Miscompilation.cpp revision 5e783ab0b5fc3407ec59f1a598fdb9ef3b96b287
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/Verifier.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Linker.h"
26#include "Support/CommandLine.h"
27#include "Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32  cl::opt<bool>
33  EnableBlockExtraction("enable-block-extraction",
34                        cl::desc("Enable basic block extraction for "
35                                 "miscompilation debugging (experimental)"));
36}
37
38namespace {
39  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
40    BugDriver &BD;
41  public:
42    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
43
44    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
45                              std::vector<const PassInfo*> &Suffix);
46  };
47}
48
49/// TestResult - After passes have been split into a test group and a control
50/// group, see if they still break the program.
51///
52ReduceMiscompilingPasses::TestResult
53ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
54                                 std::vector<const PassInfo*> &Suffix) {
55  // First, run the program with just the Suffix passes.  If it is still broken
56  // with JUST the kept passes, discard the prefix passes.
57  std::cout << "Checking to see if '" << getPassesString(Suffix)
58            << "' compile correctly: ";
59
60  std::string BytecodeResult;
61  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
62    std::cerr << " Error running this sequence of passes"
63              << " on the input program!\n";
64    BD.setPassesToRun(Suffix);
65    BD.EmitProgressBytecode("pass-error",  false);
66    exit(BD.debugOptimizerCrash());
67  }
68
69  // Check to see if the finished program matches the reference output...
70  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
71    std::cout << " nope.\n";
72    return KeepSuffix;         // Miscompilation detected!
73  }
74  std::cout << " yup.\n";      // No miscompilation!
75
76  if (Prefix.empty()) return NoFailure;
77
78  // Next, see if the program is broken if we run the "prefix" passes first,
79  // then separately run the "kept" passes.
80  std::cout << "Checking to see if '" << getPassesString(Prefix)
81            << "' compile correctly: ";
82
83  // If it is not broken with the kept passes, it's possible that the prefix
84  // passes must be run before the kept passes to break it.  If the program
85  // WORKS after the prefix passes, but then fails if running the prefix AND
86  // kept passes, we can update our bytecode file to include the result of the
87  // prefix passes, then discard the prefix passes.
88  //
89  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
90    std::cerr << " Error running this sequence of passes"
91              << " on the input program!\n";
92    BD.setPassesToRun(Prefix);
93    BD.EmitProgressBytecode("pass-error",  false);
94    exit(BD.debugOptimizerCrash());
95  }
96
97  // If the prefix maintains the predicate by itself, only keep the prefix!
98  if (BD.diffProgram(BytecodeResult)) {
99    std::cout << " nope.\n";
100    removeFile(BytecodeResult);
101    return KeepPrefix;
102  }
103  std::cout << " yup.\n";      // No miscompilation!
104
105  // Ok, so now we know that the prefix passes work, try running the suffix
106  // passes on the result of the prefix passes.
107  //
108  Module *PrefixOutput = ParseInputFile(BytecodeResult);
109  if (PrefixOutput == 0) {
110    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
111              << BytecodeResult << "'!\n";
112    exit(1);
113  }
114  removeFile(BytecodeResult);  // No longer need the file on disk
115
116  // Don't check if there are no passes in the suffix.
117  if (Suffix.empty())
118    return NoFailure;
119
120  std::cout << "Checking to see if '" << getPassesString(Suffix)
121            << "' passes compile correctly after the '"
122            << getPassesString(Prefix) << "' passes: ";
123
124  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
125  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
126    std::cerr << " Error running this sequence of passes"
127              << " on the input program!\n";
128    BD.setPassesToRun(Suffix);
129    BD.EmitProgressBytecode("pass-error",  false);
130    exit(BD.debugOptimizerCrash());
131  }
132
133  // Run the result...
134  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
135    std::cout << " nope.\n";
136    delete OriginalInput;     // We pruned down the original input...
137    return KeepSuffix;
138  }
139
140  // Otherwise, we must not be running the bad pass anymore.
141  std::cout << " yup.\n";      // No miscompilation!
142  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
143  return NoFailure;
144}
145
146namespace {
147  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
148    BugDriver &BD;
149    bool (*TestFn)(BugDriver &, Module *, Module *);
150  public:
151    ReduceMiscompilingFunctions(BugDriver &bd,
152                                bool (*F)(BugDriver &, Module *, Module *))
153      : BD(bd), TestFn(F) {}
154
155    virtual TestResult doTest(std::vector<Function*> &Prefix,
156                              std::vector<Function*> &Suffix) {
157      if (!Suffix.empty() && TestFuncs(Suffix))
158        return KeepSuffix;
159      if (!Prefix.empty() && TestFuncs(Prefix))
160        return KeepPrefix;
161      return NoFailure;
162    }
163
164    bool TestFuncs(const std::vector<Function*> &Prefix);
165  };
166}
167
168/// TestMergedProgram - Given two modules, link them together and run the
169/// program, checking to see if the program matches the diff.  If the diff
170/// matches, return false, otherwise return true.  If the DeleteInputs argument
171/// is set to true then this function deletes both input modules before it
172/// returns.
173///
174static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
175                              bool DeleteInputs) {
176  // Link the two portions of the program back to together.
177  std::string ErrorMsg;
178  if (!DeleteInputs) M1 = CloneModule(M1);
179  if (LinkModules(M1, M2, &ErrorMsg)) {
180    std::cerr << BD.getToolName() << ": Error linking modules together:"
181              << ErrorMsg << "\n";
182    exit(1);
183  }
184  if (DeleteInputs) delete M2;  // We are done with this module...
185
186  Module *OldProgram = BD.swapProgramIn(M1);
187
188  // Execute the program.  If it does not match the expected output, we must
189  // return true.
190  bool Broken = BD.diffProgram();
191
192  // Delete the linked module & restore the original
193  BD.swapProgramIn(OldProgram);
194  delete M1;
195  return Broken;
196}
197
198/// TestFuncs - split functions in a Module into two groups: those that are
199/// under consideration for miscompilation vs. those that are not, and test
200/// accordingly. Each group of functions becomes a separate Module.
201///
202bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
203  // Test to see if the function is misoptimized if we ONLY run it on the
204  // functions listed in Funcs.
205  std::cout << "Checking to see if the program is misoptimized when "
206            << (Funcs.size()==1 ? "this function is" : "these functions are")
207            << " run through the pass"
208            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
209  PrintFunctionList(Funcs);
210  std::cout << "\n";
211
212  // Split the module into the two halves of the program we want.
213  Module *ToNotOptimize = CloneModule(BD.getProgram());
214  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
215
216  // Run the predicate, not that the predicate will delete both input modules.
217  return TestFn(BD, ToOptimize, ToNotOptimize);
218}
219
220/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
221/// modifying predominantly internal symbols rather than external ones.
222///
223static void DisambiguateGlobalSymbols(Module *M) {
224  // Try not to cause collisions by minimizing chances of renaming an
225  // already-external symbol, so take in external globals and functions as-is.
226  // The code should work correctly without disambiguation (assuming the same
227  // mangler is used by the two code generators), but having symbols with the
228  // same name causes warnings to be emitted by the code generator.
229  Mangler Mang(*M);
230  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
231    I->setName(Mang.getValueName(I));
232  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
233    I->setName(Mang.getValueName(I));
234}
235
236/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
237/// check to see if we can extract the loops in the region without obscuring the
238/// bug.  If so, it reduces the amount of code identified.
239///
240static bool ExtractLoops(BugDriver &BD,
241                         bool (*TestFn)(BugDriver &, Module *, Module *),
242                         std::vector<Function*> &MiscompiledFunctions) {
243  bool MadeChange = false;
244  while (1) {
245    Module *ToNotOptimize = CloneModule(BD.getProgram());
246    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
247                                                   MiscompiledFunctions);
248    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
249    if (!ToOptimizeLoopExtracted) {
250      // If the loop extractor crashed or if there were no extractible loops,
251      // then this chapter of our odyssey is over with.
252      delete ToNotOptimize;
253      delete ToOptimize;
254      return MadeChange;
255    }
256
257    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
258    delete ToOptimize;
259
260    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
261    // particular, we're not going to assume that the loop extractor works, so
262    // we're going to test the newly loop extracted program to make sure nothing
263    // has broken.  If something broke, then we'll inform the user and stop
264    // extraction.
265    AbstractInterpreter *AI = BD.switchToCBE();
266    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
267      BD.switchToInterpreter(AI);
268
269      // Merged program doesn't work anymore!
270      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
271                << " Please report a bug!\n";
272      std::cerr << "      Continuing on with un-loop-extracted version.\n";
273      delete ToNotOptimize;
274      delete ToOptimizeLoopExtracted;
275      return MadeChange;
276    }
277    BD.switchToInterpreter(AI);
278
279    std::cout << "  Testing after loop extraction:\n";
280    // Clone modules, the tester function will free them.
281    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
282    Module *TNOBackup  = CloneModule(ToNotOptimize);
283    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
284      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
285      // If the program is not still broken, then loop extraction did something
286      // that masked the error.  Stop loop extraction now.
287      delete TOLEBackup;
288      delete TNOBackup;
289      return MadeChange;
290    }
291    ToOptimizeLoopExtracted = TOLEBackup;
292    ToNotOptimize = TNOBackup;
293
294    std::cout << "*** Loop extraction successful!\n";
295
296    // Okay, great!  Now we know that we extracted a loop and that loop
297    // extraction both didn't break the program, and didn't mask the problem.
298    // Replace the current program with the loop extracted version, and try to
299    // extract another loop.
300    std::string ErrorMsg;
301    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
302      std::cerr << BD.getToolName() << ": Error linking modules together:"
303                << ErrorMsg << "\n";
304      exit(1);
305    }
306
307    // All of the Function*'s in the MiscompiledFunctions list are in the old
308    // module.  Update this list to include all of the functions in the
309    // optimized and loop extracted module.
310    MiscompiledFunctions.clear();
311    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
312           E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
313      if (!I->isExternal()) {
314        Function *NewF = ToNotOptimize->getFunction(I->getName(),
315                                                    I->getFunctionType());
316        assert(NewF && "Function not found??");
317        MiscompiledFunctions.push_back(NewF);
318      }
319    }
320    delete ToOptimizeLoopExtracted;
321
322    BD.setNewProgram(ToNotOptimize);
323    MadeChange = true;
324  }
325}
326
327namespace {
328  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
329    BugDriver &BD;
330    bool (*TestFn)(BugDriver &, Module *, Module *);
331    std::vector<Function*> FunctionsBeingTested;
332  public:
333    ReduceMiscompiledBlocks(BugDriver &bd,
334                            bool (*F)(BugDriver &, Module *, Module *),
335                            const std::vector<Function*> &Fns)
336      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
337
338    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
339                              std::vector<BasicBlock*> &Suffix) {
340      if (!Suffix.empty() && TestFuncs(Suffix))
341        return KeepSuffix;
342      if (TestFuncs(Prefix))
343        return KeepPrefix;
344      return NoFailure;
345    }
346
347    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
348  };
349}
350
351/// TestFuncs - Extract all blocks for the miscompiled functions except for the
352/// specified blocks.  If the problem still exists, return true.
353///
354bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
355  // Test to see if the function is misoptimized if we ONLY run it on the
356  // functions listed in Funcs.
357  std::cout << "Checking to see if the program is misoptimized when all but "
358            << "these " << BBs.size() << " blocks are extracted: ";
359  for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
360    std::cout << BBs[i]->getName() << " ";
361  if (BBs.size() > 10) std::cout << "...";
362  std::cout << "\n";
363
364  // Split the module into the two halves of the program we want.
365  Module *ToNotOptimize = CloneModule(BD.getProgram());
366  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
367                                                 FunctionsBeingTested);
368
369  // Try the extraction.  If it doesn't work, then the block extractor crashed
370  // or something, in which case bugpoint can't chase down this possibility.
371  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
372    delete ToOptimize;
373    // Run the predicate, not that the predicate will delete both input modules.
374    return TestFn(BD, New, ToNotOptimize);
375  }
376  delete ToOptimize;
377  delete ToNotOptimize;
378  return false;
379}
380
381
382/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
383/// extract as many basic blocks from the region as possible without obscuring
384/// the bug.
385///
386static bool ExtractBlocks(BugDriver &BD,
387                          bool (*TestFn)(BugDriver &, Module *, Module *),
388                          std::vector<Function*> &MiscompiledFunctions) {
389  // Not enabled??
390  if (!EnableBlockExtraction) return false;
391
392  std::vector<BasicBlock*> Blocks;
393  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
394    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
395           E = MiscompiledFunctions[i]->end(); I != E; ++I)
396      Blocks.push_back(I);
397
398  // Use the list reducer to identify blocks that can be extracted without
399  // obscuring the bug.  The Blocks list will end up containing blocks that must
400  // be retained from the original program.
401  unsigned OldSize = Blocks.size();
402  ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions).reduceList(Blocks);
403  if (Blocks.size() == OldSize)
404    return false;
405
406
407
408  // FIXME: This should actually update the module in the bugdriver!
409
410
411
412  return false;
413}
414
415
416/// DebugAMiscompilation - This is a generic driver to narrow down
417/// miscompilations, either in an optimization or a code generator.
418///
419static std::vector<Function*>
420DebugAMiscompilation(BugDriver &BD,
421                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
422  // Okay, now that we have reduced the list of passes which are causing the
423  // failure, see if we can pin down which functions are being
424  // miscompiled... first build a list of all of the non-external functions in
425  // the program.
426  std::vector<Function*> MiscompiledFunctions;
427  Module *Prog = BD.getProgram();
428  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
429    if (!I->isExternal())
430      MiscompiledFunctions.push_back(I);
431
432  // Do the reduction...
433  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
434
435  std::cout << "\n*** The following function"
436            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
437            << " being miscompiled: ";
438  PrintFunctionList(MiscompiledFunctions);
439  std::cout << "\n";
440
441  // See if we can rip any loops out of the miscompiled functions and still
442  // trigger the problem.
443  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
444    // Okay, we extracted some loops and the problem still appears.  See if we
445    // can eliminate some of the created functions from being candidates.
446
447    // Loop extraction can introduce functions with the same name (foo_code).
448    // Make sure to disambiguate the symbols so that when the program is split
449    // apart that we can link it back together again.
450    DisambiguateGlobalSymbols(BD.getProgram());
451
452    // Do the reduction...
453    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
454
455    std::cout << "\n*** The following function"
456              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
457              << " being miscompiled: ";
458    PrintFunctionList(MiscompiledFunctions);
459    std::cout << "\n";
460  }
461
462  if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
463    // Okay, we extracted some blocks and the problem still appears.  See if we
464    // can eliminate some of the created functions from being candidates.
465
466    // Block extraction can introduce functions with the same name (foo_code).
467    // Make sure to disambiguate the symbols so that when the program is split
468    // apart that we can link it back together again.
469    DisambiguateGlobalSymbols(BD.getProgram());
470
471    // Do the reduction...
472    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
473
474    std::cout << "\n*** The following function"
475              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
476              << " being miscompiled: ";
477    PrintFunctionList(MiscompiledFunctions);
478    std::cout << "\n";
479  }
480
481  return MiscompiledFunctions;
482}
483
484/// TestOptimizer - This is the predicate function used to check to see if the
485/// "Test" portion of the program is misoptimized.  If so, return true.  In any
486/// case, both module arguments are deleted.
487///
488static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
489  // Run the optimization passes on ToOptimize, producing a transformed version
490  // of the functions being tested.
491  std::cout << "  Optimizing functions being tested: ";
492  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
493                                     /*AutoDebugCrashes*/true);
494  std::cout << "done.\n";
495  delete Test;
496
497  std::cout << "  Checking to see if the merged program executes correctly: ";
498  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
499  std::cout << (Broken ? " nope.\n" : " yup.\n");
500  return Broken;
501}
502
503
504/// debugMiscompilation - This method is used when the passes selected are not
505/// crashing, but the generated output is semantically different from the
506/// input.
507///
508bool BugDriver::debugMiscompilation() {
509  // Make sure something was miscompiled...
510  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
511    std::cerr << "*** Optimized program matches reference output!  No problem "
512	      << "detected...\nbugpoint can't help you with your problem!\n";
513    return false;
514  }
515
516  std::cout << "\n*** Found miscompiling pass"
517            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
518            << getPassesString(getPassesToRun()) << "\n";
519  EmitProgressBytecode("passinput");
520
521  std::vector<Function*> MiscompiledFunctions =
522    DebugAMiscompilation(*this, TestOptimizer);
523
524  // Output a bunch of bytecode files for the user...
525  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
526  Module *ToNotOptimize = CloneModule(getProgram());
527  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
528                                                 MiscompiledFunctions);
529
530  std::cout << "  Non-optimized portion: ";
531  ToNotOptimize = swapProgramIn(ToNotOptimize);
532  EmitProgressBytecode("tonotoptimize", true);
533  setNewProgram(ToNotOptimize);   // Delete hacked module.
534
535  std::cout << "  Portion that is input to optimizer: ";
536  ToOptimize = swapProgramIn(ToOptimize);
537  EmitProgressBytecode("tooptimize");
538  setNewProgram(ToOptimize);      // Delete hacked module.
539
540  return false;
541}
542
543/// CleanupAndPrepareModules - Get the specified modules ready for code
544/// generator testing.
545///
546static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
547                                     Module *Safe) {
548  // Clean up the modules, removing extra cruft that we don't need anymore...
549  Test = BD.performFinalCleanups(Test);
550
551  // If we are executing the JIT, we have several nasty issues to take care of.
552  if (!BD.isExecutingJIT()) return;
553
554  // First, if the main function is in the Safe module, we must add a stub to
555  // the Test module to call into it.  Thus, we create a new function `main'
556  // which just calls the old one.
557  if (Function *oldMain = Safe->getNamedFunction("main"))
558    if (!oldMain->isExternal()) {
559      // Rename it
560      oldMain->setName("llvm_bugpoint_old_main");
561      // Create a NEW `main' function with same type in the test module.
562      Function *newMain = new Function(oldMain->getFunctionType(),
563                                       GlobalValue::ExternalLinkage,
564                                       "main", Test);
565      // Create an `oldmain' prototype in the test module, which will
566      // corresponds to the real main function in the same module.
567      Function *oldMainProto = new Function(oldMain->getFunctionType(),
568                                            GlobalValue::ExternalLinkage,
569                                            oldMain->getName(), Test);
570      // Set up and remember the argument list for the main function.
571      std::vector<Value*> args;
572      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
573             OI = oldMain->abegin(); I != E; ++I, ++OI) {
574        I->setName(OI->getName());    // Copy argument names from oldMain
575        args.push_back(I);
576      }
577
578      // Call the old main function and return its result
579      BasicBlock *BB = new BasicBlock("entry", newMain);
580      CallInst *call = new CallInst(oldMainProto, args);
581      BB->getInstList().push_back(call);
582
583      // If the type of old function wasn't void, return value of call
584      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
585    }
586
587  // The second nasty issue we must deal with in the JIT is that the Safe
588  // module cannot directly reference any functions defined in the test
589  // module.  Instead, we use a JIT API call to dynamically resolve the
590  // symbol.
591
592  // Add the resolver to the Safe module.
593  // Prototype: void *getPointerToNamedFunction(const char* Name)
594  Function *resolverFunc =
595    Safe->getOrInsertFunction("getPointerToNamedFunction",
596                              PointerType::get(Type::SByteTy),
597                              PointerType::get(Type::SByteTy), 0);
598
599  // Use the function we just added to get addresses of functions we need.
600  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
601    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
602        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
603      Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType());
604
605      // Don't forward functions which are external in the test module too.
606      if (TestFn && !TestFn->isExternal()) {
607        // 1. Add a string constant with its name to the global file
608        Constant *InitArray = ConstantArray::get(F->getName());
609        GlobalVariable *funcName =
610          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
611                             GlobalValue::InternalLinkage, InitArray,
612                             F->getName() + "_name", Safe);
613
614        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
615        // sbyte* so it matches the signature of the resolver function.
616
617        // GetElementPtr *funcName, ulong 0, ulong 0
618        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
619        Value *GEP =
620          ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
621                                         GEPargs);
622        std::vector<Value*> ResolverArgs;
623        ResolverArgs.push_back(GEP);
624
625        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
626        // function that dynamically resolves the calls to F via our JIT API
627        if (F->use_begin() != F->use_end()) {
628          // Construct a new stub function that will re-route calls to F
629          const FunctionType *FuncTy = F->getFunctionType();
630          Function *FuncWrapper = new Function(FuncTy,
631                                               GlobalValue::InternalLinkage,
632                                               F->getName() + "_wrapper",
633                                               F->getParent());
634          BasicBlock *Header = new BasicBlock("header", FuncWrapper);
635
636          // Resolve the call to function F via the JIT API:
637          //
638          // call resolver(GetElementPtr...)
639          CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
640                                           "resolver");
641          Header->getInstList().push_back(resolve);
642          // cast the result from the resolver to correctly-typed function
643          CastInst *castResolver =
644            new CastInst(resolve, PointerType::get(F->getFunctionType()),
645                         "resolverCast");
646          Header->getInstList().push_back(castResolver);
647
648          // Save the argument list
649          std::vector<Value*> Args;
650          for (Function::aiterator i = FuncWrapper->abegin(),
651                 e = FuncWrapper->aend(); i != e; ++i)
652            Args.push_back(i);
653
654          // Pass on the arguments to the real function, return its result
655          if (F->getReturnType() == Type::VoidTy) {
656            CallInst *Call = new CallInst(castResolver, Args);
657            Header->getInstList().push_back(Call);
658            ReturnInst *Ret = new ReturnInst();
659            Header->getInstList().push_back(Ret);
660          } else {
661            CallInst *Call = new CallInst(castResolver, Args, "redir");
662            Header->getInstList().push_back(Call);
663            ReturnInst *Ret = new ReturnInst(Call);
664            Header->getInstList().push_back(Ret);
665          }
666
667          // Use the wrapper function instead of the old function
668          F->replaceAllUsesWith(FuncWrapper);
669        }
670      }
671    }
672  }
673
674  if (verifyModule(*Test) || verifyModule(*Safe)) {
675    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
676    abort();
677  }
678}
679
680
681
682/// TestCodeGenerator - This is the predicate function used to check to see if
683/// the "Test" portion of the program is miscompiled by the code generator under
684/// test.  If so, return true.  In any case, both module arguments are deleted.
685///
686static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
687  CleanupAndPrepareModules(BD, Test, Safe);
688
689  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
690  if (BD.writeProgramToFile(TestModuleBC, Test)) {
691    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
692    exit(1);
693  }
694  delete Test;
695
696  // Make the shared library
697  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
698
699  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
700    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
701    exit(1);
702  }
703  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
704  delete Safe;
705
706  // Run the code generator on the `Test' code, loading the shared library.
707  // The function returns whether or not the new output differs from reference.
708  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
709
710  if (Result)
711    std::cerr << ": still failing!\n";
712  else
713    std::cerr << ": didn't fail.\n";
714  removeFile(TestModuleBC);
715  removeFile(SafeModuleBC);
716  removeFile(SharedObject);
717
718  return Result;
719}
720
721
722/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
723///
724bool BugDriver::debugCodeGenerator() {
725  if ((void*)cbe == (void*)Interpreter) {
726    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
727    std::cout << "\n*** The C backend cannot match the reference diff, but it "
728              << "is used as the 'known good'\n    code generator, so I can't"
729              << " debug it.  Perhaps you have a front-end problem?\n    As a"
730              << " sanity check, I left the result of executing the program "
731              << "with the C backend\n    in this file for you: '"
732              << Result << "'.\n";
733    return true;
734  }
735
736  DisambiguateGlobalSymbols(Program);
737
738  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
739
740  // Split the module into the two halves of the program we want.
741  Module *ToNotCodeGen = CloneModule(getProgram());
742  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
743
744  // Condition the modules
745  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
746
747  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
748  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
749    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
750    exit(1);
751  }
752  delete ToCodeGen;
753
754  // Make the shared library
755  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
756  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
757    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
758    exit(1);
759  }
760  std::string SharedObject = compileSharedObject(SafeModuleBC);
761  delete ToNotCodeGen;
762
763  std::cout << "You can reproduce the problem with the command line: \n";
764  if (isExecutingJIT()) {
765    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
766  } else {
767    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
768    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
769              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
770    std::cout << "  " << TestModuleBC << ".exe";
771  }
772  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
773    std::cout << " " << InputArgv[i];
774  std::cout << "\n";
775  std::cout << "The shared object was created with:\n  llc -march=c "
776            << SafeModuleBC << " -o temporary.c\n"
777            << "  gcc -xc temporary.c -O2 -o " << SharedObject
778#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
779            << " -G"            // Compile a shared library, `-G' for Sparc
780#else
781            << " -shared"       // `-shared' for Linux/X86, maybe others
782#endif
783            << " -fno-strict-aliasing\n";
784
785  return false;
786}
787