InlineFunction.cpp revision de62aeaec49ddcf4a4c61fbbb3a22d3a4dd448f0
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Attributes.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/CallSite.h"
27using namespace llvm;
28
29bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(CI), CG, TD);
31}
32bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(II), CG, TD);
34}
35
36/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
37/// in the body of the inlined function into invokes and turn unwind
38/// instructions into branches to the invoke unwind dest.
39///
40/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
41/// block of the inlined code (the last block is the end of the function),
42/// and InlineCodeInfo is information about the code that got inlined.
43static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
44                                ClonedCodeInfo &InlinedCodeInfo) {
45  BasicBlock *InvokeDest = II->getUnwindDest();
46  std::vector<Value*> InvokeDestPHIValues;
47
48  // If there are PHI nodes in the unwind destination block, we need to
49  // keep track of which values came into them from this invoke, then remove
50  // the entry for this block.
51  BasicBlock *InvokeBlock = II->getParent();
52  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
53    PHINode *PN = cast<PHINode>(I);
54    // Save the value to use for this edge.
55    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
56  }
57
58  Function *Caller = FirstNewBlock->getParent();
59
60  // The inlined code is currently at the end of the function, scan from the
61  // start of the inlined code to its end, checking for stuff we need to
62  // rewrite.
63  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
64    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
65         BB != E; ++BB) {
66      if (InlinedCodeInfo.ContainsCalls) {
67        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
68          Instruction *I = BBI++;
69
70          // We only need to check for function calls: inlined invoke
71          // instructions require no special handling.
72          if (!isa<CallInst>(I)) continue;
73          CallInst *CI = cast<CallInst>(I);
74
75          // If this call cannot unwind, don't convert it to an invoke.
76          if (CI->doesNotThrow())
77            continue;
78
79          // Convert this function call into an invoke instruction.
80          // First, split the basic block.
81          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
82
83          // Next, create the new invoke instruction, inserting it at the end
84          // of the old basic block.
85          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
86          InvokeInst *II =
87            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
88                               InvokeArgs.begin(), InvokeArgs.end(),
89                               CI->getName(), BB->getTerminator());
90          II->setCallingConv(CI->getCallingConv());
91          II->setAttributes(CI->getAttributes());
92
93          // Make sure that anything using the call now uses the invoke!
94          CI->replaceAllUsesWith(II);
95
96          // Delete the unconditional branch inserted by splitBasicBlock
97          BB->getInstList().pop_back();
98          Split->getInstList().pop_front();  // Delete the original call
99
100          // Update any PHI nodes in the exceptional block to indicate that
101          // there is now a new entry in them.
102          unsigned i = 0;
103          for (BasicBlock::iterator I = InvokeDest->begin();
104               isa<PHINode>(I); ++I, ++i) {
105            PHINode *PN = cast<PHINode>(I);
106            PN->addIncoming(InvokeDestPHIValues[i], BB);
107          }
108
109          // This basic block is now complete, start scanning the next one.
110          break;
111        }
112      }
113
114      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
115        // An UnwindInst requires special handling when it gets inlined into an
116        // invoke site.  Once this happens, we know that the unwind would cause
117        // a control transfer to the invoke exception destination, so we can
118        // transform it into a direct branch to the exception destination.
119        BranchInst::Create(InvokeDest, UI);
120
121        // Delete the unwind instruction!
122        UI->eraseFromParent();
123
124        // Update any PHI nodes in the exceptional block to indicate that
125        // there is now a new entry in them.
126        unsigned i = 0;
127        for (BasicBlock::iterator I = InvokeDest->begin();
128             isa<PHINode>(I); ++I, ++i) {
129          PHINode *PN = cast<PHINode>(I);
130          PN->addIncoming(InvokeDestPHIValues[i], BB);
131        }
132      }
133    }
134  }
135
136  // Now that everything is happy, we have one final detail.  The PHI nodes in
137  // the exception destination block still have entries due to the original
138  // invoke instruction.  Eliminate these entries (which might even delete the
139  // PHI node) now.
140  InvokeDest->removePredecessor(II->getParent());
141}
142
143/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
144/// into the caller, update the specified callgraph to reflect the changes we
145/// made.  Note that it's possible that not all code was copied over, so only
146/// some edges of the callgraph may remain.
147static void UpdateCallGraphAfterInlining(CallSite CS,
148                                         Function::iterator FirstNewBlock,
149                                       DenseMap<const Value*, Value*> &ValueMap,
150                                         CallGraph &CG) {
151  const Function *Caller = CS.getInstruction()->getParent()->getParent();
152  const Function *Callee = CS.getCalledFunction();
153  CallGraphNode *CalleeNode = CG[Callee];
154  CallGraphNode *CallerNode = CG[Caller];
155
156  // Since we inlined some uninlined call sites in the callee into the caller,
157  // add edges from the caller to all of the callees of the callee.
158  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
159
160  // Consider the case where CalleeNode == CallerNode.
161  typedef std::pair<CallSite, CallGraphNode*> CallRecord;
162  std::vector<CallRecord> CallCache;
163  if (CalleeNode == CallerNode) {
164    CallCache.assign(I, E);
165    I = CallCache.begin();
166    E = CallCache.end();
167  }
168
169  for (; I != E; ++I) {
170    const Instruction *OrigCall = I->first.getInstruction();
171
172    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
173    // Only copy the edge if the call was inlined!
174    if (VMI != ValueMap.end() && VMI->second) {
175      // If the call was inlined, but then constant folded, there is no edge to
176      // add.  Check for this case.
177      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
178        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
179    }
180  }
181  // Update the call graph by deleting the edge from Callee to Caller.  We must
182  // do this after the loop above in case Caller and Callee are the same.
183  CallerNode->removeCallEdgeFor(CS);
184}
185
186
187// InlineFunction - This function inlines the called function into the basic
188// block of the caller.  This returns false if it is not possible to inline this
189// call.  The program is still in a well defined state if this occurs though.
190//
191// Note that this only does one level of inlining.  For example, if the
192// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
193// exists in the instruction stream.  Similiarly this will inline a recursive
194// function by one level.
195//
196bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
197  Instruction *TheCall = CS.getInstruction();
198  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
199         "Instruction not in function!");
200
201  const Function *CalledFunc = CS.getCalledFunction();
202  if (CalledFunc == 0 ||          // Can't inline external function or indirect
203      CalledFunc->isDeclaration() || // call, or call to a vararg function!
204      CalledFunc->getFunctionType()->isVarArg()) return false;
205
206
207  // If the call to the callee is a non-tail call, we must clear the 'tail'
208  // flags on any calls that we inline.
209  bool MustClearTailCallFlags =
210    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
211
212  // If the call to the callee cannot throw, set the 'nounwind' flag on any
213  // calls that we inline.
214  bool MarkNoUnwind = CS.doesNotThrow();
215
216  BasicBlock *OrigBB = TheCall->getParent();
217  Function *Caller = OrigBB->getParent();
218
219  // GC poses two hazards to inlining, which only occur when the callee has GC:
220  //  1. If the caller has no GC, then the callee's GC must be propagated to the
221  //     caller.
222  //  2. If the caller has a differing GC, it is invalid to inline.
223  if (CalledFunc->hasGC()) {
224    if (!Caller->hasGC())
225      Caller->setGC(CalledFunc->getGC());
226    else if (CalledFunc->getGC() != Caller->getGC())
227      return false;
228  }
229
230  // Get an iterator to the last basic block in the function, which will have
231  // the new function inlined after it.
232  //
233  Function::iterator LastBlock = &Caller->back();
234
235  // Make sure to capture all of the return instructions from the cloned
236  // function.
237  std::vector<ReturnInst*> Returns;
238  ClonedCodeInfo InlinedFunctionInfo;
239  Function::iterator FirstNewBlock;
240
241  { // Scope to destroy ValueMap after cloning.
242    DenseMap<const Value*, Value*> ValueMap;
243
244    assert(CalledFunc->arg_size() == CS.arg_size() &&
245           "No varargs calls can be inlined!");
246
247    // Calculate the vector of arguments to pass into the function cloner, which
248    // matches up the formal to the actual argument values.
249    CallSite::arg_iterator AI = CS.arg_begin();
250    unsigned ArgNo = 0;
251    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
252         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
253      Value *ActualArg = *AI;
254
255      // When byval arguments actually inlined, we need to make the copy implied
256      // by them explicit.  However, we don't do this if the callee is readonly
257      // or readnone, because the copy would be unneeded: the callee doesn't
258      // modify the struct.
259      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
260          !CalledFunc->onlyReadsMemory()) {
261        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
262        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
263
264        // Create the alloca.  If we have TargetData, use nice alignment.
265        unsigned Align = 1;
266        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
267        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
268                                          Caller->begin()->begin());
269        // Emit a memcpy.
270        const Type *Tys[] = { Type::Int64Ty };
271        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
272                                                       Intrinsic::memcpy,
273                                                       Tys, 1);
274        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
275        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
276
277        Value *Size;
278        if (TD == 0)
279          Size = ConstantExpr::getSizeOf(AggTy);
280        else
281          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
282
283        // Always generate a memcpy of alignment 1 here because we don't know
284        // the alignment of the src pointer.  Other optimizations can infer
285        // better alignment.
286        Value *CallArgs[] = {
287          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
288        };
289        CallInst *TheMemCpy =
290          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
291
292        // If we have a call graph, update it.
293        if (CG) {
294          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
295          CallGraphNode *CallerNode = (*CG)[Caller];
296          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
297        }
298
299        // Uses of the argument in the function should use our new alloca
300        // instead.
301        ActualArg = NewAlloca;
302      }
303
304      ValueMap[I] = ActualArg;
305    }
306
307    // We want the inliner to prune the code as it copies.  We would LOVE to
308    // have no dead or constant instructions leftover after inlining occurs
309    // (which can happen, e.g., because an argument was constant), but we'll be
310    // happy with whatever the cloner can do.
311    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
312                              &InlinedFunctionInfo, TD);
313
314    // Remember the first block that is newly cloned over.
315    FirstNewBlock = LastBlock; ++FirstNewBlock;
316
317    // Update the callgraph if requested.
318    if (CG)
319      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
320  }
321
322  // If there are any alloca instructions in the block that used to be the entry
323  // block for the callee, move them to the entry block of the caller.  First
324  // calculate which instruction they should be inserted before.  We insert the
325  // instructions at the end of the current alloca list.
326  //
327  {
328    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
329    for (BasicBlock::iterator I = FirstNewBlock->begin(),
330           E = FirstNewBlock->end(); I != E; )
331      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
332        // If the alloca is now dead, remove it.  This often occurs due to code
333        // specialization.
334        if (AI->use_empty()) {
335          AI->eraseFromParent();
336          continue;
337        }
338
339        if (isa<Constant>(AI->getArraySize())) {
340          // Scan for the block of allocas that we can move over, and move them
341          // all at once.
342          while (isa<AllocaInst>(I) &&
343                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
344            ++I;
345
346          // Transfer all of the allocas over in a block.  Using splice means
347          // that the instructions aren't removed from the symbol table, then
348          // reinserted.
349          Caller->getEntryBlock().getInstList().splice(
350              InsertPoint,
351              FirstNewBlock->getInstList(),
352              AI, I);
353        }
354      }
355  }
356
357  // If the inlined code contained dynamic alloca instructions, wrap the inlined
358  // code with llvm.stacksave/llvm.stackrestore intrinsics.
359  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
360    Module *M = Caller->getParent();
361    // Get the two intrinsics we care about.
362    Constant *StackSave, *StackRestore;
363    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
364    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
365
366    // If we are preserving the callgraph, add edges to the stacksave/restore
367    // functions for the calls we insert.
368    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
369    if (CG) {
370      // We know that StackSave/StackRestore are Function*'s, because they are
371      // intrinsics which must have the right types.
372      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
373      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
374      CallerNode = (*CG)[Caller];
375    }
376
377    // Insert the llvm.stacksave.
378    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
379                                          FirstNewBlock->begin());
380    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
381
382    // Insert a call to llvm.stackrestore before any return instructions in the
383    // inlined function.
384    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
385      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
386      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
387    }
388
389    // Count the number of StackRestore calls we insert.
390    unsigned NumStackRestores = Returns.size();
391
392    // If we are inlining an invoke instruction, insert restores before each
393    // unwind.  These unwinds will be rewritten into branches later.
394    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
395      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
396           BB != E; ++BB)
397        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
398          CallInst::Create(StackRestore, SavedPtr, "", UI);
399          ++NumStackRestores;
400        }
401    }
402  }
403
404  // If we are inlining tail call instruction through a call site that isn't
405  // marked 'tail', we must remove the tail marker for any calls in the inlined
406  // code.  Also, calls inlined through a 'nounwind' call site should be marked
407  // 'nounwind'.
408  if (InlinedFunctionInfo.ContainsCalls &&
409      (MustClearTailCallFlags || MarkNoUnwind)) {
410    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
411         BB != E; ++BB)
412      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
413        if (CallInst *CI = dyn_cast<CallInst>(I)) {
414          if (MustClearTailCallFlags)
415            CI->setTailCall(false);
416          if (MarkNoUnwind)
417            CI->setDoesNotThrow();
418        }
419  }
420
421  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
422  // instructions are unreachable.
423  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
424    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
425         BB != E; ++BB) {
426      TerminatorInst *Term = BB->getTerminator();
427      if (isa<UnwindInst>(Term)) {
428        new UnreachableInst(Term);
429        BB->getInstList().erase(Term);
430      }
431    }
432
433  // If we are inlining for an invoke instruction, we must make sure to rewrite
434  // any inlined 'unwind' instructions into branches to the invoke exception
435  // destination, and call instructions into invoke instructions.
436  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
437    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
438
439  // If we cloned in _exactly one_ basic block, and if that block ends in a
440  // return instruction, we splice the body of the inlined callee directly into
441  // the calling basic block.
442  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
443    // Move all of the instructions right before the call.
444    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
445                                 FirstNewBlock->begin(), FirstNewBlock->end());
446    // Remove the cloned basic block.
447    Caller->getBasicBlockList().pop_back();
448
449    // If the call site was an invoke instruction, add a branch to the normal
450    // destination.
451    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
452      BranchInst::Create(II->getNormalDest(), TheCall);
453
454    // If the return instruction returned a value, replace uses of the call with
455    // uses of the returned value.
456    if (!TheCall->use_empty()) {
457      ReturnInst *R = Returns[0];
458      TheCall->replaceAllUsesWith(R->getReturnValue());
459    }
460    // Since we are now done with the Call/Invoke, we can delete it.
461    TheCall->eraseFromParent();
462
463    // Since we are now done with the return instruction, delete it also.
464    Returns[0]->eraseFromParent();
465
466    // We are now done with the inlining.
467    return true;
468  }
469
470  // Otherwise, we have the normal case, of more than one block to inline or
471  // multiple return sites.
472
473  // We want to clone the entire callee function into the hole between the
474  // "starter" and "ender" blocks.  How we accomplish this depends on whether
475  // this is an invoke instruction or a call instruction.
476  BasicBlock *AfterCallBB;
477  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
478
479    // Add an unconditional branch to make this look like the CallInst case...
480    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
481
482    // Split the basic block.  This guarantees that no PHI nodes will have to be
483    // updated due to new incoming edges, and make the invoke case more
484    // symmetric to the call case.
485    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
486                                          CalledFunc->getName()+".exit");
487
488  } else {  // It's a call
489    // If this is a call instruction, we need to split the basic block that
490    // the call lives in.
491    //
492    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
493                                          CalledFunc->getName()+".exit");
494  }
495
496  // Change the branch that used to go to AfterCallBB to branch to the first
497  // basic block of the inlined function.
498  //
499  TerminatorInst *Br = OrigBB->getTerminator();
500  assert(Br && Br->getOpcode() == Instruction::Br &&
501         "splitBasicBlock broken!");
502  Br->setOperand(0, FirstNewBlock);
503
504
505  // Now that the function is correct, make it a little bit nicer.  In
506  // particular, move the basic blocks inserted from the end of the function
507  // into the space made by splitting the source basic block.
508  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
509                                     FirstNewBlock, Caller->end());
510
511  // Handle all of the return instructions that we just cloned in, and eliminate
512  // any users of the original call/invoke instruction.
513  const Type *RTy = CalledFunc->getReturnType();
514
515  if (Returns.size() > 1) {
516    // The PHI node should go at the front of the new basic block to merge all
517    // possible incoming values.
518    PHINode *PHI = 0;
519    if (!TheCall->use_empty()) {
520      PHI = PHINode::Create(RTy, TheCall->getName(),
521                            AfterCallBB->begin());
522      // Anything that used the result of the function call should now use the
523      // PHI node as their operand.
524      TheCall->replaceAllUsesWith(PHI);
525    }
526
527    // Loop over all of the return instructions adding entries to the PHI node
528    // as appropriate.
529    if (PHI) {
530      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
531        ReturnInst *RI = Returns[i];
532        assert(RI->getReturnValue()->getType() == PHI->getType() &&
533               "Ret value not consistent in function!");
534        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
535      }
536    }
537
538    // Add a branch to the merge points and remove return instructions.
539    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
540      ReturnInst *RI = Returns[i];
541      BranchInst::Create(AfterCallBB, RI);
542      RI->eraseFromParent();
543    }
544  } else if (!Returns.empty()) {
545    // Otherwise, if there is exactly one return value, just replace anything
546    // using the return value of the call with the computed value.
547    if (!TheCall->use_empty())
548      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
549
550    // Splice the code from the return block into the block that it will return
551    // to, which contains the code that was after the call.
552    BasicBlock *ReturnBB = Returns[0]->getParent();
553    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
554                                      ReturnBB->getInstList());
555
556    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
557    ReturnBB->replaceAllUsesWith(AfterCallBB);
558
559    // Delete the return instruction now and empty ReturnBB now.
560    Returns[0]->eraseFromParent();
561    ReturnBB->eraseFromParent();
562  } else if (!TheCall->use_empty()) {
563    // No returns, but something is using the return value of the call.  Just
564    // nuke the result.
565    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
566  }
567
568  // Since we are now done with the Call/Invoke, we can delete it.
569  TheCall->eraseFromParent();
570
571  // We should always be able to fold the entry block of the function into the
572  // single predecessor of the block...
573  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
574  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
575
576  // Splice the code entry block into calling block, right before the
577  // unconditional branch.
578  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
579  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
580
581  // Remove the unconditional branch.
582  OrigBB->getInstList().erase(Br);
583
584  // Now we can remove the CalleeEntry block, which is now empty.
585  Caller->getBasicBlockList().erase(CalleeEntry);
586
587  return true;
588}
589