InlineFunction.cpp revision e669d83a21d7ebf01d3c9e37a20c7348b5a77c11
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector in
49/// the given landing pad.
50static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
51  // The llvm.eh.exception call is required to be in the landing pad.
52  for (BasicBlock::iterator i = lpad->begin(), e = lpad->end(); i != e; i++) {
53    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
54    if (!exn) continue;
55
56    EHSelectorInst *selector = 0;
57    for (Instruction::use_iterator
58           ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
59      EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
60      if (!sel) continue;
61
62      // Immediately accept an eh.selector in the landing pad.
63      if (sel->getParent() == lpad) return sel;
64
65      // Otherwise, use the first selector we see.
66      if (!selector) selector = sel;
67    }
68
69    return selector;
70  }
71
72  return 0;
73}
74
75namespace {
76  /// A class for recording information about inlining through an invoke.
77  class InvokeInliningInfo {
78    BasicBlock *OuterUnwindDest;
79    EHSelectorInst *OuterSelector;
80    BasicBlock *InnerUnwindDest;
81    PHINode *InnerExceptionPHI;
82    PHINode *InnerSelectorPHI;
83    SmallVector<Value*, 8> UnwindDestPHIValues;
84
85  public:
86    InvokeInliningInfo(InvokeInst *II) :
87      OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
88      InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {
89
90      // If there are PHI nodes in the unwind destination block, we
91      // need to keep track of which values came into them from the
92      // invoke before removing the edge from this block.
93      llvm::BasicBlock *invokeBB = II->getParent();
94      for (BasicBlock::iterator I = OuterUnwindDest->begin();
95             isa<PHINode>(I); ++I) {
96        // Save the value to use for this edge.
97        PHINode *phi = cast<PHINode>(I);
98        UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
99      }
100    }
101
102    /// The outer unwind destination is the target of unwind edges
103    /// introduced for calls within the inlined function.
104    BasicBlock *getOuterUnwindDest() const {
105      return OuterUnwindDest;
106    }
107
108    EHSelectorInst *getOuterSelector() {
109      if (!OuterSelector)
110        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
111      return OuterSelector;
112    }
113
114    BasicBlock *getInnerUnwindDest();
115
116    bool forwardEHResume(CallInst *call, BasicBlock *src);
117
118    /// Add incoming-PHI values to the unwind destination block for
119    /// the given basic block, using the values for the original
120    /// invoke's source block.
121    void addIncomingPHIValuesFor(BasicBlock *BB) const {
122      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
123    }
124
125    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
126      BasicBlock::iterator I = dest->begin();
127      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
128        PHINode *phi = cast<PHINode>(I);
129        phi->addIncoming(UnwindDestPHIValues[i], src);
130      }
131    }
132  };
133}
134
135/// Get or create a target for the branch out of rewritten calls to
136/// llvm.eh.resume.
137BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
138  if (InnerUnwindDest) return InnerUnwindDest;
139
140  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
141  // in the outer landing pad to immediately following the phis.
142  EHSelectorInst *selector = getOuterSelector();
143  if (!selector) return 0;
144
145  // The call to llvm.eh.exception *must* be in the landing pad.
146  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
147  assert(exn->getParent() == OuterUnwindDest);
148
149  // TODO: recognize when we've already done this, so that we don't
150  // get a linear number of these when inlining calls into lots of
151  // invokes with the same landing pad.
152
153  // Do the hoisting.
154  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
155  assert(splitPoint != selector && "selector-on-exception dominance broken!");
156  if (splitPoint == exn) {
157    selector->removeFromParent();
158    selector->insertAfter(exn);
159    splitPoint = selector->getNextNode();
160  } else {
161    exn->moveBefore(splitPoint);
162    selector->moveBefore(splitPoint);
163  }
164
165  // Split the landing pad.
166  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
167                                        OuterUnwindDest->getName() + ".body");
168
169  // The number of incoming edges we expect to the inner landing pad.
170  const unsigned phiCapacity = 2;
171
172  // Create corresponding new phis for all the phis in the outer landing pad.
173  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
174  BasicBlock::iterator I = OuterUnwindDest->begin();
175  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
176    PHINode *outerPhi = cast<PHINode>(I);
177    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
178                                        outerPhi->getName() + ".lpad-body",
179                                        insertPoint);
180    outerPhi->replaceAllUsesWith(innerPhi);
181    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
182  }
183
184  // Create a phi for the exception value...
185  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
186                                      "exn.lpad-body", insertPoint);
187  exn->replaceAllUsesWith(InnerExceptionPHI);
188  selector->setArgOperand(0, exn); // restore this use
189  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
190
191  // ...and the selector.
192  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
193                                     "selector.lpad-body", insertPoint);
194  selector->replaceAllUsesWith(InnerSelectorPHI);
195  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
196
197  // All done.
198  return InnerUnwindDest;
199}
200
201/// [LIBUNWIND] Try to forward the given call, which logically occurs
202/// at the end of the given block, as a branch to the inner unwind
203/// block.  Returns true if the call was forwarded.
204bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
205  // First, check whether this is a call to the intrinsic.
206  Function *fn = dyn_cast<Function>(call->getCalledValue());
207  if (!fn || fn->getName() != "llvm.eh.resume")
208    return false;
209
210  // At this point, we need to return true on all paths, because
211  // otherwise we'll construct an invoke of the intrinsic, which is
212  // not well-formed.
213
214  // Try to find or make an inner unwind dest, which will fail if we
215  // can't find a selector call for the outer unwind dest.
216  BasicBlock *dest = getInnerUnwindDest();
217  bool hasSelector = (dest != 0);
218
219  // If we failed, just use the outer unwind dest, dropping the
220  // exception and selector on the floor.
221  if (!hasSelector)
222    dest = OuterUnwindDest;
223
224  // Make a branch.
225  BranchInst::Create(dest, src);
226
227  // Update the phis in the destination.  They were inserted in an
228  // order which makes this work.
229  addIncomingPHIValuesForInto(src, dest);
230
231  if (hasSelector) {
232    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
233    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
234  }
235
236  return true;
237}
238
239/// [LIBUNWIND] Check whether this selector is "only cleanups":
240///   call i32 @llvm.eh.selector(blah, blah, i32 0)
241static bool isCleanupOnlySelector(EHSelectorInst *selector) {
242  if (selector->getNumArgOperands() != 3) return false;
243  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
244  return (val && val->isZero());
245}
246
247/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
248/// an invoke, we have to turn all of the calls that can throw into
249/// invokes.  This function analyze BB to see if there are any calls, and if so,
250/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
251/// nodes in that block with the values specified in InvokeDestPHIValues.
252///
253/// Returns true to indicate that the next block should be skipped.
254static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
255                                                   InvokeInliningInfo &Invoke) {
256  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
257    Instruction *I = BBI++;
258
259    // We only need to check for function calls: inlined invoke
260    // instructions require no special handling.
261    CallInst *CI = dyn_cast<CallInst>(I);
262    if (CI == 0) continue;
263
264    // LIBUNWIND: merge selector instructions.
265    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
266      EHSelectorInst *Outer = Invoke.getOuterSelector();
267      if (!Outer) continue;
268
269      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
270      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
271
272      // If both selectors contain only cleanups, we don't need to do
273      // anything.  TODO: this is really just a very specific instance
274      // of a much more general optimization.
275      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
276
277      // Otherwise, we just append the outer selector to the inner selector.
278      SmallVector<Value*, 16> NewSelector;
279      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
280        NewSelector.push_back(Inner->getArgOperand(i));
281      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
282        NewSelector.push_back(Outer->getArgOperand(i));
283
284      CallInst *NewInner = CallInst::Create(Inner->getCalledValue(),
285                                            NewSelector.begin(),
286                                            NewSelector.end(),
287                                            "",
288                                            Inner);
289      // No need to copy attributes, calling convention, etc.
290      NewInner->takeName(Inner);
291      Inner->replaceAllUsesWith(NewInner);
292      Inner->eraseFromParent();
293      continue;
294    }
295
296    // If this call cannot unwind, don't convert it to an invoke.
297    if (CI->doesNotThrow())
298      continue;
299
300    // Convert this function call into an invoke instruction.
301    // First, split the basic block.
302    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
303
304    // Delete the unconditional branch inserted by splitBasicBlock
305    BB->getInstList().pop_back();
306
307    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
308    // directly to the new landing pad.
309    if (Invoke.forwardEHResume(CI, BB)) {
310      // TODO: 'Split' is now unreachable; clean it up.
311
312      // We want to leave the original call intact so that the call
313      // graph and other structures won't get misled.  We also have to
314      // avoid processing the next block, or we'll iterate here forever.
315      return true;
316    }
317
318    // Otherwise, create the new invoke instruction.
319    ImmutableCallSite CS(CI);
320    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
321    InvokeInst *II =
322      InvokeInst::Create(CI->getCalledValue(), Split,
323                         Invoke.getOuterUnwindDest(),
324                         InvokeArgs.begin(), InvokeArgs.end(),
325                         CI->getName(), BB);
326    II->setCallingConv(CI->getCallingConv());
327    II->setAttributes(CI->getAttributes());
328
329    // Make sure that anything using the call now uses the invoke!  This also
330    // updates the CallGraph if present, because it uses a WeakVH.
331    CI->replaceAllUsesWith(II);
332
333    Split->getInstList().pop_front();  // Delete the original call
334
335    // Update any PHI nodes in the exceptional block to indicate that
336    // there is now a new entry in them.
337    Invoke.addIncomingPHIValuesFor(BB);
338    return false;
339  }
340
341  return false;
342}
343
344
345/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
346/// in the body of the inlined function into invokes and turn unwind
347/// instructions into branches to the invoke unwind dest.
348///
349/// II is the invoke instruction being inlined.  FirstNewBlock is the first
350/// block of the inlined code (the last block is the end of the function),
351/// and InlineCodeInfo is information about the code that got inlined.
352static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
353                                ClonedCodeInfo &InlinedCodeInfo) {
354  BasicBlock *InvokeDest = II->getUnwindDest();
355
356  Function *Caller = FirstNewBlock->getParent();
357
358  // The inlined code is currently at the end of the function, scan from the
359  // start of the inlined code to its end, checking for stuff we need to
360  // rewrite.  If the code doesn't have calls or unwinds, we know there is
361  // nothing to rewrite.
362  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
363    // Now that everything is happy, we have one final detail.  The PHI nodes in
364    // the exception destination block still have entries due to the original
365    // invoke instruction.  Eliminate these entries (which might even delete the
366    // PHI node) now.
367    InvokeDest->removePredecessor(II->getParent());
368    return;
369  }
370
371  InvokeInliningInfo Invoke(II);
372
373  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
374    if (InlinedCodeInfo.ContainsCalls)
375      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
376        // Honor a request to skip the next block.  We don't need to
377        // consider UnwindInsts in this case either.
378        ++BB;
379        continue;
380      }
381
382    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
383      // An UnwindInst requires special handling when it gets inlined into an
384      // invoke site.  Once this happens, we know that the unwind would cause
385      // a control transfer to the invoke exception destination, so we can
386      // transform it into a direct branch to the exception destination.
387      BranchInst::Create(InvokeDest, UI);
388
389      // Delete the unwind instruction!
390      UI->eraseFromParent();
391
392      // Update any PHI nodes in the exceptional block to indicate that
393      // there is now a new entry in them.
394      Invoke.addIncomingPHIValuesFor(BB);
395    }
396  }
397
398  // Now that everything is happy, we have one final detail.  The PHI nodes in
399  // the exception destination block still have entries due to the original
400  // invoke instruction.  Eliminate these entries (which might even delete the
401  // PHI node) now.
402  InvokeDest->removePredecessor(II->getParent());
403}
404
405/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
406/// into the caller, update the specified callgraph to reflect the changes we
407/// made.  Note that it's possible that not all code was copied over, so only
408/// some edges of the callgraph may remain.
409static void UpdateCallGraphAfterInlining(CallSite CS,
410                                         Function::iterator FirstNewBlock,
411                                         ValueToValueMapTy &VMap,
412                                         InlineFunctionInfo &IFI) {
413  CallGraph &CG = *IFI.CG;
414  const Function *Caller = CS.getInstruction()->getParent()->getParent();
415  const Function *Callee = CS.getCalledFunction();
416  CallGraphNode *CalleeNode = CG[Callee];
417  CallGraphNode *CallerNode = CG[Caller];
418
419  // Since we inlined some uninlined call sites in the callee into the caller,
420  // add edges from the caller to all of the callees of the callee.
421  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
422
423  // Consider the case where CalleeNode == CallerNode.
424  CallGraphNode::CalledFunctionsVector CallCache;
425  if (CalleeNode == CallerNode) {
426    CallCache.assign(I, E);
427    I = CallCache.begin();
428    E = CallCache.end();
429  }
430
431  for (; I != E; ++I) {
432    const Value *OrigCall = I->first;
433
434    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
435    // Only copy the edge if the call was inlined!
436    if (VMI == VMap.end() || VMI->second == 0)
437      continue;
438
439    // If the call was inlined, but then constant folded, there is no edge to
440    // add.  Check for this case.
441    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
442    if (NewCall == 0) continue;
443
444    // Remember that this call site got inlined for the client of
445    // InlineFunction.
446    IFI.InlinedCalls.push_back(NewCall);
447
448    // It's possible that inlining the callsite will cause it to go from an
449    // indirect to a direct call by resolving a function pointer.  If this
450    // happens, set the callee of the new call site to a more precise
451    // destination.  This can also happen if the call graph node of the caller
452    // was just unnecessarily imprecise.
453    if (I->second->getFunction() == 0)
454      if (Function *F = CallSite(NewCall).getCalledFunction()) {
455        // Indirect call site resolved to direct call.
456        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
457
458        continue;
459      }
460
461    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
462  }
463
464  // Update the call graph by deleting the edge from Callee to Caller.  We must
465  // do this after the loop above in case Caller and Callee are the same.
466  CallerNode->removeCallEdgeFor(CS);
467}
468
469/// HandleByValArgument - When inlining a call site that has a byval argument,
470/// we have to make the implicit memcpy explicit by adding it.
471static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
472                                  const Function *CalledFunc,
473                                  InlineFunctionInfo &IFI,
474                                  unsigned ByValAlignment) {
475  const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
476
477  // If the called function is readonly, then it could not mutate the caller's
478  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
479  // temporary.
480  if (CalledFunc->onlyReadsMemory()) {
481    // If the byval argument has a specified alignment that is greater than the
482    // passed in pointer, then we either have to round up the input pointer or
483    // give up on this transformation.
484    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
485      return Arg;
486
487    // If the pointer is already known to be sufficiently aligned, or if we can
488    // round it up to a larger alignment, then we don't need a temporary.
489    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
490                                   IFI.TD) >= ByValAlignment)
491      return Arg;
492
493    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
494    // for code quality, but rarely happens and is required for correctness.
495  }
496
497  LLVMContext &Context = Arg->getContext();
498
499  const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
500
501  // Create the alloca.  If we have TargetData, use nice alignment.
502  unsigned Align = 1;
503  if (IFI.TD)
504    Align = IFI.TD->getPrefTypeAlignment(AggTy);
505
506  // If the byval had an alignment specified, we *must* use at least that
507  // alignment, as it is required by the byval argument (and uses of the
508  // pointer inside the callee).
509  Align = std::max(Align, ByValAlignment);
510
511  Function *Caller = TheCall->getParent()->getParent();
512
513  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
514                                    &*Caller->begin()->begin());
515  // Emit a memcpy.
516  const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
517  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
518                                                 Intrinsic::memcpy,
519                                                 Tys, 3);
520  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
521  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
522
523  Value *Size;
524  if (IFI.TD == 0)
525    Size = ConstantExpr::getSizeOf(AggTy);
526  else
527    Size = ConstantInt::get(Type::getInt64Ty(Context),
528                            IFI.TD->getTypeStoreSize(AggTy));
529
530  // Always generate a memcpy of alignment 1 here because we don't know
531  // the alignment of the src pointer.  Other optimizations can infer
532  // better alignment.
533  Value *CallArgs[] = {
534    DestCast, SrcCast, Size,
535    ConstantInt::get(Type::getInt32Ty(Context), 1),
536    ConstantInt::getFalse(Context) // isVolatile
537  };
538  CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
539
540  // Uses of the argument in the function should use our new alloca
541  // instead.
542  return NewAlloca;
543}
544
545// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
546// intrinsic.
547static bool isUsedByLifetimeMarker(Value *V) {
548  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
549       ++UI) {
550    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
551      switch (II->getIntrinsicID()) {
552      default: break;
553      case Intrinsic::lifetime_start:
554      case Intrinsic::lifetime_end:
555        return true;
556      }
557    }
558  }
559  return false;
560}
561
562// hasLifetimeMarkers - Check whether the given alloca already has
563// lifetime.start or lifetime.end intrinsics.
564static bool hasLifetimeMarkers(AllocaInst *AI) {
565  const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
566  if (AI->getType() == Int8PtrTy)
567    return isUsedByLifetimeMarker(AI);
568
569  // Do a scan to find all the bitcasts to i8*.
570  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
571       ++I) {
572    if (I->getType() != Int8PtrTy) continue;
573    if (!isa<BitCastInst>(*I)) continue;
574    if (isUsedByLifetimeMarker(*I))
575      return true;
576  }
577  return false;
578}
579
580// InlineFunction - This function inlines the called function into the basic
581// block of the caller.  This returns false if it is not possible to inline this
582// call.  The program is still in a well defined state if this occurs though.
583//
584// Note that this only does one level of inlining.  For example, if the
585// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
586// exists in the instruction stream.  Similarly this will inline a recursive
587// function by one level.
588//
589bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
590  Instruction *TheCall = CS.getInstruction();
591  LLVMContext &Context = TheCall->getContext();
592  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
593         "Instruction not in function!");
594
595  // If IFI has any state in it, zap it before we fill it in.
596  IFI.reset();
597
598  const Function *CalledFunc = CS.getCalledFunction();
599  if (CalledFunc == 0 ||          // Can't inline external function or indirect
600      CalledFunc->isDeclaration() || // call, or call to a vararg function!
601      CalledFunc->getFunctionType()->isVarArg()) return false;
602
603  // If the call to the callee is not a tail call, we must clear the 'tail'
604  // flags on any calls that we inline.
605  bool MustClearTailCallFlags =
606    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
607
608  // If the call to the callee cannot throw, set the 'nounwind' flag on any
609  // calls that we inline.
610  bool MarkNoUnwind = CS.doesNotThrow();
611
612  BasicBlock *OrigBB = TheCall->getParent();
613  Function *Caller = OrigBB->getParent();
614
615  // GC poses two hazards to inlining, which only occur when the callee has GC:
616  //  1. If the caller has no GC, then the callee's GC must be propagated to the
617  //     caller.
618  //  2. If the caller has a differing GC, it is invalid to inline.
619  if (CalledFunc->hasGC()) {
620    if (!Caller->hasGC())
621      Caller->setGC(CalledFunc->getGC());
622    else if (CalledFunc->getGC() != Caller->getGC())
623      return false;
624  }
625
626  // Get an iterator to the last basic block in the function, which will have
627  // the new function inlined after it.
628  //
629  Function::iterator LastBlock = &Caller->back();
630
631  // Make sure to capture all of the return instructions from the cloned
632  // function.
633  SmallVector<ReturnInst*, 8> Returns;
634  ClonedCodeInfo InlinedFunctionInfo;
635  Function::iterator FirstNewBlock;
636
637  { // Scope to destroy VMap after cloning.
638    ValueToValueMapTy VMap;
639
640    assert(CalledFunc->arg_size() == CS.arg_size() &&
641           "No varargs calls can be inlined!");
642
643    // Calculate the vector of arguments to pass into the function cloner, which
644    // matches up the formal to the actual argument values.
645    CallSite::arg_iterator AI = CS.arg_begin();
646    unsigned ArgNo = 0;
647    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
648         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
649      Value *ActualArg = *AI;
650
651      // When byval arguments actually inlined, we need to make the copy implied
652      // by them explicit.  However, we don't do this if the callee is readonly
653      // or readnone, because the copy would be unneeded: the callee doesn't
654      // modify the struct.
655      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
656        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
657                                        CalledFunc->getParamAlignment(ArgNo+1));
658
659        // Calls that we inline may use the new alloca, so we need to clear
660        // their 'tail' flags if HandleByValArgument introduced a new alloca and
661        // the callee has calls.
662        MustClearTailCallFlags |= ActualArg != *AI;
663      }
664
665      VMap[I] = ActualArg;
666    }
667
668    // We want the inliner to prune the code as it copies.  We would LOVE to
669    // have no dead or constant instructions leftover after inlining occurs
670    // (which can happen, e.g., because an argument was constant), but we'll be
671    // happy with whatever the cloner can do.
672    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
673                              /*ModuleLevelChanges=*/false, Returns, ".i",
674                              &InlinedFunctionInfo, IFI.TD, TheCall);
675
676    // Remember the first block that is newly cloned over.
677    FirstNewBlock = LastBlock; ++FirstNewBlock;
678
679    // Update the callgraph if requested.
680    if (IFI.CG)
681      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
682  }
683
684  // If there are any alloca instructions in the block that used to be the entry
685  // block for the callee, move them to the entry block of the caller.  First
686  // calculate which instruction they should be inserted before.  We insert the
687  // instructions at the end of the current alloca list.
688  //
689  {
690    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
691    for (BasicBlock::iterator I = FirstNewBlock->begin(),
692         E = FirstNewBlock->end(); I != E; ) {
693      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
694      if (AI == 0) continue;
695
696      // If the alloca is now dead, remove it.  This often occurs due to code
697      // specialization.
698      if (AI->use_empty()) {
699        AI->eraseFromParent();
700        continue;
701      }
702
703      if (!isa<Constant>(AI->getArraySize()))
704        continue;
705
706      // Keep track of the static allocas that we inline into the caller.
707      IFI.StaticAllocas.push_back(AI);
708
709      // Scan for the block of allocas that we can move over, and move them
710      // all at once.
711      while (isa<AllocaInst>(I) &&
712             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
713        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
714        ++I;
715      }
716
717      // Transfer all of the allocas over in a block.  Using splice means
718      // that the instructions aren't removed from the symbol table, then
719      // reinserted.
720      Caller->getEntryBlock().getInstList().splice(InsertPoint,
721                                                   FirstNewBlock->getInstList(),
722                                                   AI, I);
723    }
724  }
725
726  // Leave lifetime markers for the static alloca's, scoping them to the
727  // function we just inlined.
728  if (!IFI.StaticAllocas.empty()) {
729    // Also preserve the call graph, if applicable.
730    CallGraphNode *StartCGN = 0, *EndCGN = 0, *CallerNode = 0;
731    if (CallGraph *CG = IFI.CG) {
732      Function *Start = Intrinsic::getDeclaration(Caller->getParent(),
733                                                  Intrinsic::lifetime_start);
734      Function *End = Intrinsic::getDeclaration(Caller->getParent(),
735                                                Intrinsic::lifetime_end);
736      StartCGN = CG->getOrInsertFunction(Start);
737      EndCGN = CG->getOrInsertFunction(End);
738      CallerNode = (*CG)[Caller];
739    }
740
741    IRBuilder<> builder(FirstNewBlock->begin());
742    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
743      AllocaInst *AI = IFI.StaticAllocas[ai];
744
745      // If the alloca is already scoped to something smaller than the whole
746      // function then there's no need to add redundant, less accurate markers.
747      if (hasLifetimeMarkers(AI))
748        continue;
749
750      builder.CreateLifetimeStart(AI);
751      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
752        IRBuilder<> builder(Returns[ri]);
753        builder.CreateLifetimeEnd(AI);
754      }
755    }
756  }
757
758  // If the inlined code contained dynamic alloca instructions, wrap the inlined
759  // code with llvm.stacksave/llvm.stackrestore intrinsics.
760  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
761    Module *M = Caller->getParent();
762    // Get the two intrinsics we care about.
763    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
764    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
765
766    // Insert the llvm.stacksave.
767    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
768                                          FirstNewBlock->begin());
769
770    // Insert a call to llvm.stackrestore before any return instructions in the
771    // inlined function.
772    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
773      CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
774    }
775
776    // Count the number of StackRestore calls we insert.
777    unsigned NumStackRestores = Returns.size();
778
779    // If we are inlining an invoke instruction, insert restores before each
780    // unwind.  These unwinds will be rewritten into branches later.
781    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
782      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
783           BB != E; ++BB)
784        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
785          CallInst::Create(StackRestore, SavedPtr, "", UI);
786          ++NumStackRestores;
787        }
788    }
789  }
790
791  // If we are inlining tail call instruction through a call site that isn't
792  // marked 'tail', we must remove the tail marker for any calls in the inlined
793  // code.  Also, calls inlined through a 'nounwind' call site should be marked
794  // 'nounwind'.
795  if (InlinedFunctionInfo.ContainsCalls &&
796      (MustClearTailCallFlags || MarkNoUnwind)) {
797    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
798         BB != E; ++BB)
799      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
800        if (CallInst *CI = dyn_cast<CallInst>(I)) {
801          if (MustClearTailCallFlags)
802            CI->setTailCall(false);
803          if (MarkNoUnwind)
804            CI->setDoesNotThrow();
805        }
806  }
807
808  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
809  // instructions are unreachable.
810  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
811    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
812         BB != E; ++BB) {
813      TerminatorInst *Term = BB->getTerminator();
814      if (isa<UnwindInst>(Term)) {
815        new UnreachableInst(Context, Term);
816        BB->getInstList().erase(Term);
817      }
818    }
819
820  // If we are inlining for an invoke instruction, we must make sure to rewrite
821  // any inlined 'unwind' instructions into branches to the invoke exception
822  // destination, and call instructions into invoke instructions.
823  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
824    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
825
826  // If we cloned in _exactly one_ basic block, and if that block ends in a
827  // return instruction, we splice the body of the inlined callee directly into
828  // the calling basic block.
829  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
830    // Move all of the instructions right before the call.
831    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
832                                 FirstNewBlock->begin(), FirstNewBlock->end());
833    // Remove the cloned basic block.
834    Caller->getBasicBlockList().pop_back();
835
836    // If the call site was an invoke instruction, add a branch to the normal
837    // destination.
838    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
839      BranchInst::Create(II->getNormalDest(), TheCall);
840
841    // If the return instruction returned a value, replace uses of the call with
842    // uses of the returned value.
843    if (!TheCall->use_empty()) {
844      ReturnInst *R = Returns[0];
845      if (TheCall == R->getReturnValue())
846        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
847      else
848        TheCall->replaceAllUsesWith(R->getReturnValue());
849    }
850    // Since we are now done with the Call/Invoke, we can delete it.
851    TheCall->eraseFromParent();
852
853    // Since we are now done with the return instruction, delete it also.
854    Returns[0]->eraseFromParent();
855
856    // We are now done with the inlining.
857    return true;
858  }
859
860  // Otherwise, we have the normal case, of more than one block to inline or
861  // multiple return sites.
862
863  // We want to clone the entire callee function into the hole between the
864  // "starter" and "ender" blocks.  How we accomplish this depends on whether
865  // this is an invoke instruction or a call instruction.
866  BasicBlock *AfterCallBB;
867  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
868
869    // Add an unconditional branch to make this look like the CallInst case...
870    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
871
872    // Split the basic block.  This guarantees that no PHI nodes will have to be
873    // updated due to new incoming edges, and make the invoke case more
874    // symmetric to the call case.
875    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
876                                          CalledFunc->getName()+".exit");
877
878  } else {  // It's a call
879    // If this is a call instruction, we need to split the basic block that
880    // the call lives in.
881    //
882    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
883                                          CalledFunc->getName()+".exit");
884  }
885
886  // Change the branch that used to go to AfterCallBB to branch to the first
887  // basic block of the inlined function.
888  //
889  TerminatorInst *Br = OrigBB->getTerminator();
890  assert(Br && Br->getOpcode() == Instruction::Br &&
891         "splitBasicBlock broken!");
892  Br->setOperand(0, FirstNewBlock);
893
894
895  // Now that the function is correct, make it a little bit nicer.  In
896  // particular, move the basic blocks inserted from the end of the function
897  // into the space made by splitting the source basic block.
898  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
899                                     FirstNewBlock, Caller->end());
900
901  // Handle all of the return instructions that we just cloned in, and eliminate
902  // any users of the original call/invoke instruction.
903  const Type *RTy = CalledFunc->getReturnType();
904
905  PHINode *PHI = 0;
906  if (Returns.size() > 1) {
907    // The PHI node should go at the front of the new basic block to merge all
908    // possible incoming values.
909    if (!TheCall->use_empty()) {
910      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
911                            AfterCallBB->begin());
912      // Anything that used the result of the function call should now use the
913      // PHI node as their operand.
914      TheCall->replaceAllUsesWith(PHI);
915    }
916
917    // Loop over all of the return instructions adding entries to the PHI node
918    // as appropriate.
919    if (PHI) {
920      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
921        ReturnInst *RI = Returns[i];
922        assert(RI->getReturnValue()->getType() == PHI->getType() &&
923               "Ret value not consistent in function!");
924        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
925      }
926    }
927
928
929    // Add a branch to the merge points and remove return instructions.
930    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
931      ReturnInst *RI = Returns[i];
932      BranchInst::Create(AfterCallBB, RI);
933      RI->eraseFromParent();
934    }
935  } else if (!Returns.empty()) {
936    // Otherwise, if there is exactly one return value, just replace anything
937    // using the return value of the call with the computed value.
938    if (!TheCall->use_empty()) {
939      if (TheCall == Returns[0]->getReturnValue())
940        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
941      else
942        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
943    }
944
945    // Splice the code from the return block into the block that it will return
946    // to, which contains the code that was after the call.
947    BasicBlock *ReturnBB = Returns[0]->getParent();
948    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
949                                      ReturnBB->getInstList());
950
951    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
952    ReturnBB->replaceAllUsesWith(AfterCallBB);
953
954    // Delete the return instruction now and empty ReturnBB now.
955    Returns[0]->eraseFromParent();
956    ReturnBB->eraseFromParent();
957  } else if (!TheCall->use_empty()) {
958    // No returns, but something is using the return value of the call.  Just
959    // nuke the result.
960    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
961  }
962
963  // Since we are now done with the Call/Invoke, we can delete it.
964  TheCall->eraseFromParent();
965
966  // We should always be able to fold the entry block of the function into the
967  // single predecessor of the block...
968  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
969  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
970
971  // Splice the code entry block into calling block, right before the
972  // unconditional branch.
973  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
974  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
975
976  // Remove the unconditional branch.
977  OrigBB->getInstList().erase(Br);
978
979  // Now we can remove the CalleeEntry block, which is now empty.
980  Caller->getBasicBlockList().erase(CalleeEntry);
981
982  // If we inserted a phi node, check to see if it has a single value (e.g. all
983  // the entries are the same or undef).  If so, remove the PHI so it doesn't
984  // block other optimizations.
985  if (PHI)
986    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
987      PHI->replaceAllUsesWith(V);
988      PHI->eraseFromParent();
989    }
990
991  return true;
992}
993