Miscompilation.cpp revision a57d86b436549503a7f96c5266444e022bdbaf55
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/Verifier.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Linker.h"
26#include "Support/CommandLine.h"
27#include "Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32}
33
34namespace {
35  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
36    BugDriver &BD;
37  public:
38    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
39
40    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
41                              std::vector<const PassInfo*> &Suffix);
42  };
43}
44
45ReduceMiscompilingPasses::TestResult
46ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
47                                 std::vector<const PassInfo*> &Suffix) {
48  // First, run the program with just the Suffix passes.  If it is still broken
49  // with JUST the kept passes, discard the prefix passes.
50  std::cout << "Checking to see if '" << getPassesString(Suffix)
51            << "' compile correctly: ";
52
53  std::string BytecodeResult;
54  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
55    std::cerr << " Error running this sequence of passes"
56              << " on the input program!\n";
57    BD.setPassesToRun(Suffix);
58    BD.EmitProgressBytecode("pass-error",  false);
59    exit(BD.debugOptimizerCrash());
60  }
61
62  // Check to see if the finished program matches the reference output...
63  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
64    std::cout << "nope.\n";
65    return KeepSuffix;        // Miscompilation detected!
66  }
67  std::cout << "yup.\n";      // No miscompilation!
68
69  if (Prefix.empty()) return NoFailure;
70
71  // Next, see if the program is broken if we run the "prefix" passes first,
72  // then separately run the "kept" passes.
73  std::cout << "Checking to see if '" << getPassesString(Prefix)
74            << "' compile correctly: ";
75
76  // If it is not broken with the kept passes, it's possible that the prefix
77  // passes must be run before the kept passes to break it.  If the program
78  // WORKS after the prefix passes, but then fails if running the prefix AND
79  // kept passes, we can update our bytecode file to include the result of the
80  // prefix passes, then discard the prefix passes.
81  //
82  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
83    std::cerr << " Error running this sequence of passes"
84              << " on the input program!\n";
85    BD.setPassesToRun(Prefix);
86    BD.EmitProgressBytecode("pass-error",  false);
87    exit(BD.debugOptimizerCrash());
88  }
89
90  // If the prefix maintains the predicate by itself, only keep the prefix!
91  if (BD.diffProgram(BytecodeResult)) {
92    std::cout << "nope.\n";
93    removeFile(BytecodeResult);
94    return KeepPrefix;
95  }
96  std::cout << "yup.\n";      // No miscompilation!
97
98  // Ok, so now we know that the prefix passes work, try running the suffix
99  // passes on the result of the prefix passes.
100  //
101  Module *PrefixOutput = ParseInputFile(BytecodeResult);
102  if (PrefixOutput == 0) {
103    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
104              << BytecodeResult << "'!\n";
105    exit(1);
106  }
107  removeFile(BytecodeResult);  // No longer need the file on disk
108
109  std::cout << "Checking to see if '" << getPassesString(Suffix)
110            << "' passes compile correctly after the '"
111            << getPassesString(Prefix) << "' passes: ";
112
113  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
114  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
115    std::cerr << " Error running this sequence of passes"
116              << " on the input program!\n";
117    BD.setPassesToRun(Suffix);
118    BD.EmitProgressBytecode("pass-error",  false);
119    exit(BD.debugOptimizerCrash());
120  }
121
122  // Run the result...
123  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
124    std::cout << "nope.\n";
125    delete OriginalInput;     // We pruned down the original input...
126    return KeepSuffix;
127  }
128
129  // Otherwise, we must not be running the bad pass anymore.
130  std::cout << "yup.\n";      // No miscompilation!
131  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
132  return NoFailure;
133}
134
135namespace {
136  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
137    BugDriver &BD;
138    bool (*TestFn)(BugDriver &, Module *, Module *);
139  public:
140    ReduceMiscompilingFunctions(BugDriver &bd,
141                                bool (*F)(BugDriver &, Module *, Module *))
142      : BD(bd), TestFn(F) {}
143
144    virtual TestResult doTest(std::vector<Function*> &Prefix,
145                              std::vector<Function*> &Suffix) {
146      if (!Suffix.empty() && TestFuncs(Suffix))
147        return KeepSuffix;
148      if (!Prefix.empty() && TestFuncs(Prefix))
149        return KeepPrefix;
150      return NoFailure;
151    }
152
153    bool TestFuncs(const std::vector<Function*> &Prefix);
154  };
155}
156
157/// TestMergedProgram - Given two modules, link them together and run the
158/// program, checking to see if the program matches the diff.  If the diff
159/// matches, return false, otherwise return true.  If the DeleteInputs argument
160/// is set to true then this function deletes both input modules before it
161/// returns.
162static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
163                              bool DeleteInputs) {
164  // Link the two portions of the program back to together.
165  std::string ErrorMsg;
166  if (!DeleteInputs) M1 = CloneModule(M1);
167  if (LinkModules(M1, M2, &ErrorMsg)) {
168    std::cerr << BD.getToolName() << ": Error linking modules together:"
169              << ErrorMsg << "\n";
170    exit(1);
171  }
172  if (DeleteInputs) delete M2;  // We are done with this module...
173
174  Module *OldProgram = BD.swapProgramIn(M1);
175
176  // Execute the program.  If it does not match the expected output, we must
177  // return true.
178  bool Broken = BD.diffProgram();
179
180  // Delete the linked module & restore the original
181  BD.swapProgramIn(OldProgram);
182  delete M1;
183  return Broken;
184}
185
186bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
187  // Test to see if the function is misoptimized if we ONLY run it on the
188  // functions listed in Funcs.
189  std::cout << "Checking to see if the program is misoptimized when "
190            << (Funcs.size()==1 ? "this function is" : "these functions are")
191            << " run through the pass"
192            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
193  PrintFunctionList(Funcs);
194  std::cout << "\n";
195
196  // Split the module into the two halves of the program we want.
197  Module *ToNotOptimize = CloneModule(BD.getProgram());
198  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
199
200  // Run the predicate, not that the predicate will delete both input modules.
201  return TestFn(BD, ToOptimize, ToNotOptimize);
202}
203
204/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
205/// check to see if we can extract the loops in the region without obscuring the
206/// bug.  If so, it reduces the amount of code identified.
207static bool ExtractLoops(BugDriver &BD,
208                         bool (*TestFn)(BugDriver &, Module *, Module *),
209                         std::vector<Function*> &MiscompiledFunctions) {
210  bool MadeChange = false;
211  while (1) {
212    Module *ToNotOptimize = CloneModule(BD.getProgram());
213    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
214                                                   MiscompiledFunctions);
215    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
216    if (!ToOptimizeLoopExtracted) {
217      // If the loop extractor crashed or if there were no extractible loops,
218      // then this chapter of our odyssey is over with.
219      delete ToNotOptimize;
220      delete ToOptimize;
221      return MadeChange;
222    }
223
224    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
225    delete ToOptimize;
226
227    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
228    // particular, we're not going to assume that the loop extractor works, so
229    // we're going to test the newly loop extracted program to make sure nothing
230    // has broken.  If something broke, then we'll inform the user and stop
231    // extraction.
232    AbstractInterpreter *AI = BD.switchToCBE();
233    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
234      BD.switchToInterpreter(AI);
235
236      // Merged program doesn't work anymore!
237      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
238                << " Please report a bug!\n";
239      std::cerr << "      Continuing on with un-loop-extracted version.\n";
240      delete ToNotOptimize;
241      delete ToOptimizeLoopExtracted;
242      return MadeChange;
243    }
244    BD.switchToInterpreter(AI);
245
246    std::cout << "  Testing after loop extraction:\n";
247    // Clone modules, the tester function will free them.
248    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
249    Module *TNOBackup  = CloneModule(ToNotOptimize);
250    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
251      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
252      // If the program is not still broken, then loop extraction did something
253      // that masked the error.  Stop loop extraction now.
254      delete TOLEBackup;
255      delete TNOBackup;
256      return MadeChange;
257    }
258    ToOptimizeLoopExtracted = TOLEBackup;
259    ToNotOptimize = TNOBackup;
260
261    std::cout << "*** Loop extraction successful!\n";
262
263    // Okay, great!  Now we know that we extracted a loop and that loop
264    // extraction both didn't break the program, and didn't mask the problem.
265    // Replace the current program with the loop extracted version, and try to
266    // extract another loop.
267    std::string ErrorMsg;
268    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
269      std::cerr << BD.getToolName() << ": Error linking modules together:"
270                << ErrorMsg << "\n";
271      exit(1);
272    }
273
274    // All of the Function*'s in the MiscompiledFunctions list are in the old
275    // module.  Update this list to include all of the functions in the
276    // optimized and loop extracted module.
277    MiscompiledFunctions.clear();
278    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
279           E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
280      if (!I->isExternal()) {
281        Function *NewF = ToNotOptimize->getFunction(I->getName(),
282                                                    I->getFunctionType());
283        assert(NewF && "Function not found??");
284        MiscompiledFunctions.push_back(NewF);
285      }
286    }
287    delete ToOptimizeLoopExtracted;
288
289    BD.setNewProgram(ToNotOptimize);
290    MadeChange = true;
291  }
292}
293
294/// DebugAMiscompilation - This is a generic driver to narrow down
295/// miscompilations, either in an optimization or a code generator.
296static std::vector<Function*>
297DebugAMiscompilation(BugDriver &BD,
298                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
299  // Okay, now that we have reduced the list of passes which are causing the
300  // failure, see if we can pin down which functions are being
301  // miscompiled... first build a list of all of the non-external functions in
302  // the program.
303  std::vector<Function*> MiscompiledFunctions;
304  Module *Prog = BD.getProgram();
305  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
306    if (!I->isExternal())
307      MiscompiledFunctions.push_back(I);
308
309  // Do the reduction...
310  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
311
312  std::cout << "\n*** The following function"
313            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
314            << " being miscompiled: ";
315  PrintFunctionList(MiscompiledFunctions);
316  std::cout << "\n";
317
318  // See if we can rip any loops out of the miscompiled functions and still
319  // trigger the problem.
320  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
321    // Okay, we extracted some loops and the problem still appears.  See if we
322    // can eliminate some of the created functions from being candidates.
323
324    // Do the reduction...
325    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
326
327    std::cout << "\n*** The following function"
328              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
329              << " being miscompiled: ";
330    PrintFunctionList(MiscompiledFunctions);
331    std::cout << "\n";
332  }
333
334  return MiscompiledFunctions;
335}
336
337/// TestOptimizer - This is the predicate function used to check to see if the
338/// "Test" portion of the program is misoptimized.  If so, return true.  In any
339/// case, both module arguments are deleted.
340static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
341  // Run the optimization passes on ToOptimize, producing a transformed version
342  // of the functions being tested.
343  std::cout << "  Optimizing functions being tested: ";
344  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
345                                     /*AutoDebugCrashes*/true);
346  std::cout << "done.\n";
347  delete Test;
348
349  std::cout << "  Checking to see if the merged program executes correctly: ";
350  bool Broken = TestMergedProgram(BD, Test, Safe, true);
351  std::cout << (Broken ? " nope.\n" : " yup.\n");
352  return Broken;
353}
354
355
356/// debugMiscompilation - This method is used when the passes selected are not
357/// crashing, but the generated output is semantically different from the
358/// input.
359///
360bool BugDriver::debugMiscompilation() {
361  // Make sure something was miscompiled...
362  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
363    std::cerr << "*** Optimized program matches reference output!  No problem "
364	      << "detected...\nbugpoint can't help you with your problem!\n";
365    return false;
366  }
367
368  std::cout << "\n*** Found miscompiling pass"
369            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
370            << getPassesString(getPassesToRun()) << "\n";
371  EmitProgressBytecode("passinput");
372
373  std::vector<Function*> MiscompiledFunctions =
374    DebugAMiscompilation(*this, TestOptimizer);
375
376  // Output a bunch of bytecode files for the user...
377  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
378  Module *ToNotOptimize = CloneModule(getProgram());
379  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
380                                                 MiscompiledFunctions);
381
382  std::cout << "  Non-optimized portion: ";
383  ToNotOptimize = swapProgramIn(ToNotOptimize);
384  EmitProgressBytecode("tonotoptimize", true);
385  setNewProgram(ToNotOptimize);   // Delete hacked module.
386
387  std::cout << "  Portion that is input to optimizer: ";
388  ToOptimize = swapProgramIn(ToOptimize);
389  EmitProgressBytecode("tooptimize");
390  setNewProgram(ToOptimize);      // Delete hacked module.
391
392  return false;
393}
394
395/// CleanupAndPrepareModules - Get the specified modules ready for code
396/// generator testing.
397static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
398                                     Module *Safe) {
399  // Clean up the modules, removing extra cruft that we don't need anymore...
400  Test = BD.performFinalCleanups(Test);
401
402  // If we are executing the JIT, we have several nasty issues to take care of.
403  if (!BD.isExecutingJIT()) return;
404
405  // First, if the main function is in the Safe module, we must add a stub to
406  // the Test module to call into it.  Thus, we create a new function `main'
407  // which just calls the old one.
408  if (Function *oldMain = Safe->getNamedFunction("main"))
409    if (!oldMain->isExternal()) {
410      // Rename it
411      oldMain->setName("llvm_bugpoint_old_main");
412      // Create a NEW `main' function with same type in the test module.
413      Function *newMain = new Function(oldMain->getFunctionType(),
414                                       GlobalValue::ExternalLinkage,
415                                       "main", Test);
416      // Create an `oldmain' prototype in the test module, which will
417      // corresponds to the real main function in the same module.
418      Function *oldMainProto = new Function(oldMain->getFunctionType(),
419                                            GlobalValue::ExternalLinkage,
420                                            oldMain->getName(), Test);
421      // Set up and remember the argument list for the main function.
422      std::vector<Value*> args;
423      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
424             OI = oldMain->abegin(); I != E; ++I, ++OI) {
425        I->setName(OI->getName());    // Copy argument names from oldMain
426        args.push_back(I);
427      }
428
429      // Call the old main function and return its result
430      BasicBlock *BB = new BasicBlock("entry", newMain);
431      CallInst *call = new CallInst(oldMainProto, args);
432      BB->getInstList().push_back(call);
433
434      // If the type of old function wasn't void, return value of call
435      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
436    }
437
438  // The second nasty issue we must deal with in the JIT is that the Safe
439  // module cannot directly reference any functions defined in the test
440  // module.  Instead, we use a JIT API call to dynamically resolve the
441  // symbol.
442
443  // Add the resolver to the Safe module.
444  // Prototype: void *getPointerToNamedFunction(const char* Name)
445  Function *resolverFunc =
446    Safe->getOrInsertFunction("getPointerToNamedFunction",
447                              PointerType::get(Type::SByteTy),
448                              PointerType::get(Type::SByteTy), 0);
449
450  // Use the function we just added to get addresses of functions we need.
451  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F){
452    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
453        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
454      Function *TestFn =Test->getFunction(F->getName(), F->getFunctionType());
455
456      // Don't forward functions which are external in the test module too.
457      if (TestFn && !TestFn->isExternal()) {
458        // 1. Add a string constant with its name to the global file
459        Constant *InitArray = ConstantArray::get(F->getName());
460        GlobalVariable *funcName =
461          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
462                             GlobalValue::InternalLinkage, InitArray,
463                             F->getName() + "_name", Safe);
464
465        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
466        // sbyte* so it matches the signature of the resolver function.
467
468        // GetElementPtr *funcName, ulong 0, ulong 0
469        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
470        Value *GEP =
471          ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
472                                         GEPargs);
473        std::vector<Value*> ResolverArgs;
474        ResolverArgs.push_back(GEP);
475
476        // 3. Replace all uses of `func' with calls to resolver by:
477        // (a) Iterating through the list of uses of this function
478        // (b) Insert a cast instruction in front of each use
479        // (c) Replace use of old call with new call
480
481        // Insert code at the beginning of the function
482        while (!F->use_empty())
483          if (Instruction *Inst = dyn_cast<Instruction>(F->use_back())) {
484            // call resolver(GetElementPtr...)
485            CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
486                                             "resolver", Inst);
487            // cast the result from the resolver to correctly-typed function
488            CastInst *castResolver =
489              new CastInst(resolve, PointerType::get(F->getFunctionType()),
490                           "resolverCast", Inst);
491            // actually use the resolved function
492            Inst->replaceUsesOfWith(F, castResolver);
493          } else {
494            // FIXME: need to take care of cases where a function is used by
495            // something other than an instruction; e.g., global variable
496            // initializers and constant expressions.
497            std::cerr << "UNSUPPORTED: Non-instruction is using an external "
498                      << "function, " << F->getName() << "().\n";
499            abort();
500          }
501      }
502    }
503  }
504
505  if (verifyModule(*Test) || verifyModule(*Safe)) {
506    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
507    abort();
508  }
509}
510
511
512
513/// TestCodeGenerator - This is the predicate function used to check to see if
514/// the "Test" portion of the program is miscompiled by the code generator under
515/// test.  If so, return true.  In any case, both module arguments are deleted.
516static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
517  CleanupAndPrepareModules(BD, Test, Safe);
518
519  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
520  if (BD.writeProgramToFile(TestModuleBC, Test)) {
521    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
522    exit(1);
523  }
524  delete Test;
525
526  // Make the shared library
527  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
528
529  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
530    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
531    exit(1);
532  }
533  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
534  delete Safe;
535
536  // Run the code generator on the `Test' code, loading the shared library.
537  // The function returns whether or not the new output differs from reference.
538  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
539
540  if (Result)
541    std::cerr << ": still failing!\n";
542  else
543    std::cerr << ": didn't fail.\n";
544  removeFile(TestModuleBC);
545  removeFile(SafeModuleBC);
546  removeFile(SharedObject);
547
548  return Result;
549}
550
551
552
553static void DisambiguateGlobalSymbols(Module *M) {
554  // Try not to cause collisions by minimizing chances of renaming an
555  // already-external symbol, so take in external globals and functions as-is.
556  // The code should work correctly without disambiguation (assuming the same
557  // mangler is used by the two code generators), but having symbols with the
558  // same name causes warnings to be emitted by the code generator.
559  Mangler Mang(*M);
560  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
561    I->setName(Mang.getValueName(I));
562  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
563    I->setName(Mang.getValueName(I));
564}
565
566
567
568bool BugDriver::debugCodeGenerator() {
569  if ((void*)cbe == (void*)Interpreter) {
570    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
571    std::cout << "\n*** The C backend cannot match the reference diff, but it "
572              << "is used as the 'known good'\n    code generator, so I can't"
573              << " debug it.  Perhaps you have a front-end problem?\n    As a"
574              << " sanity check, I left the result of executing the program "
575              << "with the C backend\n    in this file for you: '"
576              << Result << "'.\n";
577    return true;
578  }
579
580  DisambiguateGlobalSymbols(Program);
581
582  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
583
584  // Split the module into the two halves of the program we want.
585  Module *ToNotCodeGen = CloneModule(getProgram());
586  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
587
588  // Condition the modules
589  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
590
591  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
592  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
593    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
594    exit(1);
595  }
596  delete ToCodeGen;
597
598  // Make the shared library
599  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
600  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
601    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
602    exit(1);
603  }
604  std::string SharedObject = compileSharedObject(SafeModuleBC);
605  delete ToNotCodeGen;
606
607  std::cout << "You can reproduce the problem with the command line: \n";
608  if (isExecutingJIT()) {
609    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
610  } else {
611    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
612    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
613              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
614    std::cout << "  " << TestModuleBC << ".exe";
615  }
616  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
617    std::cout << " " << InputArgv[i];
618  std::cout << "\n";
619  std::cout << "The shared object was created with:\n  llc -march=c "
620            << SafeModuleBC << " -o temporary.c\n"
621            << "  gcc -xc temporary.c -O2 -o " << SharedObject
622#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
623            << " -G"            // Compile a shared library, `-G' for Sparc
624#else
625            << " -shared"       // `-shared' for Linux/X86, maybe others
626#endif
627            << " -fno-strict-aliasing\n";
628
629  return false;
630}
631