InlineFunction.cpp revision e4d5c441e04bdc00ccf1804744af670655123b07
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// FIXME: This pass should transform alloca instructions in the called function
14// into alloca/dealloca pairs!  Or perhaps it should refuse to inline them!
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Utils/Cloning.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CallSite.h"
25using namespace llvm;
26
27bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
28bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
29
30// InlineFunction - This function inlines the called function into the basic
31// block of the caller.  This returns false if it is not possible to inline this
32// call.  The program is still in a well defined state if this occurs though.
33//
34// Note that this only does one level of inlining.  For example, if the
35// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
36// exists in the instruction stream.  Similiarly this will inline a recursive
37// function by one level.
38//
39bool llvm::InlineFunction(CallSite CS) {
40  Instruction *TheCall = CS.getInstruction();
41  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
42         "Instruction not in function!");
43
44  const Function *CalledFunc = CS.getCalledFunction();
45  if (CalledFunc == 0 ||          // Can't inline external function or indirect
46      CalledFunc->isExternal() || // call, or call to a vararg function!
47      CalledFunc->getFunctionType()->isVarArg()) return false;
48
49  BasicBlock *OrigBB = TheCall->getParent();
50  Function *Caller = OrigBB->getParent();
51
52  // Get an iterator to the last basic block in the function, which will have
53  // the new function inlined after it.
54  //
55  Function::iterator LastBlock = &Caller->back();
56
57  // Make sure to capture all of the return instructions from the cloned
58  // function.
59  std::vector<ReturnInst*> Returns;
60  { // Scope to destroy ValueMap after cloning.
61    // Calculate the vector of arguments to pass into the function cloner...
62    std::map<const Value*, Value*> ValueMap;
63    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
64           std::distance(CS.arg_begin(), CS.arg_end()) &&
65           "No varargs calls can be inlined!");
66
67    CallSite::arg_iterator AI = CS.arg_begin();
68    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
69           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
70      ValueMap[I] = *AI;
71
72    // Clone the entire body of the callee into the caller.
73    CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
74  }
75
76  // Remember the first block that is newly cloned over.
77  Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
78
79  // If there are any alloca instructions in the block that used to be the entry
80  // block for the callee, move them to the entry block of the caller.  First
81  // calculate which instruction they should be inserted before.  We insert the
82  // instructions at the end of the current alloca list.
83  //
84  if (isa<AllocaInst>(FirstNewBlock->begin())) {
85    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
86    for (BasicBlock::iterator I = FirstNewBlock->begin(),
87           E = FirstNewBlock->end(); I != E; )
88      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
89        if (isa<Constant>(AI->getArraySize())) {
90          // Scan for the block of allocas that we can move over.
91          while (isa<AllocaInst>(I) &&
92                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
93            ++I;
94
95          // Transfer all of the allocas over in a block.  Using splice means
96          // that they instructions aren't removed from the symbol table, then
97          // reinserted.
98          Caller->front().getInstList().splice(InsertPoint,
99                                               FirstNewBlock->getInstList(),
100                                               AI, I);
101        }
102  }
103
104  // If we are inlining for an invoke instruction, we must make sure to rewrite
105  // any inlined 'unwind' instructions into branches to the invoke exception
106  // destination, and call instructions into invoke instructions.
107  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
108    BasicBlock *InvokeDest = II->getUnwindDest();
109    std::vector<Value*> InvokeDestPHIValues;
110
111    // If there are PHI nodes in the exceptional destination block, we need to
112    // keep track of which values came into them from this invoke, then remove
113    // the entry for this block.
114    for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
115      PHINode *PN = cast<PHINode>(I);
116      // Save the value to use for this edge...
117      InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
118    }
119
120    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
121         BB != E; ++BB) {
122      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
123        // We only need to check for function calls: inlined invoke instructions
124        // require no special handling...
125        if (CallInst *CI = dyn_cast<CallInst>(I)) {
126          // Convert this function call into an invoke instruction... if it's
127          // not an intrinsic function call (which are known to not throw).
128          if (CI->getCalledFunction() &&
129              CI->getCalledFunction()->getIntrinsicID()) {
130            ++I;
131          } else {
132            // First, split the basic block...
133            BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
134
135            // Next, create the new invoke instruction, inserting it at the end
136            // of the old basic block.
137            InvokeInst *II =
138              new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
139                            std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
140                             CI->getName(), BB->getTerminator());
141
142            // Make sure that anything using the call now uses the invoke!
143            CI->replaceAllUsesWith(II);
144
145            // Delete the unconditional branch inserted by splitBasicBlock
146            BB->getInstList().pop_back();
147            Split->getInstList().pop_front();  // Delete the original call
148
149            // Update any PHI nodes in the exceptional block to indicate that
150            // there is now a new entry in them.
151            unsigned i = 0;
152            for (BasicBlock::iterator I = InvokeDest->begin();
153                 isa<PHINode>(I); ++I, ++i) {
154              PHINode *PN = cast<PHINode>(I);
155              PN->addIncoming(InvokeDestPHIValues[i], BB);
156            }
157
158            // This basic block is now complete, start scanning the next one.
159            break;
160          }
161        } else {
162          ++I;
163        }
164      }
165
166      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
167        // An UnwindInst requires special handling when it gets inlined into an
168        // invoke site.  Once this happens, we know that the unwind would cause
169        // a control transfer to the invoke exception destination, so we can
170        // transform it into a direct branch to the exception destination.
171        new BranchInst(InvokeDest, UI);
172
173        // Delete the unwind instruction!
174        UI->getParent()->getInstList().pop_back();
175
176        // Update any PHI nodes in the exceptional block to indicate that
177        // there is now a new entry in them.
178        unsigned i = 0;
179        for (BasicBlock::iterator I = InvokeDest->begin();
180             isa<PHINode>(I); ++I, ++i) {
181          PHINode *PN = cast<PHINode>(I);
182          PN->addIncoming(InvokeDestPHIValues[i], BB);
183        }
184      }
185    }
186
187    // Now that everything is happy, we have one final detail.  The PHI nodes in
188    // the exception destination block still have entries due to the original
189    // invoke instruction.  Eliminate these entries (which might even delete the
190    // PHI node) now.
191    InvokeDest->removePredecessor(II->getParent());
192  }
193
194  // If we cloned in _exactly one_ basic block, and if that block ends in a
195  // return instruction, we splice the body of the inlined callee directly into
196  // the calling basic block.
197  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
198    // Move all of the instructions right before the call.
199    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
200                                 FirstNewBlock->begin(), FirstNewBlock->end());
201    // Remove the cloned basic block.
202    Caller->getBasicBlockList().pop_back();
203
204    // If the call site was an invoke instruction, add a branch to the normal
205    // destination.
206    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
207      new BranchInst(II->getNormalDest(), TheCall);
208
209    // If the return instruction returned a value, replace uses of the call with
210    // uses of the returned value.
211    if (!TheCall->use_empty())
212      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
213
214    // Since we are now done with the Call/Invoke, we can delete it.
215    TheCall->getParent()->getInstList().erase(TheCall);
216
217    // Since we are now done with the return instruction, delete it also.
218    Returns[0]->getParent()->getInstList().erase(Returns[0]);
219
220    // We are now done with the inlining.
221    return true;
222  }
223
224  // Otherwise, we have the normal case, of more than one block to inline or
225  // multiple return sites.
226
227  // We want to clone the entire callee function into the hole between the
228  // "starter" and "ender" blocks.  How we accomplish this depends on whether
229  // this is an invoke instruction or a call instruction.
230  BasicBlock *AfterCallBB;
231  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
232
233    // Add an unconditional branch to make this look like the CallInst case...
234    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
235
236    // Split the basic block.  This guarantees that no PHI nodes will have to be
237    // updated due to new incoming edges, and make the invoke case more
238    // symmetric to the call case.
239    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
240                                          CalledFunc->getName()+".exit");
241
242  } else {  // It's a call
243    // If this is a call instruction, we need to split the basic block that
244    // the call lives in.
245    //
246    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
247                                          CalledFunc->getName()+".exit");
248  }
249
250  // Change the branch that used to go to AfterCallBB to branch to the first
251  // basic block of the inlined function.
252  //
253  TerminatorInst *Br = OrigBB->getTerminator();
254  assert(Br && Br->getOpcode() == Instruction::Br &&
255         "splitBasicBlock broken!");
256  Br->setOperand(0, FirstNewBlock);
257
258
259  // Now that the function is correct, make it a little bit nicer.  In
260  // particular, move the basic blocks inserted from the end of the function
261  // into the space made by splitting the source basic block.
262  //
263  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
264                                     FirstNewBlock, Caller->end());
265
266  // Handle all of the return instructions that we just cloned in, and eliminate
267  // any users of the original call/invoke instruction.
268  if (Returns.size() > 1) {
269    // The PHI node should go at the front of the new basic block to merge all
270    // possible incoming values.
271    //
272    PHINode *PHI = 0;
273    if (!TheCall->use_empty()) {
274      PHI = new PHINode(CalledFunc->getReturnType(),
275                        TheCall->getName(), AfterCallBB->begin());
276
277      // Anything that used the result of the function call should now use the
278      // PHI node as their operand.
279      //
280      TheCall->replaceAllUsesWith(PHI);
281    }
282
283    // Loop over all of the return instructions, turning them into unconditional
284    // branches to the merge point now, and adding entries to the PHI node as
285    // appropriate.
286    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
287      ReturnInst *RI = Returns[i];
288
289      if (PHI) {
290        assert(RI->getReturnValue() && "Ret should have value!");
291        assert(RI->getReturnValue()->getType() == PHI->getType() &&
292               "Ret value not consistent in function!");
293        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
294      }
295
296      // Add a branch to the merge point where the PHI node lives if it exists.
297      new BranchInst(AfterCallBB, RI);
298
299      // Delete the return instruction now
300      RI->getParent()->getInstList().erase(RI);
301    }
302
303  } else if (!Returns.empty()) {
304    // Otherwise, if there is exactly one return value, just replace anything
305    // using the return value of the call with the computed value.
306    if (!TheCall->use_empty())
307      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
308
309    // Splice the code from the return block into the block that it will return
310    // to, which contains the code that was after the call.
311    BasicBlock *ReturnBB = Returns[0]->getParent();
312    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
313                                      ReturnBB->getInstList());
314
315    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
316    ReturnBB->replaceAllUsesWith(AfterCallBB);
317
318    // Delete the return instruction now and empty ReturnBB now.
319    Returns[0]->eraseFromParent();
320    ReturnBB->eraseFromParent();
321  } else if (!TheCall->use_empty()) {
322    // No returns, but something is using the return value of the call.  Just
323    // nuke the result.
324    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
325  }
326
327  // Since we are now done with the Call/Invoke, we can delete it.
328  TheCall->eraseFromParent();
329
330  // We should always be able to fold the entry block of the function into the
331  // single predecessor of the block...
332  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
333  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
334
335  // Splice the code entry block into calling block, right before the
336  // unconditional branch.
337  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
338  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
339
340  // Remove the unconditional branch.
341  OrigBB->getInstList().erase(Br);
342
343  // Now we can remove the CalleeEntry block, which is now empty.
344  Caller->getBasicBlockList().erase(CalleeEntry);
345  return true;
346}
347