Miscompilation.cpp revision 2db43c864e8372823d961d961ca520ed20edca82
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28#include "llvm/Config/config.h"   // for HAVE_LINK_R
29using namespace llvm;
30
31namespace llvm {
32  extern cl::list<std::string> InputArgv;
33}
34
35namespace {
36  static llvm::cl::opt<bool>
37    DisableLoopExtraction("disable-loop-extraction",
38        cl::desc("Don't extract loops when searching for miscompilations"),
39        cl::init(false));
40
41  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
42    BugDriver &BD;
43  public:
44    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
45
46    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
47                              std::vector<const PassInfo*> &Suffix);
48  };
49}
50
51/// TestResult - After passes have been split into a test group and a control
52/// group, see if they still break the program.
53///
54ReduceMiscompilingPasses::TestResult
55ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
56                                 std::vector<const PassInfo*> &Suffix) {
57  // First, run the program with just the Suffix passes.  If it is still broken
58  // with JUST the kept passes, discard the prefix passes.
59  std::cout << "Checking to see if '" << getPassesString(Suffix)
60            << "' compile correctly: ";
61
62  std::string BytecodeResult;
63  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
64    std::cerr << " Error running this sequence of passes"
65              << " on the input program!\n";
66    BD.setPassesToRun(Suffix);
67    BD.EmitProgressBytecode("pass-error",  false);
68    exit(BD.debugOptimizerCrash());
69  }
70
71  // Check to see if the finished program matches the reference output...
72  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
73    std::cout << " nope.\n";
74    if (Suffix.empty()) {
75      std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
76                << "no passes are run, nondeterministic program?\n";
77      exit(1);
78    }
79    return KeepSuffix;         // Miscompilation detected!
80  }
81  std::cout << " yup.\n";      // No miscompilation!
82
83  if (Prefix.empty()) return NoFailure;
84
85  // Next, see if the program is broken if we run the "prefix" passes first,
86  // then separately run the "kept" passes.
87  std::cout << "Checking to see if '" << getPassesString(Prefix)
88            << "' compile correctly: ";
89
90  // If it is not broken with the kept passes, it's possible that the prefix
91  // passes must be run before the kept passes to break it.  If the program
92  // WORKS after the prefix passes, but then fails if running the prefix AND
93  // kept passes, we can update our bytecode file to include the result of the
94  // prefix passes, then discard the prefix passes.
95  //
96  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
97    std::cerr << " Error running this sequence of passes"
98              << " on the input program!\n";
99    BD.setPassesToRun(Prefix);
100    BD.EmitProgressBytecode("pass-error",  false);
101    exit(BD.debugOptimizerCrash());
102  }
103
104  // If the prefix maintains the predicate by itself, only keep the prefix!
105  if (BD.diffProgram(BytecodeResult)) {
106    std::cout << " nope.\n";
107    sys::Path(BytecodeResult).eraseFromDisk();
108    return KeepPrefix;
109  }
110  std::cout << " yup.\n";      // No miscompilation!
111
112  // Ok, so now we know that the prefix passes work, try running the suffix
113  // passes on the result of the prefix passes.
114  //
115  Module *PrefixOutput = ParseInputFile(BytecodeResult);
116  if (PrefixOutput == 0) {
117    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
118              << BytecodeResult << "'!\n";
119    exit(1);
120  }
121  sys::Path(BytecodeResult).eraseFromDisk();  // No longer need the file on disk
122
123  // Don't check if there are no passes in the suffix.
124  if (Suffix.empty())
125    return NoFailure;
126
127  std::cout << "Checking to see if '" << getPassesString(Suffix)
128            << "' passes compile correctly after the '"
129            << getPassesString(Prefix) << "' passes: ";
130
131  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
132  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
133    std::cerr << " Error running this sequence of passes"
134              << " on the input program!\n";
135    BD.setPassesToRun(Suffix);
136    BD.EmitProgressBytecode("pass-error",  false);
137    exit(BD.debugOptimizerCrash());
138  }
139
140  // Run the result...
141  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
142    std::cout << " nope.\n";
143    delete OriginalInput;     // We pruned down the original input...
144    return KeepSuffix;
145  }
146
147  // Otherwise, we must not be running the bad pass anymore.
148  std::cout << " yup.\n";      // No miscompilation!
149  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
150  return NoFailure;
151}
152
153namespace {
154  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
155    BugDriver &BD;
156    bool (*TestFn)(BugDriver &, Module *, Module *);
157  public:
158    ReduceMiscompilingFunctions(BugDriver &bd,
159                                bool (*F)(BugDriver &, Module *, Module *))
160      : BD(bd), TestFn(F) {}
161
162    virtual TestResult doTest(std::vector<Function*> &Prefix,
163                              std::vector<Function*> &Suffix) {
164      if (!Suffix.empty() && TestFuncs(Suffix))
165        return KeepSuffix;
166      if (!Prefix.empty() && TestFuncs(Prefix))
167        return KeepPrefix;
168      return NoFailure;
169    }
170
171    bool TestFuncs(const std::vector<Function*> &Prefix);
172  };
173}
174
175/// TestMergedProgram - Given two modules, link them together and run the
176/// program, checking to see if the program matches the diff.  If the diff
177/// matches, return false, otherwise return true.  If the DeleteInputs argument
178/// is set to true then this function deletes both input modules before it
179/// returns.
180///
181static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
182                              bool DeleteInputs) {
183  // Link the two portions of the program back to together.
184  std::string ErrorMsg;
185  if (!DeleteInputs) {
186    M1 = CloneModule(M1);
187    M2 = CloneModule(M2);
188  }
189  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
190    std::cerr << BD.getToolName() << ": Error linking modules together:"
191              << ErrorMsg << '\n';
192    exit(1);
193  }
194  delete M2;   // We are done with this module.
195
196  Module *OldProgram = BD.swapProgramIn(M1);
197
198  // Execute the program.  If it does not match the expected output, we must
199  // return true.
200  bool Broken = BD.diffProgram();
201
202  // Delete the linked module & restore the original
203  BD.swapProgramIn(OldProgram);
204  delete M1;
205  return Broken;
206}
207
208/// TestFuncs - split functions in a Module into two groups: those that are
209/// under consideration for miscompilation vs. those that are not, and test
210/// accordingly. Each group of functions becomes a separate Module.
211///
212bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
213  // Test to see if the function is misoptimized if we ONLY run it on the
214  // functions listed in Funcs.
215  std::cout << "Checking to see if the program is misoptimized when "
216            << (Funcs.size()==1 ? "this function is" : "these functions are")
217            << " run through the pass"
218            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
219  PrintFunctionList(Funcs);
220  std::cout << '\n';
221
222  // Split the module into the two halves of the program we want.
223  Module *ToNotOptimize = CloneModule(BD.getProgram());
224  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
225
226  // Run the predicate, not that the predicate will delete both input modules.
227  return TestFn(BD, ToOptimize, ToNotOptimize);
228}
229
230/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
231/// modifying predominantly internal symbols rather than external ones.
232///
233static void DisambiguateGlobalSymbols(Module *M) {
234  // Try not to cause collisions by minimizing chances of renaming an
235  // already-external symbol, so take in external globals and functions as-is.
236  // The code should work correctly without disambiguation (assuming the same
237  // mangler is used by the two code generators), but having symbols with the
238  // same name causes warnings to be emitted by the code generator.
239  Mangler Mang(*M);
240  // Agree with the CBE on symbol naming
241  Mang.markCharUnacceptable('.');
242  Mang.setPreserveAsmNames(true);
243  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
244       I != E; ++I)
245    I->setName(Mang.getValueName(I));
246  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
247    I->setName(Mang.getValueName(I));
248}
249
250/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
251/// check to see if we can extract the loops in the region without obscuring the
252/// bug.  If so, it reduces the amount of code identified.
253///
254static bool ExtractLoops(BugDriver &BD,
255                         bool (*TestFn)(BugDriver &, Module *, Module *),
256                         std::vector<Function*> &MiscompiledFunctions) {
257  bool MadeChange = false;
258  while (1) {
259    if (BugpointIsInterrupted) return MadeChange;
260
261    Module *ToNotOptimize = CloneModule(BD.getProgram());
262    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
263                                                   MiscompiledFunctions);
264    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
265    if (!ToOptimizeLoopExtracted) {
266      // If the loop extractor crashed or if there were no extractible loops,
267      // then this chapter of our odyssey is over with.
268      delete ToNotOptimize;
269      delete ToOptimize;
270      return MadeChange;
271    }
272
273    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
274
275    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
276    // particular, we're not going to assume that the loop extractor works, so
277    // we're going to test the newly loop extracted program to make sure nothing
278    // has broken.  If something broke, then we'll inform the user and stop
279    // extraction.
280    AbstractInterpreter *AI = BD.switchToCBE();
281    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
282      BD.switchToInterpreter(AI);
283
284      // Merged program doesn't work anymore!
285      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
286                << " Please report a bug!\n";
287      std::cerr << "      Continuing on with un-loop-extracted version.\n";
288
289      BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
290      BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
291      BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
292                            ToOptimizeLoopExtracted);
293
294      std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
295      delete ToOptimize;
296      delete ToNotOptimize;
297      delete ToOptimizeLoopExtracted;
298      return MadeChange;
299    }
300    delete ToOptimize;
301    BD.switchToInterpreter(AI);
302
303    std::cout << "  Testing after loop extraction:\n";
304    // Clone modules, the tester function will free them.
305    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
306    Module *TNOBackup  = CloneModule(ToNotOptimize);
307    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
308      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
309      // If the program is not still broken, then loop extraction did something
310      // that masked the error.  Stop loop extraction now.
311      delete TOLEBackup;
312      delete TNOBackup;
313      return MadeChange;
314    }
315    ToOptimizeLoopExtracted = TOLEBackup;
316    ToNotOptimize = TNOBackup;
317
318    std::cout << "*** Loop extraction successful!\n";
319
320    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
321    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
322           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
323      if (!I->isExternal())
324        MisCompFunctions.push_back(std::make_pair(I->getName(),
325                                                  I->getFunctionType()));
326
327    // Okay, great!  Now we know that we extracted a loop and that loop
328    // extraction both didn't break the program, and didn't mask the problem.
329    // Replace the current program with the loop extracted version, and try to
330    // extract another loop.
331    std::string ErrorMsg;
332    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
333      std::cerr << BD.getToolName() << ": Error linking modules together:"
334                << ErrorMsg << '\n';
335      exit(1);
336    }
337    delete ToOptimizeLoopExtracted;
338
339    // All of the Function*'s in the MiscompiledFunctions list are in the old
340    // module.  Update this list to include all of the functions in the
341    // optimized and loop extracted module.
342    MiscompiledFunctions.clear();
343    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
344      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first,
345                                                  MisCompFunctions[i].second);
346      assert(NewF && "Function not found??");
347      MiscompiledFunctions.push_back(NewF);
348    }
349
350    BD.setNewProgram(ToNotOptimize);
351    MadeChange = true;
352  }
353}
354
355namespace {
356  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
357    BugDriver &BD;
358    bool (*TestFn)(BugDriver &, Module *, Module *);
359    std::vector<Function*> FunctionsBeingTested;
360  public:
361    ReduceMiscompiledBlocks(BugDriver &bd,
362                            bool (*F)(BugDriver &, Module *, Module *),
363                            const std::vector<Function*> &Fns)
364      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
365
366    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
367                              std::vector<BasicBlock*> &Suffix) {
368      if (!Suffix.empty() && TestFuncs(Suffix))
369        return KeepSuffix;
370      if (TestFuncs(Prefix))
371        return KeepPrefix;
372      return NoFailure;
373    }
374
375    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
376  };
377}
378
379/// TestFuncs - Extract all blocks for the miscompiled functions except for the
380/// specified blocks.  If the problem still exists, return true.
381///
382bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
383  // Test to see if the function is misoptimized if we ONLY run it on the
384  // functions listed in Funcs.
385  std::cout << "Checking to see if the program is misoptimized when all ";
386  if (!BBs.empty()) {
387    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
388    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
389      std::cout << BBs[i]->getName() << " ";
390    if (BBs.size() > 10) std::cout << "...";
391  } else {
392    std::cout << "blocks are extracted.";
393  }
394  std::cout << '\n';
395
396  // Split the module into the two halves of the program we want.
397  Module *ToNotOptimize = CloneModule(BD.getProgram());
398  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
399                                                 FunctionsBeingTested);
400
401  // Try the extraction.  If it doesn't work, then the block extractor crashed
402  // or something, in which case bugpoint can't chase down this possibility.
403  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
404    delete ToOptimize;
405    // Run the predicate, not that the predicate will delete both input modules.
406    return TestFn(BD, New, ToNotOptimize);
407  }
408  delete ToOptimize;
409  delete ToNotOptimize;
410  return false;
411}
412
413
414/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
415/// extract as many basic blocks from the region as possible without obscuring
416/// the bug.
417///
418static bool ExtractBlocks(BugDriver &BD,
419                          bool (*TestFn)(BugDriver &, Module *, Module *),
420                          std::vector<Function*> &MiscompiledFunctions) {
421  if (BugpointIsInterrupted) return false;
422
423  std::vector<BasicBlock*> Blocks;
424  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
425    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
426           E = MiscompiledFunctions[i]->end(); I != E; ++I)
427      Blocks.push_back(I);
428
429  // Use the list reducer to identify blocks that can be extracted without
430  // obscuring the bug.  The Blocks list will end up containing blocks that must
431  // be retained from the original program.
432  unsigned OldSize = Blocks.size();
433
434  // Check to see if all blocks are extractible first.
435  if (ReduceMiscompiledBlocks(BD, TestFn,
436                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
437    Blocks.clear();
438  } else {
439    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
440    if (Blocks.size() == OldSize)
441      return false;
442  }
443
444  Module *ProgClone = CloneModule(BD.getProgram());
445  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
446                                                MiscompiledFunctions);
447  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
448  if (Extracted == 0) {
449    // Weird, extraction should have worked.
450    std::cerr << "Nondeterministic problem extracting blocks??\n";
451    delete ProgClone;
452    delete ToExtract;
453    return false;
454  }
455
456  // Otherwise, block extraction succeeded.  Link the two program fragments back
457  // together.
458  delete ToExtract;
459
460  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
461  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
462       I != E; ++I)
463    if (!I->isExternal())
464      MisCompFunctions.push_back(std::make_pair(I->getName(),
465                                                I->getFunctionType()));
466
467  std::string ErrorMsg;
468  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
469    std::cerr << BD.getToolName() << ": Error linking modules together:"
470              << ErrorMsg << '\n';
471    exit(1);
472  }
473  delete Extracted;
474
475  // Set the new program and delete the old one.
476  BD.setNewProgram(ProgClone);
477
478  // Update the list of miscompiled functions.
479  MiscompiledFunctions.clear();
480
481  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
482    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first,
483                                            MisCompFunctions[i].second);
484    assert(NewF && "Function not found??");
485    MiscompiledFunctions.push_back(NewF);
486  }
487
488  return true;
489}
490
491
492/// DebugAMiscompilation - This is a generic driver to narrow down
493/// miscompilations, either in an optimization or a code generator.
494///
495static std::vector<Function*>
496DebugAMiscompilation(BugDriver &BD,
497                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
498  // Okay, now that we have reduced the list of passes which are causing the
499  // failure, see if we can pin down which functions are being
500  // miscompiled... first build a list of all of the non-external functions in
501  // the program.
502  std::vector<Function*> MiscompiledFunctions;
503  Module *Prog = BD.getProgram();
504  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
505    if (!I->isExternal())
506      MiscompiledFunctions.push_back(I);
507
508  // Do the reduction...
509  if (!BugpointIsInterrupted)
510    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
511
512  std::cout << "\n*** The following function"
513            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
514            << " being miscompiled: ";
515  PrintFunctionList(MiscompiledFunctions);
516  std::cout << '\n';
517
518  // See if we can rip any loops out of the miscompiled functions and still
519  // trigger the problem.
520
521  if (!BugpointIsInterrupted && !DisableLoopExtraction &&
522      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
523    // Okay, we extracted some loops and the problem still appears.  See if we
524    // can eliminate some of the created functions from being candidates.
525
526    // Loop extraction can introduce functions with the same name (foo_code).
527    // Make sure to disambiguate the symbols so that when the program is split
528    // apart that we can link it back together again.
529    DisambiguateGlobalSymbols(BD.getProgram());
530
531    // Do the reduction...
532    if (!BugpointIsInterrupted)
533      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
534
535    std::cout << "\n*** The following function"
536              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
537              << " being miscompiled: ";
538    PrintFunctionList(MiscompiledFunctions);
539    std::cout << '\n';
540  }
541
542  if (!BugpointIsInterrupted &&
543      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
544    // Okay, we extracted some blocks and the problem still appears.  See if we
545    // can eliminate some of the created functions from being candidates.
546
547    // Block extraction can introduce functions with the same name (foo_code).
548    // Make sure to disambiguate the symbols so that when the program is split
549    // apart that we can link it back together again.
550    DisambiguateGlobalSymbols(BD.getProgram());
551
552    // Do the reduction...
553    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
554
555    std::cout << "\n*** The following function"
556              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
557              << " being miscompiled: ";
558    PrintFunctionList(MiscompiledFunctions);
559    std::cout << '\n';
560  }
561
562  return MiscompiledFunctions;
563}
564
565/// TestOptimizer - This is the predicate function used to check to see if the
566/// "Test" portion of the program is misoptimized.  If so, return true.  In any
567/// case, both module arguments are deleted.
568///
569static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
570  // Run the optimization passes on ToOptimize, producing a transformed version
571  // of the functions being tested.
572  std::cout << "  Optimizing functions being tested: ";
573  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
574                                     /*AutoDebugCrashes*/true);
575  std::cout << "done.\n";
576  delete Test;
577
578  std::cout << "  Checking to see if the merged program executes correctly: ";
579  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
580  std::cout << (Broken ? " nope.\n" : " yup.\n");
581  return Broken;
582}
583
584
585/// debugMiscompilation - This method is used when the passes selected are not
586/// crashing, but the generated output is semantically different from the
587/// input.
588///
589bool BugDriver::debugMiscompilation() {
590  // Make sure something was miscompiled...
591  if (!BugpointIsInterrupted)
592    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
593      std::cerr << "*** Optimized program matches reference output!  No problem"
594                << " detected...\nbugpoint can't help you with your problem!\n";
595      return false;
596    }
597
598  std::cout << "\n*** Found miscompiling pass"
599            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
600            << getPassesString(getPassesToRun()) << '\n';
601  EmitProgressBytecode("passinput");
602
603  std::vector<Function*> MiscompiledFunctions =
604    DebugAMiscompilation(*this, TestOptimizer);
605
606  // Output a bunch of bytecode files for the user...
607  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
608  Module *ToNotOptimize = CloneModule(getProgram());
609  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
610                                                 MiscompiledFunctions);
611
612  std::cout << "  Non-optimized portion: ";
613  ToNotOptimize = swapProgramIn(ToNotOptimize);
614  EmitProgressBytecode("tonotoptimize", true);
615  setNewProgram(ToNotOptimize);   // Delete hacked module.
616
617  std::cout << "  Portion that is input to optimizer: ";
618  ToOptimize = swapProgramIn(ToOptimize);
619  EmitProgressBytecode("tooptimize");
620  setNewProgram(ToOptimize);      // Delete hacked module.
621
622  return false;
623}
624
625/// CleanupAndPrepareModules - Get the specified modules ready for code
626/// generator testing.
627///
628static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
629                                     Module *Safe) {
630  // Clean up the modules, removing extra cruft that we don't need anymore...
631  Test = BD.performFinalCleanups(Test);
632
633  // If we are executing the JIT, we have several nasty issues to take care of.
634  if (!BD.isExecutingJIT()) return;
635
636  // First, if the main function is in the Safe module, we must add a stub to
637  // the Test module to call into it.  Thus, we create a new function `main'
638  // which just calls the old one.
639  if (Function *oldMain = Safe->getNamedFunction("main"))
640    if (!oldMain->isExternal()) {
641      // Rename it
642      oldMain->setName("llvm_bugpoint_old_main");
643      // Create a NEW `main' function with same type in the test module.
644      Function *newMain = new Function(oldMain->getFunctionType(),
645                                       GlobalValue::ExternalLinkage,
646                                       "main", Test);
647      // Create an `oldmain' prototype in the test module, which will
648      // corresponds to the real main function in the same module.
649      Function *oldMainProto = new Function(oldMain->getFunctionType(),
650                                            GlobalValue::ExternalLinkage,
651                                            oldMain->getName(), Test);
652      // Set up and remember the argument list for the main function.
653      std::vector<Value*> args;
654      for (Function::arg_iterator
655             I = newMain->arg_begin(), E = newMain->arg_end(),
656             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
657        I->setName(OI->getName());    // Copy argument names from oldMain
658        args.push_back(I);
659      }
660
661      // Call the old main function and return its result
662      BasicBlock *BB = new BasicBlock("entry", newMain);
663      CallInst *call = new CallInst(oldMainProto, args, "", BB);
664
665      // If the type of old function wasn't void, return value of call
666      new ReturnInst(call, BB);
667    }
668
669  // The second nasty issue we must deal with in the JIT is that the Safe
670  // module cannot directly reference any functions defined in the test
671  // module.  Instead, we use a JIT API call to dynamically resolve the
672  // symbol.
673
674  // Add the resolver to the Safe module.
675  // Prototype: void *getPointerToNamedFunction(const char* Name)
676  Constant *resolverFunc =
677    Safe->getOrInsertFunction("getPointerToNamedFunction",
678                              PointerType::get(Type::Int8Ty),
679                              PointerType::get(Type::Int8Ty), (Type *)0);
680
681  // Use the function we just added to get addresses of functions we need.
682  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
683    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
684        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
685      Function *TestFn = Test->getNamedFunction(F->getName());
686
687      // Don't forward functions which are external in the test module too.
688      if (TestFn && !TestFn->isExternal()) {
689        // 1. Add a string constant with its name to the global file
690        Constant *InitArray = ConstantArray::get(F->getName());
691        GlobalVariable *funcName =
692          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
693                             GlobalValue::InternalLinkage, InitArray,
694                             F->getName() + "_name", Safe);
695
696        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
697        // sbyte* so it matches the signature of the resolver function.
698
699        // GetElementPtr *funcName, ulong 0, ulong 0
700        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::Int32Ty));
701        Value *GEP =
702          ConstantExpr::getGetElementPtr(funcName, GEPargs);
703        std::vector<Value*> ResolverArgs;
704        ResolverArgs.push_back(GEP);
705
706        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
707        // function that dynamically resolves the calls to F via our JIT API
708        if (!F->use_empty()) {
709          // Create a new global to hold the cached function pointer.
710          Constant *NullPtr = ConstantPointerNull::get(F->getType());
711          GlobalVariable *Cache =
712            new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
713                               NullPtr,F->getName()+".fpcache", F->getParent());
714
715          // Construct a new stub function that will re-route calls to F
716          const FunctionType *FuncTy = F->getFunctionType();
717          Function *FuncWrapper = new Function(FuncTy,
718                                               GlobalValue::InternalLinkage,
719                                               F->getName() + "_wrapper",
720                                               F->getParent());
721          BasicBlock *EntryBB  = new BasicBlock("entry", FuncWrapper);
722          BasicBlock *DoCallBB = new BasicBlock("usecache", FuncWrapper);
723          BasicBlock *LookupBB = new BasicBlock("lookupfp", FuncWrapper);
724
725          // Check to see if we already looked up the value.
726          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
727          Value *IsNull = new ICmpInst(ICmpInst::ICMP_EQ, CachedVal,
728                                       NullPtr, "isNull", EntryBB);
729          new BranchInst(LookupBB, DoCallBB, IsNull, EntryBB);
730
731          // Resolve the call to function F via the JIT API:
732          //
733          // call resolver(GetElementPtr...)
734          CallInst *Resolver = new CallInst(resolverFunc, ResolverArgs,
735                                            "resolver", LookupBB);
736          // cast the result from the resolver to correctly-typed function
737          CastInst *CastedResolver = new BitCastInst(Resolver,
738            PointerType::get(F->getFunctionType()), "resolverCast", LookupBB);
739
740          // Save the value in our cache.
741          new StoreInst(CastedResolver, Cache, LookupBB);
742          new BranchInst(DoCallBB, LookupBB);
743
744          PHINode *FuncPtr = new PHINode(NullPtr->getType(), "fp", DoCallBB);
745          FuncPtr->addIncoming(CastedResolver, LookupBB);
746          FuncPtr->addIncoming(CachedVal, EntryBB);
747
748          // Save the argument list.
749          std::vector<Value*> Args;
750          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
751                 e = FuncWrapper->arg_end(); i != e; ++i)
752            Args.push_back(i);
753
754          // Pass on the arguments to the real function, return its result
755          if (F->getReturnType() == Type::VoidTy) {
756            new CallInst(FuncPtr, Args, "", DoCallBB);
757            new ReturnInst(DoCallBB);
758          } else {
759            CallInst *Call = new CallInst(FuncPtr, Args, "retval", DoCallBB);
760            new ReturnInst(Call, DoCallBB);
761          }
762
763          // Use the wrapper function instead of the old function
764          F->replaceAllUsesWith(FuncWrapper);
765        }
766      }
767    }
768  }
769
770  if (verifyModule(*Test) || verifyModule(*Safe)) {
771    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
772    abort();
773  }
774}
775
776
777
778/// TestCodeGenerator - This is the predicate function used to check to see if
779/// the "Test" portion of the program is miscompiled by the code generator under
780/// test.  If so, return true.  In any case, both module arguments are deleted.
781///
782static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
783  CleanupAndPrepareModules(BD, Test, Safe);
784
785  sys::Path TestModuleBC("bugpoint.test.bc");
786  std::string ErrMsg;
787  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
788    std::cerr << BD.getToolName() << "Error making unique filename: "
789              << ErrMsg << "\n";
790    exit(1);
791  }
792  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
793    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
794    exit(1);
795  }
796  delete Test;
797
798  // Make the shared library
799  sys::Path SafeModuleBC("bugpoint.safe.bc");
800  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
801    std::cerr << BD.getToolName() << "Error making unique filename: "
802              << ErrMsg << "\n";
803    exit(1);
804  }
805
806  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
807    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
808    exit(1);
809  }
810  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
811  delete Safe;
812
813  // Run the code generator on the `Test' code, loading the shared library.
814  // The function returns whether or not the new output differs from reference.
815  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
816
817  if (Result)
818    std::cerr << ": still failing!\n";
819  else
820    std::cerr << ": didn't fail.\n";
821  TestModuleBC.eraseFromDisk();
822  SafeModuleBC.eraseFromDisk();
823  sys::Path(SharedObject).eraseFromDisk();
824
825  return Result;
826}
827
828
829/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
830///
831bool BugDriver::debugCodeGenerator() {
832  if ((void*)cbe == (void*)Interpreter) {
833    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
834    std::cout << "\n*** The C backend cannot match the reference diff, but it "
835              << "is used as the 'known good'\n    code generator, so I can't"
836              << " debug it.  Perhaps you have a front-end problem?\n    As a"
837              << " sanity check, I left the result of executing the program "
838              << "with the C backend\n    in this file for you: '"
839              << Result << "'.\n";
840    return true;
841  }
842
843  DisambiguateGlobalSymbols(Program);
844
845  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
846
847  // Split the module into the two halves of the program we want.
848  Module *ToNotCodeGen = CloneModule(getProgram());
849  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
850
851  // Condition the modules
852  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
853
854  sys::Path TestModuleBC("bugpoint.test.bc");
855  std::string ErrMsg;
856  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
857    std::cerr << getToolName() << "Error making unique filename: "
858              << ErrMsg << "\n";
859    exit(1);
860  }
861
862  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
863    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
864    exit(1);
865  }
866  delete ToCodeGen;
867
868  // Make the shared library
869  sys::Path SafeModuleBC("bugpoint.safe.bc");
870  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
871    std::cerr << getToolName() << "Error making unique filename: "
872              << ErrMsg << "\n";
873    exit(1);
874  }
875
876  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
877    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
878    exit(1);
879  }
880  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
881  delete ToNotCodeGen;
882
883  std::cout << "You can reproduce the problem with the command line: \n";
884  if (isExecutingJIT()) {
885    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
886  } else {
887    std::cout << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
888    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
889              << ".s -o " << TestModuleBC << ".exe";
890#if defined (HAVE_LINK_R)
891    std::cout << " -Wl,-R.";
892#endif
893    std::cout << "\n";
894    std::cout << "  " << TestModuleBC << ".exe";
895  }
896  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
897    std::cout << " " << InputArgv[i];
898  std::cout << '\n';
899  std::cout << "The shared object was created with:\n  llc -march=c "
900            << SafeModuleBC << " -o temporary.c\n"
901            << "  gcc -xc temporary.c -O2 -o " << SharedObject
902#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
903            << " -G"            // Compile a shared library, `-G' for Sparc
904#else
905            << " -shared"       // `-shared' for Linux/X86, maybe others
906#endif
907            << " -fno-strict-aliasing\n";
908
909  return false;
910}
911