Miscompilation.cpp revision ac53a0b272452013124bfc70480aea5e41b60f40
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "ToolRunner.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Linker.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Verifier.h"
25#include "llvm/Support/Mangler.h"
26#include "llvm/Transforms/Utils/Cloning.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/FileUtilities.h"
29#include "llvm/Config/config.h"   // for HAVE_LINK_R
30using namespace llvm;
31
32namespace llvm {
33  extern cl::opt<std::string> OutputPrefix;
34  extern cl::list<std::string> InputArgv;
35}
36
37namespace {
38  static llvm::cl::opt<bool>
39    DisableLoopExtraction("disable-loop-extraction",
40        cl::desc("Don't extract loops when searching for miscompilations"),
41        cl::init(false));
42  static llvm::cl::opt<bool>
43    DisableBlockExtraction("disable-block-extraction",
44        cl::desc("Don't extract blocks when searching for miscompilations"),
45        cl::init(false));
46
47  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
48    BugDriver &BD;
49  public:
50    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
51
52    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
53                              std::vector<const PassInfo*> &Suffix);
54  };
55}
56
57/// TestResult - After passes have been split into a test group and a control
58/// group, see if they still break the program.
59///
60ReduceMiscompilingPasses::TestResult
61ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
62                                 std::vector<const PassInfo*> &Suffix) {
63  // First, run the program with just the Suffix passes.  If it is still broken
64  // with JUST the kept passes, discard the prefix passes.
65  outs() << "Checking to see if '" << getPassesString(Suffix)
66         << "' compiles correctly: ";
67
68  std::string BitcodeResult;
69  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
70    errs() << " Error running this sequence of passes"
71           << " on the input program!\n";
72    BD.setPassesToRun(Suffix);
73    BD.EmitProgressBitcode("pass-error",  false);
74    exit(BD.debugOptimizerCrash());
75  }
76
77  // Check to see if the finished program matches the reference output...
78  if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
79    outs() << " nope.\n";
80    if (Suffix.empty()) {
81      errs() << BD.getToolName() << ": I'm confused: the test fails when "
82             << "no passes are run, nondeterministic program?\n";
83      exit(1);
84    }
85    return KeepSuffix;         // Miscompilation detected!
86  }
87  outs() << " yup.\n";      // No miscompilation!
88
89  if (Prefix.empty()) return NoFailure;
90
91  // Next, see if the program is broken if we run the "prefix" passes first,
92  // then separately run the "kept" passes.
93  outs() << "Checking to see if '" << getPassesString(Prefix)
94         << "' compiles correctly: ";
95
96  // If it is not broken with the kept passes, it's possible that the prefix
97  // passes must be run before the kept passes to break it.  If the program
98  // WORKS after the prefix passes, but then fails if running the prefix AND
99  // kept passes, we can update our bitcode file to include the result of the
100  // prefix passes, then discard the prefix passes.
101  //
102  if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
103    errs() << " Error running this sequence of passes"
104           << " on the input program!\n";
105    BD.setPassesToRun(Prefix);
106    BD.EmitProgressBitcode("pass-error",  false);
107    exit(BD.debugOptimizerCrash());
108  }
109
110  // If the prefix maintains the predicate by itself, only keep the prefix!
111  if (BD.diffProgram(BitcodeResult)) {
112    outs() << " nope.\n";
113    sys::Path(BitcodeResult).eraseFromDisk();
114    return KeepPrefix;
115  }
116  outs() << " yup.\n";      // No miscompilation!
117
118  // Ok, so now we know that the prefix passes work, try running the suffix
119  // passes on the result of the prefix passes.
120  //
121  Module *PrefixOutput = ParseInputFile(BitcodeResult, BD.getContext());
122  if (PrefixOutput == 0) {
123    errs() << BD.getToolName() << ": Error reading bitcode file '"
124           << BitcodeResult << "'!\n";
125    exit(1);
126  }
127  sys::Path(BitcodeResult).eraseFromDisk();  // No longer need the file on disk
128
129  // Don't check if there are no passes in the suffix.
130  if (Suffix.empty())
131    return NoFailure;
132
133  outs() << "Checking to see if '" << getPassesString(Suffix)
134            << "' passes compile correctly after the '"
135            << getPassesString(Prefix) << "' passes: ";
136
137  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
138  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
139    errs() << " Error running this sequence of passes"
140           << " on the input program!\n";
141    BD.setPassesToRun(Suffix);
142    BD.EmitProgressBitcode("pass-error",  false);
143    exit(BD.debugOptimizerCrash());
144  }
145
146  // Run the result...
147  if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
148    outs() << " nope.\n";
149    delete OriginalInput;     // We pruned down the original input...
150    return KeepSuffix;
151  }
152
153  // Otherwise, we must not be running the bad pass anymore.
154  outs() << " yup.\n";      // No miscompilation!
155  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
156  return NoFailure;
157}
158
159namespace {
160  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
161    BugDriver &BD;
162    bool (*TestFn)(BugDriver &, Module *, Module *);
163  public:
164    ReduceMiscompilingFunctions(BugDriver &bd,
165                                bool (*F)(BugDriver &, Module *, Module *))
166      : BD(bd), TestFn(F) {}
167
168    virtual TestResult doTest(std::vector<Function*> &Prefix,
169                              std::vector<Function*> &Suffix) {
170      if (!Suffix.empty() && TestFuncs(Suffix))
171        return KeepSuffix;
172      if (!Prefix.empty() && TestFuncs(Prefix))
173        return KeepPrefix;
174      return NoFailure;
175    }
176
177    bool TestFuncs(const std::vector<Function*> &Prefix);
178  };
179}
180
181/// TestMergedProgram - Given two modules, link them together and run the
182/// program, checking to see if the program matches the diff.  If the diff
183/// matches, return false, otherwise return true.  If the DeleteInputs argument
184/// is set to true then this function deletes both input modules before it
185/// returns.
186///
187static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
188                              bool DeleteInputs) {
189  // Link the two portions of the program back to together.
190  std::string ErrorMsg;
191  if (!DeleteInputs) {
192    M1 = CloneModule(M1);
193    M2 = CloneModule(M2);
194  }
195  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
196    errs() << BD.getToolName() << ": Error linking modules together:"
197           << ErrorMsg << '\n';
198    exit(1);
199  }
200  delete M2;   // We are done with this module.
201
202  Module *OldProgram = BD.swapProgramIn(M1);
203
204  // Execute the program.  If it does not match the expected output, we must
205  // return true.
206  bool Broken = BD.diffProgram();
207
208  // Delete the linked module & restore the original
209  BD.swapProgramIn(OldProgram);
210  delete M1;
211  return Broken;
212}
213
214/// TestFuncs - split functions in a Module into two groups: those that are
215/// under consideration for miscompilation vs. those that are not, and test
216/// accordingly. Each group of functions becomes a separate Module.
217///
218bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
219  // Test to see if the function is misoptimized if we ONLY run it on the
220  // functions listed in Funcs.
221  outs() << "Checking to see if the program is misoptimized when "
222         << (Funcs.size()==1 ? "this function is" : "these functions are")
223         << " run through the pass"
224         << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
225  PrintFunctionList(Funcs);
226  outs() << '\n';
227
228  // Split the module into the two halves of the program we want.
229  DenseMap<const Value*, Value*> ValueMap;
230  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
231  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
232                                                 ValueMap);
233
234  // Run the predicate, note that the predicate will delete both input modules.
235  return TestFn(BD, ToOptimize, ToNotOptimize);
236}
237
238/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
239/// modifying predominantly internal symbols rather than external ones.
240///
241static void DisambiguateGlobalSymbols(Module *M) {
242  // Try not to cause collisions by minimizing chances of renaming an
243  // already-external symbol, so take in external globals and functions as-is.
244  // The code should work correctly without disambiguation (assuming the same
245  // mangler is used by the two code generators), but having symbols with the
246  // same name causes warnings to be emitted by the code generator.
247  Mangler Mang(*M);
248  // Agree with the CBE on symbol naming
249  Mang.markCharUnacceptable('.');
250  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
251       I != E; ++I) {
252    // Don't mangle asm names.
253    if (!I->hasName() || I->getName()[0] != 1)
254      I->setName(Mang.getMangledName(I));
255  }
256  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
257    // Don't mangle asm names or intrinsics.
258    if ((!I->hasName() || I->getName()[0] != 1) &&
259        I->getIntrinsicID() == 0)
260      I->setName(Mang.getMangledName(I));
261  }
262}
263
264/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
265/// check to see if we can extract the loops in the region without obscuring the
266/// bug.  If so, it reduces the amount of code identified.
267///
268static bool ExtractLoops(BugDriver &BD,
269                         bool (*TestFn)(BugDriver &, Module *, Module *),
270                         std::vector<Function*> &MiscompiledFunctions) {
271  bool MadeChange = false;
272  while (1) {
273    if (BugpointIsInterrupted) return MadeChange;
274
275    DenseMap<const Value*, Value*> ValueMap;
276    Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
277    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
278                                                   MiscompiledFunctions,
279                                                   ValueMap);
280    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
281    if (!ToOptimizeLoopExtracted) {
282      // If the loop extractor crashed or if there were no extractible loops,
283      // then this chapter of our odyssey is over with.
284      delete ToNotOptimize;
285      delete ToOptimize;
286      return MadeChange;
287    }
288
289    errs() << "Extracted a loop from the breaking portion of the program.\n";
290
291    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
292    // particular, we're not going to assume that the loop extractor works, so
293    // we're going to test the newly loop extracted program to make sure nothing
294    // has broken.  If something broke, then we'll inform the user and stop
295    // extraction.
296    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
297    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
298      BD.switchToInterpreter(AI);
299
300      // Merged program doesn't work anymore!
301      errs() << "  *** ERROR: Loop extraction broke the program. :("
302             << " Please report a bug!\n";
303      errs() << "      Continuing on with un-loop-extracted version.\n";
304
305      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
306                            ToNotOptimize);
307      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
308                            ToOptimize);
309      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
310                            ToOptimizeLoopExtracted);
311
312      errs() << "Please submit the "
313             << OutputPrefix << "-loop-extract-fail-*.bc files.\n";
314      delete ToOptimize;
315      delete ToNotOptimize;
316      delete ToOptimizeLoopExtracted;
317      return MadeChange;
318    }
319    delete ToOptimize;
320    BD.switchToInterpreter(AI);
321
322    outs() << "  Testing after loop extraction:\n";
323    // Clone modules, the tester function will free them.
324    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
325    Module *TNOBackup  = CloneModule(ToNotOptimize);
326    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
327      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
328      // If the program is not still broken, then loop extraction did something
329      // that masked the error.  Stop loop extraction now.
330      delete TOLEBackup;
331      delete TNOBackup;
332      return MadeChange;
333    }
334    ToOptimizeLoopExtracted = TOLEBackup;
335    ToNotOptimize = TNOBackup;
336
337    outs() << "*** Loop extraction successful!\n";
338
339    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
340    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
341           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
342      if (!I->isDeclaration())
343        MisCompFunctions.push_back(std::make_pair(I->getName(),
344                                                  I->getFunctionType()));
345
346    // Okay, great!  Now we know that we extracted a loop and that loop
347    // extraction both didn't break the program, and didn't mask the problem.
348    // Replace the current program with the loop extracted version, and try to
349    // extract another loop.
350    std::string ErrorMsg;
351    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
352      errs() << BD.getToolName() << ": Error linking modules together:"
353             << ErrorMsg << '\n';
354      exit(1);
355    }
356    delete ToOptimizeLoopExtracted;
357
358    // All of the Function*'s in the MiscompiledFunctions list are in the old
359    // module.  Update this list to include all of the functions in the
360    // optimized and loop extracted module.
361    MiscompiledFunctions.clear();
362    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
363      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
364
365      assert(NewF && "Function not found??");
366      assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
367             "found wrong function type?");
368      MiscompiledFunctions.push_back(NewF);
369    }
370
371    BD.setNewProgram(ToNotOptimize);
372    MadeChange = true;
373  }
374}
375
376namespace {
377  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
378    BugDriver &BD;
379    bool (*TestFn)(BugDriver &, Module *, Module *);
380    std::vector<Function*> FunctionsBeingTested;
381  public:
382    ReduceMiscompiledBlocks(BugDriver &bd,
383                            bool (*F)(BugDriver &, Module *, Module *),
384                            const std::vector<Function*> &Fns)
385      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
386
387    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
388                              std::vector<BasicBlock*> &Suffix) {
389      if (!Suffix.empty() && TestFuncs(Suffix))
390        return KeepSuffix;
391      if (TestFuncs(Prefix))
392        return KeepPrefix;
393      return NoFailure;
394    }
395
396    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
397  };
398}
399
400/// TestFuncs - Extract all blocks for the miscompiled functions except for the
401/// specified blocks.  If the problem still exists, return true.
402///
403bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
404  // Test to see if the function is misoptimized if we ONLY run it on the
405  // functions listed in Funcs.
406  outs() << "Checking to see if the program is misoptimized when all ";
407  if (!BBs.empty()) {
408    outs() << "but these " << BBs.size() << " blocks are extracted: ";
409    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
410      outs() << BBs[i]->getName() << " ";
411    if (BBs.size() > 10) outs() << "...";
412  } else {
413    outs() << "blocks are extracted.";
414  }
415  outs() << '\n';
416
417  // Split the module into the two halves of the program we want.
418  DenseMap<const Value*, Value*> ValueMap;
419  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
420  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
421                                                 FunctionsBeingTested,
422                                                 ValueMap);
423
424  // Try the extraction.  If it doesn't work, then the block extractor crashed
425  // or something, in which case bugpoint can't chase down this possibility.
426  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
427    delete ToOptimize;
428    // Run the predicate, not that the predicate will delete both input modules.
429    return TestFn(BD, New, ToNotOptimize);
430  }
431  delete ToOptimize;
432  delete ToNotOptimize;
433  return false;
434}
435
436
437/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
438/// extract as many basic blocks from the region as possible without obscuring
439/// the bug.
440///
441static bool ExtractBlocks(BugDriver &BD,
442                          bool (*TestFn)(BugDriver &, Module *, Module *),
443                          std::vector<Function*> &MiscompiledFunctions) {
444  if (BugpointIsInterrupted) return false;
445
446  std::vector<BasicBlock*> Blocks;
447  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
448    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
449           E = MiscompiledFunctions[i]->end(); I != E; ++I)
450      Blocks.push_back(I);
451
452  // Use the list reducer to identify blocks that can be extracted without
453  // obscuring the bug.  The Blocks list will end up containing blocks that must
454  // be retained from the original program.
455  unsigned OldSize = Blocks.size();
456
457  // Check to see if all blocks are extractible first.
458  if (ReduceMiscompiledBlocks(BD, TestFn,
459                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
460    Blocks.clear();
461  } else {
462    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
463    if (Blocks.size() == OldSize)
464      return false;
465  }
466
467  DenseMap<const Value*, Value*> ValueMap;
468  Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
469  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
470                                                MiscompiledFunctions,
471                                                ValueMap);
472  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
473  if (Extracted == 0) {
474    // Weird, extraction should have worked.
475    errs() << "Nondeterministic problem extracting blocks??\n";
476    delete ProgClone;
477    delete ToExtract;
478    return false;
479  }
480
481  // Otherwise, block extraction succeeded.  Link the two program fragments back
482  // together.
483  delete ToExtract;
484
485  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
486  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
487       I != E; ++I)
488    if (!I->isDeclaration())
489      MisCompFunctions.push_back(std::make_pair(I->getName(),
490                                                I->getFunctionType()));
491
492  std::string ErrorMsg;
493  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
494    errs() << BD.getToolName() << ": Error linking modules together:"
495           << ErrorMsg << '\n';
496    exit(1);
497  }
498  delete Extracted;
499
500  // Set the new program and delete the old one.
501  BD.setNewProgram(ProgClone);
502
503  // Update the list of miscompiled functions.
504  MiscompiledFunctions.clear();
505
506  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
507    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
508    assert(NewF && "Function not found??");
509    assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
510           "Function has wrong type??");
511    MiscompiledFunctions.push_back(NewF);
512  }
513
514  return true;
515}
516
517
518/// DebugAMiscompilation - This is a generic driver to narrow down
519/// miscompilations, either in an optimization or a code generator.
520///
521static std::vector<Function*>
522DebugAMiscompilation(BugDriver &BD,
523                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
524  // Okay, now that we have reduced the list of passes which are causing the
525  // failure, see if we can pin down which functions are being
526  // miscompiled... first build a list of all of the non-external functions in
527  // the program.
528  std::vector<Function*> MiscompiledFunctions;
529  Module *Prog = BD.getProgram();
530  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
531    if (!I->isDeclaration())
532      MiscompiledFunctions.push_back(I);
533
534  // Do the reduction...
535  if (!BugpointIsInterrupted)
536    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
537
538  outs() << "\n*** The following function"
539         << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
540         << " being miscompiled: ";
541  PrintFunctionList(MiscompiledFunctions);
542  outs() << '\n';
543
544  // See if we can rip any loops out of the miscompiled functions and still
545  // trigger the problem.
546
547  if (!BugpointIsInterrupted && !DisableLoopExtraction &&
548      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
549    // Okay, we extracted some loops and the problem still appears.  See if we
550    // can eliminate some of the created functions from being candidates.
551
552    // Loop extraction can introduce functions with the same name (foo_code).
553    // Make sure to disambiguate the symbols so that when the program is split
554    // apart that we can link it back together again.
555    DisambiguateGlobalSymbols(BD.getProgram());
556
557    // Do the reduction...
558    if (!BugpointIsInterrupted)
559      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
560
561    outs() << "\n*** The following function"
562           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
563           << " being miscompiled: ";
564    PrintFunctionList(MiscompiledFunctions);
565    outs() << '\n';
566  }
567
568  if (!BugpointIsInterrupted && !DisableBlockExtraction &&
569      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
570    // Okay, we extracted some blocks and the problem still appears.  See if we
571    // can eliminate some of the created functions from being candidates.
572
573    // Block extraction can introduce functions with the same name (foo_code).
574    // Make sure to disambiguate the symbols so that when the program is split
575    // apart that we can link it back together again.
576    DisambiguateGlobalSymbols(BD.getProgram());
577
578    // Do the reduction...
579    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
580
581    outs() << "\n*** The following function"
582           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
583           << " being miscompiled: ";
584    PrintFunctionList(MiscompiledFunctions);
585    outs() << '\n';
586  }
587
588  return MiscompiledFunctions;
589}
590
591/// TestOptimizer - This is the predicate function used to check to see if the
592/// "Test" portion of the program is misoptimized.  If so, return true.  In any
593/// case, both module arguments are deleted.
594///
595static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
596  // Run the optimization passes on ToOptimize, producing a transformed version
597  // of the functions being tested.
598  outs() << "  Optimizing functions being tested: ";
599  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
600                                     /*AutoDebugCrashes*/true);
601  outs() << "done.\n";
602  delete Test;
603
604  outs() << "  Checking to see if the merged program executes correctly: ";
605  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
606  outs() << (Broken ? " nope.\n" : " yup.\n");
607  return Broken;
608}
609
610
611/// debugMiscompilation - This method is used when the passes selected are not
612/// crashing, but the generated output is semantically different from the
613/// input.
614///
615bool BugDriver::debugMiscompilation() {
616  // Make sure something was miscompiled...
617  if (!BugpointIsInterrupted)
618    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
619      errs() << "*** Optimized program matches reference output!  No problem"
620             << " detected...\nbugpoint can't help you with your problem!\n";
621      return false;
622    }
623
624  outs() << "\n*** Found miscompiling pass"
625         << (getPassesToRun().size() == 1 ? "" : "es") << ": "
626         << getPassesString(getPassesToRun()) << '\n';
627  EmitProgressBitcode("passinput");
628
629  std::vector<Function*> MiscompiledFunctions =
630    DebugAMiscompilation(*this, TestOptimizer);
631
632  // Output a bunch of bitcode files for the user...
633  outs() << "Outputting reduced bitcode files which expose the problem:\n";
634  DenseMap<const Value*, Value*> ValueMap;
635  Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
636  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
637                                                 MiscompiledFunctions,
638                                                 ValueMap);
639
640  outs() << "  Non-optimized portion: ";
641  ToNotOptimize = swapProgramIn(ToNotOptimize);
642  EmitProgressBitcode("tonotoptimize", true);
643  setNewProgram(ToNotOptimize);   // Delete hacked module.
644
645  outs() << "  Portion that is input to optimizer: ";
646  ToOptimize = swapProgramIn(ToOptimize);
647  EmitProgressBitcode("tooptimize");
648  setNewProgram(ToOptimize);      // Delete hacked module.
649
650  return false;
651}
652
653/// CleanupAndPrepareModules - Get the specified modules ready for code
654/// generator testing.
655///
656static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
657                                     Module *Safe) {
658  // Clean up the modules, removing extra cruft that we don't need anymore...
659  Test = BD.performFinalCleanups(Test);
660
661  // If we are executing the JIT, we have several nasty issues to take care of.
662  if (!BD.isExecutingJIT()) return;
663
664  // First, if the main function is in the Safe module, we must add a stub to
665  // the Test module to call into it.  Thus, we create a new function `main'
666  // which just calls the old one.
667  if (Function *oldMain = Safe->getFunction("main"))
668    if (!oldMain->isDeclaration()) {
669      // Rename it
670      oldMain->setName("llvm_bugpoint_old_main");
671      // Create a NEW `main' function with same type in the test module.
672      Function *newMain = Function::Create(oldMain->getFunctionType(),
673                                           GlobalValue::ExternalLinkage,
674                                           "main", Test);
675      // Create an `oldmain' prototype in the test module, which will
676      // corresponds to the real main function in the same module.
677      Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
678                                                GlobalValue::ExternalLinkage,
679                                                oldMain->getName(), Test);
680      // Set up and remember the argument list for the main function.
681      std::vector<Value*> args;
682      for (Function::arg_iterator
683             I = newMain->arg_begin(), E = newMain->arg_end(),
684             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
685        I->setName(OI->getName());    // Copy argument names from oldMain
686        args.push_back(I);
687      }
688
689      // Call the old main function and return its result
690      BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
691      CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
692                                        "", BB);
693
694      // If the type of old function wasn't void, return value of call
695      ReturnInst::Create(Safe->getContext(), call, BB);
696    }
697
698  // The second nasty issue we must deal with in the JIT is that the Safe
699  // module cannot directly reference any functions defined in the test
700  // module.  Instead, we use a JIT API call to dynamically resolve the
701  // symbol.
702
703  // Add the resolver to the Safe module.
704  // Prototype: void *getPointerToNamedFunction(const char* Name)
705  Constant *resolverFunc =
706    Safe->getOrInsertFunction("getPointerToNamedFunction",
707                    Type::getInt8PtrTy(Safe->getContext()),
708                    Type::getInt8PtrTy(Safe->getContext()),
709                       (Type *)0);
710
711  // Use the function we just added to get addresses of functions we need.
712  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
713    if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
714        !F->isIntrinsic() /* ignore intrinsics */) {
715      Function *TestFn = Test->getFunction(F->getName());
716
717      // Don't forward functions which are external in the test module too.
718      if (TestFn && !TestFn->isDeclaration()) {
719        // 1. Add a string constant with its name to the global file
720        Constant *InitArray = ConstantArray::get(F->getContext(), F->getName());
721        GlobalVariable *funcName =
722          new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
723                             GlobalValue::InternalLinkage, InitArray,
724                             F->getName() + "_name");
725
726        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
727        // sbyte* so it matches the signature of the resolver function.
728
729        // GetElementPtr *funcName, ulong 0, ulong 0
730        std::vector<Constant*> GEPargs(2,
731                     Constant::getNullValue(Type::getInt32Ty(F->getContext())));
732        Value *GEP =
733                ConstantExpr::getGetElementPtr(funcName, &GEPargs[0], 2);
734        std::vector<Value*> ResolverArgs;
735        ResolverArgs.push_back(GEP);
736
737        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
738        // function that dynamically resolves the calls to F via our JIT API
739        if (!F->use_empty()) {
740          // Create a new global to hold the cached function pointer.
741          Constant *NullPtr = ConstantPointerNull::get(F->getType());
742          GlobalVariable *Cache =
743            new GlobalVariable(*F->getParent(), F->getType(),
744                               false, GlobalValue::InternalLinkage,
745                               NullPtr,F->getName()+".fpcache");
746
747          // Construct a new stub function that will re-route calls to F
748          const FunctionType *FuncTy = F->getFunctionType();
749          Function *FuncWrapper = Function::Create(FuncTy,
750                                                   GlobalValue::InternalLinkage,
751                                                   F->getName() + "_wrapper",
752                                                   F->getParent());
753          BasicBlock *EntryBB  = BasicBlock::Create(F->getContext(),
754                                                    "entry", FuncWrapper);
755          BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(),
756                                                    "usecache", FuncWrapper);
757          BasicBlock *LookupBB = BasicBlock::Create(F->getContext(),
758                                                    "lookupfp", FuncWrapper);
759
760          // Check to see if we already looked up the value.
761          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
762          Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
763                                       NullPtr, "isNull");
764          BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
765
766          // Resolve the call to function F via the JIT API:
767          //
768          // call resolver(GetElementPtr...)
769          CallInst *Resolver =
770            CallInst::Create(resolverFunc, ResolverArgs.begin(),
771                             ResolverArgs.end(), "resolver", LookupBB);
772
773          // Cast the result from the resolver to correctly-typed function.
774          CastInst *CastedResolver =
775            new BitCastInst(Resolver,
776                            PointerType::getUnqual(F->getFunctionType()),
777                            "resolverCast", LookupBB);
778
779          // Save the value in our cache.
780          new StoreInst(CastedResolver, Cache, LookupBB);
781          BranchInst::Create(DoCallBB, LookupBB);
782
783          PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
784                                             "fp", DoCallBB);
785          FuncPtr->addIncoming(CastedResolver, LookupBB);
786          FuncPtr->addIncoming(CachedVal, EntryBB);
787
788          // Save the argument list.
789          std::vector<Value*> Args;
790          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
791                 e = FuncWrapper->arg_end(); i != e; ++i)
792            Args.push_back(i);
793
794          // Pass on the arguments to the real function, return its result
795          if (F->getReturnType() == Type::getVoidTy(F->getContext())) {
796            CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
797            ReturnInst::Create(F->getContext(), DoCallBB);
798          } else {
799            CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
800                                              "retval", DoCallBB);
801            ReturnInst::Create(F->getContext(),Call, DoCallBB);
802          }
803
804          // Use the wrapper function instead of the old function
805          F->replaceAllUsesWith(FuncWrapper);
806        }
807      }
808    }
809  }
810
811  if (verifyModule(*Test) || verifyModule(*Safe)) {
812    errs() << "Bugpoint has a bug, which corrupted a module!!\n";
813    abort();
814  }
815}
816
817
818
819/// TestCodeGenerator - This is the predicate function used to check to see if
820/// the "Test" portion of the program is miscompiled by the code generator under
821/// test.  If so, return true.  In any case, both module arguments are deleted.
822///
823static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
824  CleanupAndPrepareModules(BD, Test, Safe);
825
826  sys::Path TestModuleBC("bugpoint.test.bc");
827  std::string ErrMsg;
828  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
829    errs() << BD.getToolName() << "Error making unique filename: "
830           << ErrMsg << "\n";
831    exit(1);
832  }
833  if (BD.writeProgramToFile(TestModuleBC.str(), Test)) {
834    errs() << "Error writing bitcode to `" << TestModuleBC.str()
835           << "'\nExiting.";
836    exit(1);
837  }
838  delete Test;
839
840  // Make the shared library
841  sys::Path SafeModuleBC("bugpoint.safe.bc");
842  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
843    errs() << BD.getToolName() << "Error making unique filename: "
844           << ErrMsg << "\n";
845    exit(1);
846  }
847
848  if (BD.writeProgramToFile(SafeModuleBC.str(), Safe)) {
849    errs() << "Error writing bitcode to `" << SafeModuleBC.str()
850           << "'\nExiting.";
851    exit(1);
852  }
853  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str());
854  delete Safe;
855
856  // Run the code generator on the `Test' code, loading the shared library.
857  // The function returns whether or not the new output differs from reference.
858  int Result = BD.diffProgram(TestModuleBC.str(), SharedObject, false);
859
860  if (Result)
861    errs() << ": still failing!\n";
862  else
863    errs() << ": didn't fail.\n";
864  TestModuleBC.eraseFromDisk();
865  SafeModuleBC.eraseFromDisk();
866  sys::Path(SharedObject).eraseFromDisk();
867
868  return Result;
869}
870
871
872/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
873///
874bool BugDriver::debugCodeGenerator() {
875  if ((void*)SafeInterpreter == (void*)Interpreter) {
876    std::string Result = executeProgramSafely("bugpoint.safe.out");
877    outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
878           << "the reference diff.  This may be due to a\n    front-end "
879           << "bug or a bug in the original program, but this can also "
880           << "happen if bugpoint isn't running the program with the "
881           << "right flags or input.\n    I left the result of executing "
882           << "the program with the \"safe\" backend in this file for "
883           << "you: '"
884           << Result << "'.\n";
885    return true;
886  }
887
888  DisambiguateGlobalSymbols(Program);
889
890  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
891
892  // Split the module into the two halves of the program we want.
893  DenseMap<const Value*, Value*> ValueMap;
894  Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
895  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
896
897  // Condition the modules
898  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
899
900  sys::Path TestModuleBC("bugpoint.test.bc");
901  std::string ErrMsg;
902  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
903    errs() << getToolName() << "Error making unique filename: "
904           << ErrMsg << "\n";
905    exit(1);
906  }
907
908  if (writeProgramToFile(TestModuleBC.str(), ToCodeGen)) {
909    errs() << "Error writing bitcode to `" << TestModuleBC.str()
910           << "'\nExiting.";
911    exit(1);
912  }
913  delete ToCodeGen;
914
915  // Make the shared library
916  sys::Path SafeModuleBC("bugpoint.safe.bc");
917  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
918    errs() << getToolName() << "Error making unique filename: "
919           << ErrMsg << "\n";
920    exit(1);
921  }
922
923  if (writeProgramToFile(SafeModuleBC.str(), ToNotCodeGen)) {
924    errs() << "Error writing bitcode to `" << SafeModuleBC.str()
925           << "'\nExiting.";
926    exit(1);
927  }
928  std::string SharedObject = compileSharedObject(SafeModuleBC.str());
929  delete ToNotCodeGen;
930
931  outs() << "You can reproduce the problem with the command line: \n";
932  if (isExecutingJIT()) {
933    outs() << "  lli -load " << SharedObject << " " << TestModuleBC.str();
934  } else {
935    outs() << "  llc -f " << TestModuleBC.str() << " -o " << TestModuleBC.str()
936           << ".s\n";
937    outs() << "  gcc " << SharedObject << " " << TestModuleBC.str()
938              << ".s -o " << TestModuleBC.str() << ".exe";
939#if defined (HAVE_LINK_R)
940    outs() << " -Wl,-R.";
941#endif
942    outs() << "\n";
943    outs() << "  " << TestModuleBC.str() << ".exe";
944  }
945  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
946    outs() << " " << InputArgv[i];
947  outs() << '\n';
948  outs() << "The shared object was created with:\n  llc -march=c "
949         << SafeModuleBC.str() << " -o temporary.c\n"
950         << "  gcc -xc temporary.c -O2 -o " << SharedObject;
951  if (TargetTriple.getArch() == Triple::sparc)
952    outs() << " -G";              // Compile a shared library, `-G' for Sparc
953  else
954    outs() << " -fPIC -shared";   // `-shared' for Linux/X86, maybe others
955
956  outs() << " -fno-strict-aliasing\n";
957
958  return false;
959}
960