Miscompilation.cpp revision 68bee938e539d884ee89ce4dfebbad777896960e
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/Verifier.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Linker.h"
26#include "Support/CommandLine.h"
27#include "Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32  cl::opt<bool>
33  EnableBlockExtraction("enable-block-extraction",
34                        cl::desc("Enable basic block extraction for "
35                                 "miscompilation debugging (experimental)"));
36}
37
38namespace {
39  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
40    BugDriver &BD;
41  public:
42    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
43
44    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
45                              std::vector<const PassInfo*> &Suffix);
46  };
47}
48
49/// TestResult - After passes have been split into a test group and a control
50/// group, see if they still break the program.
51///
52ReduceMiscompilingPasses::TestResult
53ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
54                                 std::vector<const PassInfo*> &Suffix) {
55  // First, run the program with just the Suffix passes.  If it is still broken
56  // with JUST the kept passes, discard the prefix passes.
57  std::cout << "Checking to see if '" << getPassesString(Suffix)
58            << "' compile correctly: ";
59
60  std::string BytecodeResult;
61  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
62    std::cerr << " Error running this sequence of passes"
63              << " on the input program!\n";
64    BD.setPassesToRun(Suffix);
65    BD.EmitProgressBytecode("pass-error",  false);
66    exit(BD.debugOptimizerCrash());
67  }
68
69  // Check to see if the finished program matches the reference output...
70  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
71    std::cout << " nope.\n";
72    return KeepSuffix;         // Miscompilation detected!
73  }
74  std::cout << " yup.\n";      // No miscompilation!
75
76  if (Prefix.empty()) return NoFailure;
77
78  // Next, see if the program is broken if we run the "prefix" passes first,
79  // then separately run the "kept" passes.
80  std::cout << "Checking to see if '" << getPassesString(Prefix)
81            << "' compile correctly: ";
82
83  // If it is not broken with the kept passes, it's possible that the prefix
84  // passes must be run before the kept passes to break it.  If the program
85  // WORKS after the prefix passes, but then fails if running the prefix AND
86  // kept passes, we can update our bytecode file to include the result of the
87  // prefix passes, then discard the prefix passes.
88  //
89  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
90    std::cerr << " Error running this sequence of passes"
91              << " on the input program!\n";
92    BD.setPassesToRun(Prefix);
93    BD.EmitProgressBytecode("pass-error",  false);
94    exit(BD.debugOptimizerCrash());
95  }
96
97  // If the prefix maintains the predicate by itself, only keep the prefix!
98  if (BD.diffProgram(BytecodeResult)) {
99    std::cout << " nope.\n";
100    removeFile(BytecodeResult);
101    return KeepPrefix;
102  }
103  std::cout << " yup.\n";      // No miscompilation!
104
105  // Ok, so now we know that the prefix passes work, try running the suffix
106  // passes on the result of the prefix passes.
107  //
108  Module *PrefixOutput = ParseInputFile(BytecodeResult);
109  if (PrefixOutput == 0) {
110    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
111              << BytecodeResult << "'!\n";
112    exit(1);
113  }
114  removeFile(BytecodeResult);  // No longer need the file on disk
115
116  // Don't check if there are no passes in the suffix.
117  if (Suffix.empty())
118    return NoFailure;
119
120  std::cout << "Checking to see if '" << getPassesString(Suffix)
121            << "' passes compile correctly after the '"
122            << getPassesString(Prefix) << "' passes: ";
123
124  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
125  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
126    std::cerr << " Error running this sequence of passes"
127              << " on the input program!\n";
128    BD.setPassesToRun(Suffix);
129    BD.EmitProgressBytecode("pass-error",  false);
130    exit(BD.debugOptimizerCrash());
131  }
132
133  // Run the result...
134  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
135    std::cout << " nope.\n";
136    delete OriginalInput;     // We pruned down the original input...
137    return KeepSuffix;
138  }
139
140  // Otherwise, we must not be running the bad pass anymore.
141  std::cout << " yup.\n";      // No miscompilation!
142  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
143  return NoFailure;
144}
145
146namespace {
147  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
148    BugDriver &BD;
149    bool (*TestFn)(BugDriver &, Module *, Module *);
150  public:
151    ReduceMiscompilingFunctions(BugDriver &bd,
152                                bool (*F)(BugDriver &, Module *, Module *))
153      : BD(bd), TestFn(F) {}
154
155    virtual TestResult doTest(std::vector<Function*> &Prefix,
156                              std::vector<Function*> &Suffix) {
157      if (!Suffix.empty() && TestFuncs(Suffix))
158        return KeepSuffix;
159      if (!Prefix.empty() && TestFuncs(Prefix))
160        return KeepPrefix;
161      return NoFailure;
162    }
163
164    bool TestFuncs(const std::vector<Function*> &Prefix);
165  };
166}
167
168/// TestMergedProgram - Given two modules, link them together and run the
169/// program, checking to see if the program matches the diff.  If the diff
170/// matches, return false, otherwise return true.  If the DeleteInputs argument
171/// is set to true then this function deletes both input modules before it
172/// returns.
173///
174static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
175                              bool DeleteInputs) {
176  // Link the two portions of the program back to together.
177  std::string ErrorMsg;
178  if (!DeleteInputs) M1 = CloneModule(M1);
179  if (LinkModules(M1, M2, &ErrorMsg)) {
180    std::cerr << BD.getToolName() << ": Error linking modules together:"
181              << ErrorMsg << "\n";
182    exit(1);
183  }
184  if (DeleteInputs) delete M2;  // We are done with this module...
185
186  Module *OldProgram = BD.swapProgramIn(M1);
187
188  // Execute the program.  If it does not match the expected output, we must
189  // return true.
190  bool Broken = BD.diffProgram();
191
192  // Delete the linked module & restore the original
193  BD.swapProgramIn(OldProgram);
194  delete M1;
195  return Broken;
196}
197
198/// TestFuncs - split functions in a Module into two groups: those that are
199/// under consideration for miscompilation vs. those that are not, and test
200/// accordingly. Each group of functions becomes a separate Module.
201///
202bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
203  // Test to see if the function is misoptimized if we ONLY run it on the
204  // functions listed in Funcs.
205  std::cout << "Checking to see if the program is misoptimized when "
206            << (Funcs.size()==1 ? "this function is" : "these functions are")
207            << " run through the pass"
208            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
209  PrintFunctionList(Funcs);
210  std::cout << "\n";
211
212  // Split the module into the two halves of the program we want.
213  Module *ToNotOptimize = CloneModule(BD.getProgram());
214  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
215
216  // Run the predicate, not that the predicate will delete both input modules.
217  return TestFn(BD, ToOptimize, ToNotOptimize);
218}
219
220/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
221/// modifying predominantly internal symbols rather than external ones.
222///
223static void DisambiguateGlobalSymbols(Module *M) {
224  // Try not to cause collisions by minimizing chances of renaming an
225  // already-external symbol, so take in external globals and functions as-is.
226  // The code should work correctly without disambiguation (assuming the same
227  // mangler is used by the two code generators), but having symbols with the
228  // same name causes warnings to be emitted by the code generator.
229  Mangler Mang(*M);
230  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
231    I->setName(Mang.getValueName(I));
232  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
233    I->setName(Mang.getValueName(I));
234}
235
236/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
237/// check to see if we can extract the loops in the region without obscuring the
238/// bug.  If so, it reduces the amount of code identified.
239///
240static bool ExtractLoops(BugDriver &BD,
241                         bool (*TestFn)(BugDriver &, Module *, Module *),
242                         std::vector<Function*> &MiscompiledFunctions) {
243  bool MadeChange = false;
244  while (1) {
245    Module *ToNotOptimize = CloneModule(BD.getProgram());
246    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
247                                                   MiscompiledFunctions);
248    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
249    if (!ToOptimizeLoopExtracted) {
250      // If the loop extractor crashed or if there were no extractible loops,
251      // then this chapter of our odyssey is over with.
252      delete ToNotOptimize;
253      delete ToOptimize;
254      return MadeChange;
255    }
256
257    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
258    delete ToOptimize;
259
260    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
261    // particular, we're not going to assume that the loop extractor works, so
262    // we're going to test the newly loop extracted program to make sure nothing
263    // has broken.  If something broke, then we'll inform the user and stop
264    // extraction.
265    AbstractInterpreter *AI = BD.switchToCBE();
266    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
267      BD.switchToInterpreter(AI);
268
269      // Merged program doesn't work anymore!
270      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
271                << " Please report a bug!\n";
272      std::cerr << "      Continuing on with un-loop-extracted version.\n";
273      delete ToNotOptimize;
274      delete ToOptimizeLoopExtracted;
275      return MadeChange;
276    }
277    BD.switchToInterpreter(AI);
278
279    std::cout << "  Testing after loop extraction:\n";
280    // Clone modules, the tester function will free them.
281    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
282    Module *TNOBackup  = CloneModule(ToNotOptimize);
283    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
284      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
285      // If the program is not still broken, then loop extraction did something
286      // that masked the error.  Stop loop extraction now.
287      delete TOLEBackup;
288      delete TNOBackup;
289      return MadeChange;
290    }
291    ToOptimizeLoopExtracted = TOLEBackup;
292    ToNotOptimize = TNOBackup;
293
294    std::cout << "*** Loop extraction successful!\n";
295
296    // Okay, great!  Now we know that we extracted a loop and that loop
297    // extraction both didn't break the program, and didn't mask the problem.
298    // Replace the current program with the loop extracted version, and try to
299    // extract another loop.
300    std::string ErrorMsg;
301    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
302      std::cerr << BD.getToolName() << ": Error linking modules together:"
303                << ErrorMsg << "\n";
304      exit(1);
305    }
306
307    // All of the Function*'s in the MiscompiledFunctions list are in the old
308    // module.  Update this list to include all of the functions in the
309    // optimized and loop extracted module.
310    MiscompiledFunctions.clear();
311    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
312           E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
313      if (!I->isExternal()) {
314        Function *NewF = ToNotOptimize->getFunction(I->getName(),
315                                                    I->getFunctionType());
316        assert(NewF && "Function not found??");
317        MiscompiledFunctions.push_back(NewF);
318      }
319    }
320    delete ToOptimizeLoopExtracted;
321
322    BD.setNewProgram(ToNotOptimize);
323    MadeChange = true;
324  }
325}
326
327namespace {
328  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
329    BugDriver &BD;
330    bool (*TestFn)(BugDriver &, Module *, Module *);
331    std::vector<Function*> FunctionsBeingTested;
332  public:
333    ReduceMiscompiledBlocks(BugDriver &bd,
334                            bool (*F)(BugDriver &, Module *, Module *),
335                            const std::vector<Function*> &Fns)
336      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
337
338    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
339                              std::vector<BasicBlock*> &Suffix) {
340      if (!Suffix.empty() && TestFuncs(Suffix))
341        return KeepSuffix;
342      if (TestFuncs(Prefix))
343        return KeepPrefix;
344      return NoFailure;
345    }
346
347    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
348  };
349}
350
351/// TestFuncs - Extract all blocks for the miscompiled functions except for the
352/// specified blocks.  If the problem still exists, return true.
353///
354bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
355  // Test to see if the function is misoptimized if we ONLY run it on the
356  // functions listed in Funcs.
357  std::cout << "Checking to see if the program is misoptimized when all ";
358  if (!BBs.empty()) {
359    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
360    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
361      std::cout << BBs[i]->getName() << " ";
362    if (BBs.size() > 10) std::cout << "...";
363  } else {
364    std::cout << "blocks are extracted.";
365  }
366  std::cout << "\n";
367
368  // Split the module into the two halves of the program we want.
369  Module *ToNotOptimize = CloneModule(BD.getProgram());
370  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
371                                                 FunctionsBeingTested);
372
373  // Try the extraction.  If it doesn't work, then the block extractor crashed
374  // or something, in which case bugpoint can't chase down this possibility.
375  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
376    delete ToOptimize;
377    // Run the predicate, not that the predicate will delete both input modules.
378    return TestFn(BD, New, ToNotOptimize);
379  }
380  delete ToOptimize;
381  delete ToNotOptimize;
382  return false;
383}
384
385
386/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
387/// extract as many basic blocks from the region as possible without obscuring
388/// the bug.
389///
390static bool ExtractBlocks(BugDriver &BD,
391                          bool (*TestFn)(BugDriver &, Module *, Module *),
392                          std::vector<Function*> &MiscompiledFunctions) {
393  // Not enabled??
394  if (!EnableBlockExtraction) return false;
395
396  std::vector<BasicBlock*> Blocks;
397  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
398    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
399           E = MiscompiledFunctions[i]->end(); I != E; ++I)
400      Blocks.push_back(I);
401
402  // Use the list reducer to identify blocks that can be extracted without
403  // obscuring the bug.  The Blocks list will end up containing blocks that must
404  // be retained from the original program.
405  unsigned OldSize = Blocks.size();
406
407  // Check to see if all blocks are extractible first.
408  if (ReduceMiscompiledBlocks(BD, TestFn,
409                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
410    Blocks.clear();
411  } else {
412    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
413    if (Blocks.size() == OldSize)
414      return false;
415  }
416
417  Module *ProgClone = CloneModule(BD.getProgram());
418  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
419                                                MiscompiledFunctions);
420  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
421  if (Extracted == 0) {
422    // Wierd, extraction should have worked.
423    std::cerr << "Nondeterministic problem extracting blocks??\n";
424    delete ProgClone;
425    delete ToExtract;
426    return false;
427  }
428
429  // Otherwise, block extraction succeeded.  Link the two program fragments back
430  // together.
431  delete ToExtract;
432
433  std::string ErrorMsg;
434  if (LinkModules(ProgClone, Extracted, &ErrorMsg)) {
435    std::cerr << BD.getToolName() << ": Error linking modules together:"
436              << ErrorMsg << "\n";
437    exit(1);
438  }
439
440  // Set the new program and delete the old one.
441  BD.setNewProgram(ProgClone);
442
443  // Update the list of miscompiled functions.
444  MiscompiledFunctions.clear();
445
446  for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E;
447       ++I)
448    if (!I->isExternal()) {
449      Function *NF = ProgClone->getFunction(I->getName(), I->getFunctionType());
450      assert(NF && "Mapped function not found!");
451      MiscompiledFunctions.push_back(NF);
452    }
453
454  delete Extracted;
455
456  return true;
457}
458
459
460/// DebugAMiscompilation - This is a generic driver to narrow down
461/// miscompilations, either in an optimization or a code generator.
462///
463static std::vector<Function*>
464DebugAMiscompilation(BugDriver &BD,
465                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
466  // Okay, now that we have reduced the list of passes which are causing the
467  // failure, see if we can pin down which functions are being
468  // miscompiled... first build a list of all of the non-external functions in
469  // the program.
470  std::vector<Function*> MiscompiledFunctions;
471  Module *Prog = BD.getProgram();
472  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
473    if (!I->isExternal())
474      MiscompiledFunctions.push_back(I);
475
476  // Do the reduction...
477  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
478
479  std::cout << "\n*** The following function"
480            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
481            << " being miscompiled: ";
482  PrintFunctionList(MiscompiledFunctions);
483  std::cout << "\n";
484
485  // See if we can rip any loops out of the miscompiled functions and still
486  // trigger the problem.
487  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
488    // Okay, we extracted some loops and the problem still appears.  See if we
489    // can eliminate some of the created functions from being candidates.
490
491    // Loop extraction can introduce functions with the same name (foo_code).
492    // Make sure to disambiguate the symbols so that when the program is split
493    // apart that we can link it back together again.
494    DisambiguateGlobalSymbols(BD.getProgram());
495
496    // Do the reduction...
497    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
498
499    std::cout << "\n*** The following function"
500              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
501              << " being miscompiled: ";
502    PrintFunctionList(MiscompiledFunctions);
503    std::cout << "\n";
504  }
505
506  if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
507    // Okay, we extracted some blocks and the problem still appears.  See if we
508    // can eliminate some of the created functions from being candidates.
509
510    // Block extraction can introduce functions with the same name (foo_code).
511    // Make sure to disambiguate the symbols so that when the program is split
512    // apart that we can link it back together again.
513    DisambiguateGlobalSymbols(BD.getProgram());
514
515    // Do the reduction...
516    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
517
518    std::cout << "\n*** The following function"
519              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
520              << " being miscompiled: ";
521    PrintFunctionList(MiscompiledFunctions);
522    std::cout << "\n";
523  }
524
525  return MiscompiledFunctions;
526}
527
528/// TestOptimizer - This is the predicate function used to check to see if the
529/// "Test" portion of the program is misoptimized.  If so, return true.  In any
530/// case, both module arguments are deleted.
531///
532static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
533  // Run the optimization passes on ToOptimize, producing a transformed version
534  // of the functions being tested.
535  std::cout << "  Optimizing functions being tested: ";
536  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
537                                     /*AutoDebugCrashes*/true);
538  std::cout << "done.\n";
539  delete Test;
540
541  std::cout << "  Checking to see if the merged program executes correctly: ";
542  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
543  std::cout << (Broken ? " nope.\n" : " yup.\n");
544  return Broken;
545}
546
547
548/// debugMiscompilation - This method is used when the passes selected are not
549/// crashing, but the generated output is semantically different from the
550/// input.
551///
552bool BugDriver::debugMiscompilation() {
553  // Make sure something was miscompiled...
554  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
555    std::cerr << "*** Optimized program matches reference output!  No problem "
556	      << "detected...\nbugpoint can't help you with your problem!\n";
557    return false;
558  }
559
560  std::cout << "\n*** Found miscompiling pass"
561            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
562            << getPassesString(getPassesToRun()) << "\n";
563  EmitProgressBytecode("passinput");
564
565  std::vector<Function*> MiscompiledFunctions =
566    DebugAMiscompilation(*this, TestOptimizer);
567
568  // Output a bunch of bytecode files for the user...
569  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
570  Module *ToNotOptimize = CloneModule(getProgram());
571  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
572                                                 MiscompiledFunctions);
573
574  std::cout << "  Non-optimized portion: ";
575  ToNotOptimize = swapProgramIn(ToNotOptimize);
576  EmitProgressBytecode("tonotoptimize", true);
577  setNewProgram(ToNotOptimize);   // Delete hacked module.
578
579  std::cout << "  Portion that is input to optimizer: ";
580  ToOptimize = swapProgramIn(ToOptimize);
581  EmitProgressBytecode("tooptimize");
582  setNewProgram(ToOptimize);      // Delete hacked module.
583
584  return false;
585}
586
587/// CleanupAndPrepareModules - Get the specified modules ready for code
588/// generator testing.
589///
590static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
591                                     Module *Safe) {
592  // Clean up the modules, removing extra cruft that we don't need anymore...
593  Test = BD.performFinalCleanups(Test);
594
595  // If we are executing the JIT, we have several nasty issues to take care of.
596  if (!BD.isExecutingJIT()) return;
597
598  // First, if the main function is in the Safe module, we must add a stub to
599  // the Test module to call into it.  Thus, we create a new function `main'
600  // which just calls the old one.
601  if (Function *oldMain = Safe->getNamedFunction("main"))
602    if (!oldMain->isExternal()) {
603      // Rename it
604      oldMain->setName("llvm_bugpoint_old_main");
605      // Create a NEW `main' function with same type in the test module.
606      Function *newMain = new Function(oldMain->getFunctionType(),
607                                       GlobalValue::ExternalLinkage,
608                                       "main", Test);
609      // Create an `oldmain' prototype in the test module, which will
610      // corresponds to the real main function in the same module.
611      Function *oldMainProto = new Function(oldMain->getFunctionType(),
612                                            GlobalValue::ExternalLinkage,
613                                            oldMain->getName(), Test);
614      // Set up and remember the argument list for the main function.
615      std::vector<Value*> args;
616      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
617             OI = oldMain->abegin(); I != E; ++I, ++OI) {
618        I->setName(OI->getName());    // Copy argument names from oldMain
619        args.push_back(I);
620      }
621
622      // Call the old main function and return its result
623      BasicBlock *BB = new BasicBlock("entry", newMain);
624      CallInst *call = new CallInst(oldMainProto, args);
625      BB->getInstList().push_back(call);
626
627      // If the type of old function wasn't void, return value of call
628      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
629    }
630
631  // The second nasty issue we must deal with in the JIT is that the Safe
632  // module cannot directly reference any functions defined in the test
633  // module.  Instead, we use a JIT API call to dynamically resolve the
634  // symbol.
635
636  // Add the resolver to the Safe module.
637  // Prototype: void *getPointerToNamedFunction(const char* Name)
638  Function *resolverFunc =
639    Safe->getOrInsertFunction("getPointerToNamedFunction",
640                              PointerType::get(Type::SByteTy),
641                              PointerType::get(Type::SByteTy), 0);
642
643  // Use the function we just added to get addresses of functions we need.
644  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
645    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
646        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
647      Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType());
648
649      // Don't forward functions which are external in the test module too.
650      if (TestFn && !TestFn->isExternal()) {
651        // 1. Add a string constant with its name to the global file
652        Constant *InitArray = ConstantArray::get(F->getName());
653        GlobalVariable *funcName =
654          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
655                             GlobalValue::InternalLinkage, InitArray,
656                             F->getName() + "_name", Safe);
657
658        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
659        // sbyte* so it matches the signature of the resolver function.
660
661        // GetElementPtr *funcName, ulong 0, ulong 0
662        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
663        Value *GEP =
664          ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
665                                         GEPargs);
666        std::vector<Value*> ResolverArgs;
667        ResolverArgs.push_back(GEP);
668
669        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
670        // function that dynamically resolves the calls to F via our JIT API
671        if (F->use_begin() != F->use_end()) {
672          // Construct a new stub function that will re-route calls to F
673          const FunctionType *FuncTy = F->getFunctionType();
674          Function *FuncWrapper = new Function(FuncTy,
675                                               GlobalValue::InternalLinkage,
676                                               F->getName() + "_wrapper",
677                                               F->getParent());
678          BasicBlock *Header = new BasicBlock("header", FuncWrapper);
679
680          // Resolve the call to function F via the JIT API:
681          //
682          // call resolver(GetElementPtr...)
683          CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
684                                           "resolver");
685          Header->getInstList().push_back(resolve);
686          // cast the result from the resolver to correctly-typed function
687          CastInst *castResolver =
688            new CastInst(resolve, PointerType::get(F->getFunctionType()),
689                         "resolverCast");
690          Header->getInstList().push_back(castResolver);
691
692          // Save the argument list
693          std::vector<Value*> Args;
694          for (Function::aiterator i = FuncWrapper->abegin(),
695                 e = FuncWrapper->aend(); i != e; ++i)
696            Args.push_back(i);
697
698          // Pass on the arguments to the real function, return its result
699          if (F->getReturnType() == Type::VoidTy) {
700            CallInst *Call = new CallInst(castResolver, Args);
701            Header->getInstList().push_back(Call);
702            ReturnInst *Ret = new ReturnInst();
703            Header->getInstList().push_back(Ret);
704          } else {
705            CallInst *Call = new CallInst(castResolver, Args, "redir");
706            Header->getInstList().push_back(Call);
707            ReturnInst *Ret = new ReturnInst(Call);
708            Header->getInstList().push_back(Ret);
709          }
710
711          // Use the wrapper function instead of the old function
712          F->replaceAllUsesWith(FuncWrapper);
713        }
714      }
715    }
716  }
717
718  if (verifyModule(*Test) || verifyModule(*Safe)) {
719    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
720    abort();
721  }
722}
723
724
725
726/// TestCodeGenerator - This is the predicate function used to check to see if
727/// the "Test" portion of the program is miscompiled by the code generator under
728/// test.  If so, return true.  In any case, both module arguments are deleted.
729///
730static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
731  CleanupAndPrepareModules(BD, Test, Safe);
732
733  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
734  if (BD.writeProgramToFile(TestModuleBC, Test)) {
735    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
736    exit(1);
737  }
738  delete Test;
739
740  // Make the shared library
741  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
742
743  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
744    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
745    exit(1);
746  }
747  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
748  delete Safe;
749
750  // Run the code generator on the `Test' code, loading the shared library.
751  // The function returns whether or not the new output differs from reference.
752  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
753
754  if (Result)
755    std::cerr << ": still failing!\n";
756  else
757    std::cerr << ": didn't fail.\n";
758  removeFile(TestModuleBC);
759  removeFile(SafeModuleBC);
760  removeFile(SharedObject);
761
762  return Result;
763}
764
765
766/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
767///
768bool BugDriver::debugCodeGenerator() {
769  if ((void*)cbe == (void*)Interpreter) {
770    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
771    std::cout << "\n*** The C backend cannot match the reference diff, but it "
772              << "is used as the 'known good'\n    code generator, so I can't"
773              << " debug it.  Perhaps you have a front-end problem?\n    As a"
774              << " sanity check, I left the result of executing the program "
775              << "with the C backend\n    in this file for you: '"
776              << Result << "'.\n";
777    return true;
778  }
779
780  DisambiguateGlobalSymbols(Program);
781
782  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
783
784  // Split the module into the two halves of the program we want.
785  Module *ToNotCodeGen = CloneModule(getProgram());
786  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
787
788  // Condition the modules
789  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
790
791  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
792  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
793    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
794    exit(1);
795  }
796  delete ToCodeGen;
797
798  // Make the shared library
799  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
800  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
801    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
802    exit(1);
803  }
804  std::string SharedObject = compileSharedObject(SafeModuleBC);
805  delete ToNotCodeGen;
806
807  std::cout << "You can reproduce the problem with the command line: \n";
808  if (isExecutingJIT()) {
809    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
810  } else {
811    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
812    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
813              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
814    std::cout << "  " << TestModuleBC << ".exe";
815  }
816  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
817    std::cout << " " << InputArgv[i];
818  std::cout << "\n";
819  std::cout << "The shared object was created with:\n  llc -march=c "
820            << SafeModuleBC << " -o temporary.c\n"
821            << "  gcc -xc temporary.c -O2 -o " << SharedObject
822#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
823            << " -G"            // Compile a shared library, `-G' for Sparc
824#else
825            << " -shared"       // `-shared' for Linux/X86, maybe others
826#endif
827            << " -fno-strict-aliasing\n";
828
829  return false;
830}
831