().getInstList().splice(InsertPoint,
267                                               FirstNewBlock->getInstList(),
268                                               AI, I);
269        }
270      }
271  }
272
273  // If the inlined code contained dynamic alloca instructions, wrap the inlined
274  // code with llvm.stacksave/llvm.stackrestore intrinsics.
275  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
276    Module *M = Caller->getParent();
277    const Type *SBytePtr = PointerType::get(Type::Int8Ty);
278    // Get the two intrinsics we care about.
279    Function *StackSave, *StackRestore;
280    StackSave    = M->getOrInsertFunction("llvm.stacksave", SBytePtr, NULL);
281    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
282                                          SBytePtr, NULL);
283
284    // If we are preserving the callgraph, add edges to the stacksave/restore
285    // functions for the calls we insert.
286    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
287    if (CG) {
288      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
289      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
290      CallerNode = (*CG)[Caller];
291    }
292
293    // Insert the llvm.stacksave.
294    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
295                                      FirstNewBlock->begin());
296    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
297
298    // Insert a call to llvm.stackrestore before any return instructions in the
299    // inlined function.
300    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
301      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
302      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
303    }
304
305    // Count the number of StackRestore calls we insert.
306    unsigned NumStackRestores = Returns.size();
307
308    // If we are inlining an invoke instruction, insert restores before each
309    // unwind.  These unwinds will be rewritten into branches later.
310    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
311      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
312           BB != E; ++BB)
313        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
314          new CallInst(StackRestore, SavedPtr, "", UI);
315          ++NumStackRestores;
316        }
317    }
318  }
319
320  // If we are inlining tail call instruction through a call site that isn't
321  // marked 'tail', we must remove the tail marker for any calls in the inlined
322  // code.
323  if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
324    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
325         BB != E; ++BB)
326      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
327        if (CallInst *CI = dyn_cast<CallInst>(I))
328          CI->setTailCall(false);
329  }
330
331  // If we are inlining for an invoke instruction, we must make sure to rewrite
332  // any inlined 'unwind' instructions into branches to the invoke exception
333  // destination, and call instructions into invoke instructions.
334  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
335    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
336
337  // If we cloned in _exactly one_ basic block, and if that block ends in a
338  // return instruction, we splice the body of the inlined callee directly into
339  // the calling basic block.
340  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
341    // Move all of the instructions right before the call.
342    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
343                                 FirstNewBlock->begin(), FirstNewBlock->end());
344    // Remove the cloned basic block.
345    Caller->getBasicBlockList().pop_back();
346
347    // If the call site was an invoke instruction, add a branch to the normal
348    // destination.
349    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
350      new BranchInst(II->getNormalDest(), TheCall);
351
352    // If the return instruction returned a value, replace uses of the call with
353    // uses of the returned value.
354    if (!TheCall->use_empty())
355      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
356
357    // Since we are now done with the Call/Invoke, we can delete it.
358    TheCall->getParent()->getInstList().erase(TheCall);
359
360    // Since we are now done with the return instruction, delete it also.
361    Returns[0]->getParent()->getInstList().erase(Returns[0]);
362
363    // We are now done with the inlining.
364    return true;
365  }
366
367  // Otherwise, we have the normal case, of more than one block to inline or
368  // multiple return sites.
369
370  // We want to clone the entire callee function into the hole between the
371  // "starter" and "ender" blocks.  How we accomplish this depends on whether
372  // this is an invoke instruction or a call instruction.
373  BasicBlock *AfterCallBB;
374  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
375
376    // Add an unconditional branch to make this look like the CallInst case...
377    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
378
379    // Split the basic block.  This guarantees that no PHI nodes will have to be
380    // updated due to new incoming edges, and make the invoke case more
381    // symmetric to the call case.
382    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
383                                          CalledFunc->getName()+".exit");
384
385  } else {  // It's a call
386    // If this is a call instruction, we need to split the basic block that
387    // the call lives in.
388    //
389    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
390                                          CalledFunc->getName()+".exit");
391  }
392
393  // Change the branch that used to go to AfterCallBB to branch to the first
394  // basic block of the inlined function.
395  //
396  TerminatorInst *Br = OrigBB->getTerminator();
397  assert(Br && Br->getOpcode() == Instruction::Br &&
398         "splitBasicBlock broken!");
399  Br->setOperand(0, FirstNewBlock);
400
401
402  // Now that the function is correct, make it a little bit nicer.  In
403  // particular, move the basic blocks inserted from the end of the function
404  // into the space made by splitting the source basic block.
405  //
406  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
407                                     FirstNewBlock, Caller->end());
408
409  // Handle all of the return instructions that we just cloned in, and eliminate
410  // any users of the original call/invoke instruction.
411  if (Returns.size() > 1) {
412    // The PHI node should go at the front of the new basic block to merge all
413    // possible incoming values.
414    //
415    PHINode *PHI = 0;
416    if (!TheCall->use_empty()) {
417      PHI = new PHINode(CalledFunc->getReturnType(),
418                        TheCall->getName(), AfterCallBB->begin());
419
420      // Anything that used the result of the function call should now use the
421      // PHI node as their operand.
422      //
423      TheCall->replaceAllUsesWith(PHI);
424    }
425
426    // Loop over all of the return instructions, turning them into unconditional
427    // branches to the merge point now, and adding entries to the PHI node as
428    // appropriate.
429    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
430      ReturnInst *RI = Returns[i];
431
432      if (PHI) {
433        assert(RI->getReturnValue() && "Ret should have value!");
434        assert(RI->getReturnValue()->getType() == PHI->getType() &&
435               "Ret value not consistent in function!");
436        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
437      }
438
439      // Add a branch to the merge point where the PHI node lives if it exists.
440      new BranchInst(AfterCallBB, RI);
441
442      // Delete the return instruction now
443      RI->getParent()->getInstList().erase(RI);
444    }
445
446  } else if (!Returns.empty()) {
447    // Otherwise, if there is exactly one return value, just replace anything
448    // using the return value of the call with the computed value.
449    if (!TheCall->use_empty())
450      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
451
452    // Splice the code from the return block into the block that it will return
453    // to, which contains the code that was after the call.
454    BasicBlock *ReturnBB = Returns[0]->getParent();
455    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
456                                      ReturnBB->getInstList());
457
458    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
459    ReturnBB->replaceAllUsesWith(AfterCallBB);
460
461    // Delete the return instruction now and empty ReturnBB now.
462    Returns[0]->eraseFromParent();
463    ReturnBB->eraseFromParent();
464  } else if (!TheCall->use_empty()) {
465    // No returns, but something is using the return value of the call.  Just
466    // nuke the result.
467    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
468  }
469
470  // Since we are now done with the Call/Invoke, we can delete it.
471  TheCall->eraseFromParent();
472
473  // We should always be able to fold the entry block of the function into the
474  // single predecessor of the block...
475  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
476  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
477
478  // Splice the code entry block into calling block, right before the
479  // unconditional branch.
480  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
481  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
482
483  // Remove the unconditional branch.
484  OrigBB->getInstList().erase(Br);
485
486  // Now we can remove the CalleeEntry block, which is now empty.
487  Caller->getBasicBlockList().erase(CalleeEntry);
488
489  return true;
490}
491