InlineFunction.cpp revision f0c3354d998507515ab39e26b5292ea0ceb06aef
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Support/CallSite.h"
24using namespace llvm;
25
26bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
27  return InlineFunction(CallSite(CI), CG, TD);
28}
29bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(II), CG, TD);
31}
32
33/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
34/// in the body of the inlined function into invokes and turn unwind
35/// instructions into branches to the invoke unwind dest.
36///
37/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
38/// block of the inlined code (the last block is the end of the function),
39/// and InlineCodeInfo is information about the code that got inlined.
40static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
41                                ClonedCodeInfo &InlinedCodeInfo) {
42  BasicBlock *InvokeDest = II->getUnwindDest();
43  std::vector<Value*> InvokeDestPHIValues;
44
45  // If there are PHI nodes in the unwind destination block, we need to
46  // keep track of which values came into them from this invoke, then remove
47  // the entry for this block.
48  BasicBlock *InvokeBlock = II->getParent();
49  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
50    PHINode *PN = cast<PHINode>(I);
51    // Save the value to use for this edge.
52    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
53  }
54
55  Function *Caller = FirstNewBlock->getParent();
56
57  // The inlined code is currently at the end of the function, scan from the
58  // start of the inlined code to its end, checking for stuff we need to
59  // rewrite.
60  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
61    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
62         BB != E; ++BB) {
63      if (InlinedCodeInfo.ContainsCalls) {
64        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
65          Instruction *I = BBI++;
66
67          // We only need to check for function calls: inlined invoke
68          // instructions require no special handling.
69          if (!isa<CallInst>(I)) continue;
70          CallInst *CI = cast<CallInst>(I);
71
72          // If this call cannot unwind, don't convert it to an invoke.
73          if (CI->doesNotThrow())
74            continue;
75
76          // Convert this function call into an invoke instruction.
77          // First, split the basic block.
78          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
79
80          // Next, create the new invoke instruction, inserting it at the end
81          // of the old basic block.
82          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
83          InvokeInst *II =
84            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85                           InvokeArgs.begin(), InvokeArgs.end(),
86                           CI->getName(), BB->getTerminator());
87          II->setCallingConv(CI->getCallingConv());
88          II->setParamAttrs(CI->getParamAttrs());
89
90          // Make sure that anything using the call now uses the invoke!
91          CI->replaceAllUsesWith(II);
92
93          // Delete the unconditional branch inserted by splitBasicBlock
94          BB->getInstList().pop_back();
95          Split->getInstList().pop_front();  // Delete the original call
96
97          // Update any PHI nodes in the exceptional block to indicate that
98          // there is now a new entry in them.
99          unsigned i = 0;
100          for (BasicBlock::iterator I = InvokeDest->begin();
101               isa<PHINode>(I); ++I, ++i) {
102            PHINode *PN = cast<PHINode>(I);
103            PN->addIncoming(InvokeDestPHIValues[i], BB);
104          }
105
106          // This basic block is now complete, start scanning the next one.
107          break;
108        }
109      }
110
111      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
112        // An UnwindInst requires special handling when it gets inlined into an
113        // invoke site.  Once this happens, we know that the unwind would cause
114        // a control transfer to the invoke exception destination, so we can
115        // transform it into a direct branch to the exception destination.
116        new BranchInst(InvokeDest, UI);
117
118        // Delete the unwind instruction!
119        UI->getParent()->getInstList().pop_back();
120
121        // Update any PHI nodes in the exceptional block to indicate that
122        // there is now a new entry in them.
123        unsigned i = 0;
124        for (BasicBlock::iterator I = InvokeDest->begin();
125             isa<PHINode>(I); ++I, ++i) {
126          PHINode *PN = cast<PHINode>(I);
127          PN->addIncoming(InvokeDestPHIValues[i], BB);
128        }
129      }
130    }
131  }
132
133  // Now that everything is happy, we have one final detail.  The PHI nodes in
134  // the exception destination block still have entries due to the original
135  // invoke instruction.  Eliminate these entries (which might even delete the
136  // PHI node) now.
137  InvokeDest->removePredecessor(II->getParent());
138}
139
140/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
141/// into the caller, update the specified callgraph to reflect the changes we
142/// made.  Note that it's possible that not all code was copied over, so only
143/// some edges of the callgraph will be remain.
144static void UpdateCallGraphAfterInlining(const Function *Caller,
145                                         const Function *Callee,
146                                         Function::iterator FirstNewBlock,
147                                       DenseMap<const Value*, Value*> &ValueMap,
148                                         CallGraph &CG) {
149  // Update the call graph by deleting the edge from Callee to Caller
150  CallGraphNode *CalleeNode = CG[Callee];
151  CallGraphNode *CallerNode = CG[Caller];
152  CallerNode->removeCallEdgeTo(CalleeNode);
153
154  // Since we inlined some uninlined call sites in the callee into the caller,
155  // add edges from the caller to all of the callees of the callee.
156  for (CallGraphNode::iterator I = CalleeNode->begin(),
157       E = CalleeNode->end(); I != E; ++I) {
158    const Instruction *OrigCall = I->first.getInstruction();
159
160    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
161    // Only copy the edge if the call was inlined!
162    if (VMI != ValueMap.end() && VMI->second) {
163      // If the call was inlined, but then constant folded, there is no edge to
164      // add.  Check for this case.
165      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
166        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
167    }
168  }
169}
170
171
172// InlineFunction - This function inlines the called function into the basic
173// block of the caller.  This returns false if it is not possible to inline this
174// call.  The program is still in a well defined state if this occurs though.
175//
176// Note that this only does one level of inlining.  For example, if the
177// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
178// exists in the instruction stream.  Similiarly this will inline a recursive
179// function by one level.
180//
181bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
182  Instruction *TheCall = CS.getInstruction();
183  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
184         "Instruction not in function!");
185
186  const Function *CalledFunc = CS.getCalledFunction();
187  if (CalledFunc == 0 ||          // Can't inline external function or indirect
188      CalledFunc->isDeclaration() || // call, or call to a vararg function!
189      CalledFunc->getFunctionType()->isVarArg()) return false;
190
191
192  // If the call to the callee is a non-tail call, we must clear the 'tail'
193  // flags on any calls that we inline.
194  bool MustClearTailCallFlags =
195    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
196
197  // If the call to the callee cannot throw, set the 'nounwind' flag on any
198  // calls that we inline.
199  bool MarkNoUnwind = CS.doesNotThrow();
200
201  BasicBlock *OrigBB = TheCall->getParent();
202  Function *Caller = OrigBB->getParent();
203
204  // Get an iterator to the last basic block in the function, which will have
205  // the new function inlined after it.
206  //
207  Function::iterator LastBlock = &Caller->back();
208
209  // Make sure to capture all of the return instructions from the cloned
210  // function.
211  std::vector<ReturnInst*> Returns;
212  ClonedCodeInfo InlinedFunctionInfo;
213  Function::iterator FirstNewBlock;
214
215  { // Scope to destroy ValueMap after cloning.
216    DenseMap<const Value*, Value*> ValueMap;
217
218    // Calculate the vector of arguments to pass into the function cloner, which
219    // matches up the formal to the actual argument values.
220    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
221           std::distance(CS.arg_begin(), CS.arg_end()) &&
222           "No varargs calls can be inlined!");
223    CallSite::arg_iterator AI = CS.arg_begin();
224    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
225           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
226      ValueMap[I] = *AI;
227
228    // We want the inliner to prune the code as it copies.  We would LOVE to
229    // have no dead or constant instructions leftover after inlining occurs
230    // (which can happen, e.g., because an argument was constant), but we'll be
231    // happy with whatever the cloner can do.
232    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
233                              &InlinedFunctionInfo, TD);
234
235    // Remember the first block that is newly cloned over.
236    FirstNewBlock = LastBlock; ++FirstNewBlock;
237
238    // Update the callgraph if requested.
239    if (CG)
240      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
241                                   *CG);
242  }
243
244  // If there are any alloca instructions in the block that used to be the entry
245  // block for the callee, move them to the entry block of the caller.  First
246  // calculate which instruction they should be inserted before.  We insert the
247  // instructions at the end of the current alloca list.
248  //
249  {
250    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
251    for (BasicBlock::iterator I = FirstNewBlock->begin(),
252           E = FirstNewBlock->end(); I != E; )
253      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
254        // If the alloca is now dead, remove it.  This often occurs due to code
255        // specialization.
256        if (AI->use_empty()) {
257          AI->eraseFromParent();
258          continue;
259        }
260
261        if (isa<Constant>(AI->getArraySize())) {
262          // Scan for the block of allocas that we can move over, and move them
263          // all at once.
264          while (isa<AllocaInst>(I) &&
265                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
266            ++I;
267
268          // Transfer all of the allocas over in a block.  Using splice means
269          // that the instructions aren't removed from the symbol table, then
270          // reinserted.
271          Caller->getEntryBlock().getInstList().splice(
272              InsertPoint,
273              FirstNewBlock->getInstList(),
274              AI, I);
275        }
276      }
277  }
278
279  // If the inlined code contained dynamic alloca instructions, wrap the inlined
280  // code with llvm.stacksave/llvm.stackrestore intrinsics.
281  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
282    Module *M = Caller->getParent();
283    const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
284    // Get the two intrinsics we care about.
285    Constant *StackSave, *StackRestore;
286    StackSave    = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
287    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
288                                          BytePtr, NULL);
289
290    // If we are preserving the callgraph, add edges to the stacksave/restore
291    // functions for the calls we insert.
292    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
293    if (CG) {
294      // We know that StackSave/StackRestore are Function*'s, because they are
295      // intrinsics which must have the right types.
296      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
297      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
298      CallerNode = (*CG)[Caller];
299    }
300
301    // Insert the llvm.stacksave.
302    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
303                                      FirstNewBlock->begin());
304    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
305
306    // Insert a call to llvm.stackrestore before any return instructions in the
307    // inlined function.
308    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
309      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
310      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
311    }
312
313    // Count the number of StackRestore calls we insert.
314    unsigned NumStackRestores = Returns.size();
315
316    // If we are inlining an invoke instruction, insert restores before each
317    // unwind.  These unwinds will be rewritten into branches later.
318    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
319      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
320           BB != E; ++BB)
321        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
322          new CallInst(StackRestore, SavedPtr, "", UI);
323          ++NumStackRestores;
324        }
325    }
326  }
327
328  // If we are inlining tail call instruction through a call site that isn't
329  // marked 'tail', we must remove the tail marker for any calls in the inlined
330  // code.  Also, calls inlined through a 'nounwind' call site should be marked
331  // 'nounwind'.
332  if (InlinedFunctionInfo.ContainsCalls &&
333      (MustClearTailCallFlags || MarkNoUnwind)) {
334    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
335         BB != E; ++BB)
336      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
337        if (CallInst *CI = dyn_cast<CallInst>(I)) {
338          if (MustClearTailCallFlags)
339            CI->setTailCall(false);
340          if (MarkNoUnwind)
341            CI->setDoesNotThrow();
342        }
343  }
344
345  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
346  // instructions are unreachable.
347  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
348    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
349         BB != E; ++BB) {
350      TerminatorInst *Term = BB->getTerminator();
351      if (isa<UnwindInst>(Term)) {
352        new UnreachableInst(Term);
353        BB->getInstList().erase(Term);
354      }
355    }
356
357  // If we are inlining for an invoke instruction, we must make sure to rewrite
358  // any inlined 'unwind' instructions into branches to the invoke exception
359  // destination, and call instructions into invoke instructions.
360  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
361    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
362
363  // If we cloned in _exactly one_ basic block, and if that block ends in a
364  // return instruction, we splice the body of the inlined callee directly into
365  // the calling basic block.
366  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
367    // Move all of the instructions right before the call.
368    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
369                                 FirstNewBlock->begin(), FirstNewBlock->end());
370    // Remove the cloned basic block.
371    Caller->getBasicBlockList().pop_back();
372
373    // If the call site was an invoke instruction, add a branch to the normal
374    // destination.
375    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
376      new BranchInst(II->getNormalDest(), TheCall);
377
378    // If the return instruction returned a value, replace uses of the call with
379    // uses of the returned value.
380    if (!TheCall->use_empty())
381      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
382
383    // Since we are now done with the Call/Invoke, we can delete it.
384    TheCall->getParent()->getInstList().erase(TheCall);
385
386    // Since we are now done with the return instruction, delete it also.
387    Returns[0]->getParent()->getInstList().erase(Returns[0]);
388
389    // We are now done with the inlining.
390    return true;
391  }
392
393  // Otherwise, we have the normal case, of more than one block to inline or
394  // multiple return sites.
395
396  // We want to clone the entire callee function into the hole between the
397  // "starter" and "ender" blocks.  How we accomplish this depends on whether
398  // this is an invoke instruction or a call instruction.
399  BasicBlock *AfterCallBB;
400  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
401
402    // Add an unconditional branch to make this look like the CallInst case...
403    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
404
405    // Split the basic block.  This guarantees that no PHI nodes will have to be
406    // updated due to new incoming edges, and make the invoke case more
407    // symmetric to the call case.
408    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
409                                          CalledFunc->getName()+".exit");
410
411  } else {  // It's a call
412    // If this is a call instruction, we need to split the basic block that
413    // the call lives in.
414    //
415    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
416                                          CalledFunc->getName()+".exit");
417  }
418
419  // Change the branch that used to go to AfterCallBB to branch to the first
420  // basic block of the inlined function.
421  //
422  TerminatorInst *Br = OrigBB->getTerminator();
423  assert(Br && Br->getOpcode() == Instruction::Br &&
424         "splitBasicBlock broken!");
425  Br->setOperand(0, FirstNewBlock);
426
427
428  // Now that the function is correct, make it a little bit nicer.  In
429  // particular, move the basic blocks inserted from the end of the function
430  // into the space made by splitting the source basic block.
431  //
432  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
433                                     FirstNewBlock, Caller->end());
434
435  // Handle all of the return instructions that we just cloned in, and eliminate
436  // any users of the original call/invoke instruction.
437  if (Returns.size() > 1) {
438    // The PHI node should go at the front of the new basic block to merge all
439    // possible incoming values.
440    //
441    PHINode *PHI = 0;
442    if (!TheCall->use_empty()) {
443      PHI = new PHINode(CalledFunc->getReturnType(),
444                        TheCall->getName(), AfterCallBB->begin());
445
446      // Anything that used the result of the function call should now use the
447      // PHI node as their operand.
448      //
449      TheCall->replaceAllUsesWith(PHI);
450    }
451
452    // Loop over all of the return instructions, turning them into unconditional
453    // branches to the merge point now, and adding entries to the PHI node as
454    // appropriate.
455    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
456      ReturnInst *RI = Returns[i];
457
458      if (PHI) {
459        assert(RI->getReturnValue() && "Ret should have value!");
460        assert(RI->getReturnValue()->getType() == PHI->getType() &&
461               "Ret value not consistent in function!");
462        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
463      }
464
465      // Add a branch to the merge point where the PHI node lives if it exists.
466      new BranchInst(AfterCallBB, RI);
467
468      // Delete the return instruction now
469      RI->getParent()->getInstList().erase(RI);
470    }
471
472  } else if (!Returns.empty()) {
473    // Otherwise, if there is exactly one return value, just replace anything
474    // using the return value of the call with the computed value.
475    if (!TheCall->use_empty())
476      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
477
478    // Splice the code from the return block into the block that it will return
479    // to, which contains the code that was after the call.
480    BasicBlock *ReturnBB = Returns[0]->getParent();
481    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
482                                      ReturnBB->getInstList());
483
484    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
485    ReturnBB->replaceAllUsesWith(AfterCallBB);
486
487    // Delete the return instruction now and empty ReturnBB now.
488    Returns[0]->eraseFromParent();
489    ReturnBB->eraseFromParent();
490  } else if (!TheCall->use_empty()) {
491    // No returns, but something is using the return value of the call.  Just
492    // nuke the result.
493    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
494  }
495
496  // Since we are now done with the Call/Invoke, we can delete it.
497  TheCall->eraseFromParent();
498
499  // We should always be able to fold the entry block of the function into the
500  // single predecessor of the block...
501  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
502  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
503
504  // Splice the code entry block into calling block, right before the
505  // unconditional branch.
506  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
507  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
508
509  // Remove the unconditional branch.
510  OrigBB->getInstList().erase(Br);
511
512  // Now we can remove the CalleeEntry block, which is now empty.
513  Caller->getBasicBlockList().erase(CalleeEntry);
514
515  return true;
516}
517