SSAUpdater.cpp revision 4aad88d1fd88413029dd05255306b07cb19396ee
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ssaupdater"
15#include "llvm/Instructions.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Allocator.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
24using namespace llvm;
25
26typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
27static AvailableValsTy &getAvailableVals(void *AV) {
28  return *static_cast<AvailableValsTy*>(AV);
29}
30
31SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
32  : AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}
33
34SSAUpdater::~SSAUpdater() {
35  delete &getAvailableVals(AV);
36}
37
38/// Initialize - Reset this object to get ready for a new set of SSA
39/// updates.  ProtoValue is the value used to name PHI nodes.
40void SSAUpdater::Initialize(Value *ProtoValue) {
41  if (AV == 0)
42    AV = new AvailableValsTy();
43  else
44    getAvailableVals(AV).clear();
45  PrototypeValue = ProtoValue;
46}
47
48/// HasValueForBlock - Return true if the SSAUpdater already has a value for
49/// the specified block.
50bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
51  return getAvailableVals(AV).count(BB);
52}
53
54/// AddAvailableValue - Indicate that a rewritten value is available in the
55/// specified block with the specified value.
56void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
57  assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
58  assert(PrototypeValue->getType() == V->getType() &&
59         "All rewritten values must have the same type");
60  getAvailableVals(AV)[BB] = V;
61}
62
63/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
64/// in ValueMapping for each predecessor block.
65static bool IsEquivalentPHI(PHINode *PHI,
66                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
67  unsigned PHINumValues = PHI->getNumIncomingValues();
68  if (PHINumValues != ValueMapping.size())
69    return false;
70
71  // Scan the phi to see if it matches.
72  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
73    if (ValueMapping[PHI->getIncomingBlock(i)] !=
74        PHI->getIncomingValue(i)) {
75      return false;
76    }
77
78  return true;
79}
80
81/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
82/// live at the end of the specified block.
83Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
84  Value *Res = GetValueAtEndOfBlockInternal(BB);
85  return Res;
86}
87
88/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
89/// is live in the middle of the specified block.
90///
91/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
92/// important case: if there is a definition of the rewritten value after the
93/// 'use' in BB.  Consider code like this:
94///
95///      X1 = ...
96///   SomeBB:
97///      use(X)
98///      X2 = ...
99///      br Cond, SomeBB, OutBB
100///
101/// In this case, there are two values (X1 and X2) added to the AvailableVals
102/// set by the client of the rewriter, and those values are both live out of
103/// their respective blocks.  However, the use of X happens in the *middle* of
104/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
105/// merge the appropriate values, and this value isn't live out of the block.
106///
107Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
108  // If there is no definition of the renamed variable in this block, just use
109  // GetValueAtEndOfBlock to do our work.
110  if (!HasValueForBlock(BB))
111    return GetValueAtEndOfBlock(BB);
112
113  // Otherwise, we have the hard case.  Get the live-in values for each
114  // predecessor.
115  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
116  Value *SingularValue = 0;
117
118  // We can get our predecessor info by walking the pred_iterator list, but it
119  // is relatively slow.  If we already have PHI nodes in this block, walk one
120  // of them to get the predecessor list instead.
121  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
122    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
123      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
124      Value *PredVal = GetValueAtEndOfBlock(PredBB);
125      PredValues.push_back(std::make_pair(PredBB, PredVal));
126
127      // Compute SingularValue.
128      if (i == 0)
129        SingularValue = PredVal;
130      else if (PredVal != SingularValue)
131        SingularValue = 0;
132    }
133  } else {
134    bool isFirstPred = true;
135    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
136      BasicBlock *PredBB = *PI;
137      Value *PredVal = GetValueAtEndOfBlock(PredBB);
138      PredValues.push_back(std::make_pair(PredBB, PredVal));
139
140      // Compute SingularValue.
141      if (isFirstPred) {
142        SingularValue = PredVal;
143        isFirstPred = false;
144      } else if (PredVal != SingularValue)
145        SingularValue = 0;
146    }
147  }
148
149  // If there are no predecessors, just return undef.
150  if (PredValues.empty())
151    return UndefValue::get(PrototypeValue->getType());
152
153  // Otherwise, if all the merged values are the same, just use it.
154  if (SingularValue != 0)
155    return SingularValue;
156
157  // Otherwise, we do need a PHI: check to see if we already have one available
158  // in this block that produces the right value.
159  if (isa<PHINode>(BB->begin())) {
160    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
161                                               PredValues.end());
162    PHINode *SomePHI;
163    for (BasicBlock::iterator It = BB->begin();
164         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
165      if (IsEquivalentPHI(SomePHI, ValueMapping))
166        return SomePHI;
167    }
168  }
169
170  // Ok, we have no way out, insert a new one now.
171  PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
172                                         PrototypeValue->getName(),
173                                         &BB->front());
174  InsertedPHI->reserveOperandSpace(PredValues.size());
175
176  // Fill in all the predecessors of the PHI.
177  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
178    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
179
180  // See if the PHI node can be merged to a single value.  This can happen in
181  // loop cases when we get a PHI of itself and one other value.
182  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
183    InsertedPHI->eraseFromParent();
184    return ConstVal;
185  }
186
187  // If the client wants to know about all new instructions, tell it.
188  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
189
190  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
191  return InsertedPHI;
192}
193
194/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
195/// which use their value in the corresponding predecessor.
196void SSAUpdater::RewriteUse(Use &U) {
197  Instruction *User = cast<Instruction>(U.getUser());
198
199  Value *V;
200  if (PHINode *UserPN = dyn_cast<PHINode>(User))
201    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
202  else
203    V = GetValueInMiddleOfBlock(User->getParent());
204
205  U.set(V);
206}
207
208/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
209/// in the SSAUpdaterImpl template.
210namespace {
211  class PHIiter {
212  private:
213    PHINode *PHI;
214    unsigned idx;
215
216  public:
217    explicit PHIiter(PHINode *P) // begin iterator
218      : PHI(P), idx(0) {}
219    PHIiter(PHINode *P, bool) // end iterator
220      : PHI(P), idx(PHI->getNumIncomingValues()) {}
221
222    PHIiter &operator++() { ++idx; return *this; }
223    bool operator==(const PHIiter& x) const { return idx == x.idx; }
224    bool operator!=(const PHIiter& x) const { return !operator==(x); }
225    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
226    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
227  };
228}
229
230/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
231/// specialized for SSAUpdater.
232namespace llvm {
233template<>
234class SSAUpdaterTraits<SSAUpdater> {
235public:
236  typedef BasicBlock BlkT;
237  typedef Value *ValT;
238  typedef PHINode PhiT;
239
240  typedef succ_iterator BlkSucc_iterator;
241  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
242  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
243
244  typedef PHIiter PHI_iterator;
245  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
246  static inline PHI_iterator PHI_end(PhiT *PHI) {
247    return PHI_iterator(PHI, true);
248  }
249
250  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
251  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
252  static void FindPredecessorBlocks(BasicBlock *BB,
253                                    SmallVectorImpl<BasicBlock*> *Preds) {
254    // We can get our predecessor info by walking the pred_iterator list,
255    // but it is relatively slow.  If we already have PHI nodes in this
256    // block, walk one of them to get the predecessor list instead.
257    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
258      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
259        Preds->push_back(SomePhi->getIncomingBlock(PI));
260    } else {
261      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
262        Preds->push_back(*PI);
263    }
264  }
265
266  /// GetUndefVal - Get an undefined value of the same type as the value
267  /// being handled.
268  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
269    return UndefValue::get(Updater->PrototypeValue->getType());
270  }
271
272  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
273  /// Reserve space for the operands but do not fill them in yet.
274  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
275                               SSAUpdater *Updater) {
276    PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
277                                   Updater->PrototypeValue->getName(),
278                                   &BB->front());
279    PHI->reserveOperandSpace(NumPreds);
280    return PHI;
281  }
282
283  /// AddPHIOperand - Add the specified value as an operand of the PHI for
284  /// the specified predecessor block.
285  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
286    PHI->addIncoming(Val, Pred);
287  }
288
289  /// InstrIsPHI - Check if an instruction is a PHI.
290  ///
291  static PHINode *InstrIsPHI(Instruction *I) {
292    return dyn_cast<PHINode>(I);
293  }
294
295  /// ValueIsPHI - Check if a value is a PHI.
296  ///
297  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
298    return dyn_cast<PHINode>(Val);
299  }
300
301  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
302  /// operands, i.e., it was just added.
303  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
304    PHINode *PHI = ValueIsPHI(Val, Updater);
305    if (PHI && PHI->getNumIncomingValues() == 0)
306      return PHI;
307    return 0;
308  }
309
310  /// GetPHIValue - For the specified PHI instruction, return the value
311  /// that it defines.
312  static Value *GetPHIValue(PHINode *PHI) {
313    return PHI;
314  }
315};
316
317} // End llvm namespace
318
319/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
320/// for the specified BB and if so, return it.  If not, construct SSA form by
321/// first calculating the required placement of PHIs and then inserting new
322/// PHIs where needed.
323Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
324  AvailableValsTy &AvailableVals = getAvailableVals(AV);
325  if (Value *V = AvailableVals[BB])
326    return V;
327
328  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
329  return Impl.GetValue(BB);
330}
331