MachODump.cpp revision f3ef5332fa3f4d5ec72c178a2b19dac363a19383
1//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachO-specific dumper for llvm-objdump.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm-objdump.h"
15#include "llvm-c/Disassembler.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/Config/config.h"
21#include "llvm/DebugInfo/DIContext.h"
22#include "llvm/DebugInfo/DWARF/DWARFContext.h"
23#include "llvm/MC/MCAsmInfo.h"
24#include "llvm/MC/MCContext.h"
25#include "llvm/MC/MCDisassembler.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCInstPrinter.h"
28#include "llvm/MC/MCInstrDesc.h"
29#include "llvm/MC/MCInstrInfo.h"
30#include "llvm/MC/MCRegisterInfo.h"
31#include "llvm/MC/MCSubtargetInfo.h"
32#include "llvm/Object/MachO.h"
33#include "llvm/Object/MachOUniversal.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/Format.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/GraphWriter.h"
41#include "llvm/Support/LEB128.h"
42#include "llvm/Support/MachO.h"
43#include "llvm/Support/MemoryBuffer.h"
44#include "llvm/Support/TargetRegistry.h"
45#include "llvm/Support/TargetSelect.h"
46#include "llvm/Support/raw_ostream.h"
47#include <algorithm>
48#include <cstring>
49#include <system_error>
50
51#if HAVE_CXXABI_H
52#include <cxxabi.h>
53#endif
54
55using namespace llvm;
56using namespace object;
57
58static cl::opt<bool>
59    UseDbg("g",
60           cl::desc("Print line information from debug info if available"));
61
62static cl::opt<std::string> DSYMFile("dsym",
63                                     cl::desc("Use .dSYM file for debug info"));
64
65static cl::opt<bool> FullLeadingAddr("full-leading-addr",
66                                     cl::desc("Print full leading address"));
67
68static cl::opt<bool> NoLeadingAddr("no-leading-addr",
69                                   cl::desc("Print no leading address"));
70
71cl::opt<bool> llvm::UniversalHeaders("universal-headers",
72                                     cl::desc("Print Mach-O universal headers "
73                                              "(requires -macho)"));
74
75cl::opt<bool>
76    llvm::ArchiveHeaders("archive-headers",
77                         cl::desc("Print archive headers for Mach-O archives "
78                                  "(requires -macho)"));
79
80cl::opt<bool>
81    ArchiveMemberOffsets("archive-member-offsets",
82                         cl::desc("Print the offset to each archive member for "
83                                  "Mach-O archives (requires -macho and "
84                                  "-archive-headers)"));
85
86cl::opt<bool>
87    llvm::IndirectSymbols("indirect-symbols",
88                          cl::desc("Print indirect symbol table for Mach-O "
89                                   "objects (requires -macho)"));
90
91cl::opt<bool>
92    llvm::DataInCode("data-in-code",
93                     cl::desc("Print the data in code table for Mach-O objects "
94                              "(requires -macho)"));
95
96cl::opt<bool>
97    llvm::LinkOptHints("link-opt-hints",
98                       cl::desc("Print the linker optimization hints for "
99                                "Mach-O objects (requires -macho)"));
100
101cl::opt<bool>
102    llvm::InfoPlist("info-plist",
103                    cl::desc("Print the info plist section as strings for "
104                             "Mach-O objects (requires -macho)"));
105
106cl::opt<bool>
107    llvm::DylibsUsed("dylibs-used",
108                     cl::desc("Print the shared libraries used for linked "
109                              "Mach-O files (requires -macho)"));
110
111cl::opt<bool>
112    llvm::DylibId("dylib-id",
113                  cl::desc("Print the shared library's id for the dylib Mach-O "
114                           "file (requires -macho)"));
115
116cl::opt<bool>
117    llvm::NonVerbose("non-verbose",
118                     cl::desc("Print the info for Mach-O objects in "
119                              "non-verbose or numeric form (requires -macho)"));
120
121cl::opt<bool>
122    llvm::ObjcMetaData("objc-meta-data",
123                       cl::desc("Print the Objective-C runtime meta data for "
124                                "Mach-O files (requires -macho)"));
125
126cl::opt<std::string> llvm::DisSymName(
127    "dis-symname",
128    cl::desc("disassemble just this symbol's instructions (requires -macho"));
129
130static cl::opt<bool> NoSymbolicOperands(
131    "no-symbolic-operands",
132    cl::desc("do not symbolic operands when disassembling (requires -macho)"));
133
134static cl::list<std::string>
135    ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
136              cl::ZeroOrMore);
137
138bool ArchAll = false;
139
140static std::string ThumbTripleName;
141
142static const Target *GetTarget(const MachOObjectFile *MachOObj,
143                               const char **McpuDefault,
144                               const Target **ThumbTarget) {
145  // Figure out the target triple.
146  if (TripleName.empty()) {
147    llvm::Triple TT("unknown-unknown-unknown");
148    llvm::Triple ThumbTriple = Triple();
149    TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
150    TripleName = TT.str();
151    ThumbTripleName = ThumbTriple.str();
152  }
153
154  // Get the target specific parser.
155  std::string Error;
156  const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
157  if (TheTarget && ThumbTripleName.empty())
158    return TheTarget;
159
160  *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
161  if (*ThumbTarget)
162    return TheTarget;
163
164  errs() << "llvm-objdump: error: unable to get target for '";
165  if (!TheTarget)
166    errs() << TripleName;
167  else
168    errs() << ThumbTripleName;
169  errs() << "', see --version and --triple.\n";
170  return nullptr;
171}
172
173struct SymbolSorter {
174  bool operator()(const SymbolRef &A, const SymbolRef &B) {
175    uint64_t AAddr = (A.getType() != SymbolRef::ST_Function) ? 0 : A.getValue();
176    uint64_t BAddr = (B.getType() != SymbolRef::ST_Function) ? 0 : B.getValue();
177    return AAddr < BAddr;
178  }
179};
180
181// Types for the storted data in code table that is built before disassembly
182// and the predicate function to sort them.
183typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
184typedef std::vector<DiceTableEntry> DiceTable;
185typedef DiceTable::iterator dice_table_iterator;
186
187// This is used to search for a data in code table entry for the PC being
188// disassembled.  The j parameter has the PC in j.first.  A single data in code
189// table entry can cover many bytes for each of its Kind's.  So if the offset,
190// aka the i.first value, of the data in code table entry plus its Length
191// covers the PC being searched for this will return true.  If not it will
192// return false.
193static bool compareDiceTableEntries(const DiceTableEntry &i,
194                                    const DiceTableEntry &j) {
195  uint16_t Length;
196  i.second.getLength(Length);
197
198  return j.first >= i.first && j.first < i.first + Length;
199}
200
201static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
202                               unsigned short Kind) {
203  uint32_t Value, Size = 1;
204
205  switch (Kind) {
206  default:
207  case MachO::DICE_KIND_DATA:
208    if (Length >= 4) {
209      if (!NoShowRawInsn)
210        dumpBytes(makeArrayRef(bytes, 4), outs());
211      Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
212      outs() << "\t.long " << Value;
213      Size = 4;
214    } else if (Length >= 2) {
215      if (!NoShowRawInsn)
216        dumpBytes(makeArrayRef(bytes, 2), outs());
217      Value = bytes[1] << 8 | bytes[0];
218      outs() << "\t.short " << Value;
219      Size = 2;
220    } else {
221      if (!NoShowRawInsn)
222        dumpBytes(makeArrayRef(bytes, 2), outs());
223      Value = bytes[0];
224      outs() << "\t.byte " << Value;
225      Size = 1;
226    }
227    if (Kind == MachO::DICE_KIND_DATA)
228      outs() << "\t@ KIND_DATA\n";
229    else
230      outs() << "\t@ data in code kind = " << Kind << "\n";
231    break;
232  case MachO::DICE_KIND_JUMP_TABLE8:
233    if (!NoShowRawInsn)
234      dumpBytes(makeArrayRef(bytes, 1), outs());
235    Value = bytes[0];
236    outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
237    Size = 1;
238    break;
239  case MachO::DICE_KIND_JUMP_TABLE16:
240    if (!NoShowRawInsn)
241      dumpBytes(makeArrayRef(bytes, 2), outs());
242    Value = bytes[1] << 8 | bytes[0];
243    outs() << "\t.short " << format("%5u", Value & 0xffff)
244           << "\t@ KIND_JUMP_TABLE16\n";
245    Size = 2;
246    break;
247  case MachO::DICE_KIND_JUMP_TABLE32:
248  case MachO::DICE_KIND_ABS_JUMP_TABLE32:
249    if (!NoShowRawInsn)
250      dumpBytes(makeArrayRef(bytes, 4), outs());
251    Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
252    outs() << "\t.long " << Value;
253    if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
254      outs() << "\t@ KIND_JUMP_TABLE32\n";
255    else
256      outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
257    Size = 4;
258    break;
259  }
260  return Size;
261}
262
263static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
264                                  std::vector<SectionRef> &Sections,
265                                  std::vector<SymbolRef> &Symbols,
266                                  SmallVectorImpl<uint64_t> &FoundFns,
267                                  uint64_t &BaseSegmentAddress) {
268  for (const SymbolRef &Symbol : MachOObj->symbols()) {
269    ErrorOr<StringRef> SymName = Symbol.getName();
270    if (std::error_code EC = SymName.getError())
271      report_fatal_error(EC.message());
272    if (!SymName->startswith("ltmp"))
273      Symbols.push_back(Symbol);
274  }
275
276  for (const SectionRef &Section : MachOObj->sections()) {
277    StringRef SectName;
278    Section.getName(SectName);
279    Sections.push_back(Section);
280  }
281
282  bool BaseSegmentAddressSet = false;
283  for (const auto &Command : MachOObj->load_commands()) {
284    if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
285      // We found a function starts segment, parse the addresses for later
286      // consumption.
287      MachO::linkedit_data_command LLC =
288          MachOObj->getLinkeditDataLoadCommand(Command);
289
290      MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
291    } else if (Command.C.cmd == MachO::LC_SEGMENT) {
292      MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
293      StringRef SegName = SLC.segname;
294      if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
295        BaseSegmentAddressSet = true;
296        BaseSegmentAddress = SLC.vmaddr;
297      }
298    }
299  }
300}
301
302static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
303                                     uint32_t n, uint32_t count,
304                                     uint32_t stride, uint64_t addr) {
305  MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
306  uint32_t nindirectsyms = Dysymtab.nindirectsyms;
307  if (n > nindirectsyms)
308    outs() << " (entries start past the end of the indirect symbol "
309              "table) (reserved1 field greater than the table size)";
310  else if (n + count > nindirectsyms)
311    outs() << " (entries extends past the end of the indirect symbol "
312              "table)";
313  outs() << "\n";
314  uint32_t cputype = O->getHeader().cputype;
315  if (cputype & MachO::CPU_ARCH_ABI64)
316    outs() << "address            index";
317  else
318    outs() << "address    index";
319  if (verbose)
320    outs() << " name\n";
321  else
322    outs() << "\n";
323  for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
324    if (cputype & MachO::CPU_ARCH_ABI64)
325      outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
326    else
327      outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
328    MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
329    uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
330    if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
331      outs() << "LOCAL\n";
332      continue;
333    }
334    if (indirect_symbol ==
335        (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
336      outs() << "LOCAL ABSOLUTE\n";
337      continue;
338    }
339    if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
340      outs() << "ABSOLUTE\n";
341      continue;
342    }
343    outs() << format("%5u ", indirect_symbol);
344    if (verbose) {
345      MachO::symtab_command Symtab = O->getSymtabLoadCommand();
346      if (indirect_symbol < Symtab.nsyms) {
347        symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
348        SymbolRef Symbol = *Sym;
349        ErrorOr<StringRef> SymName = Symbol.getName();
350        if (std::error_code EC = SymName.getError())
351          report_fatal_error(EC.message());
352        outs() << *SymName;
353      } else {
354        outs() << "?";
355      }
356    }
357    outs() << "\n";
358  }
359}
360
361static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
362  for (const auto &Load : O->load_commands()) {
363    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
364      MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
365      for (unsigned J = 0; J < Seg.nsects; ++J) {
366        MachO::section_64 Sec = O->getSection64(Load, J);
367        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
368        if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
369            section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
370            section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
371            section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
372            section_type == MachO::S_SYMBOL_STUBS) {
373          uint32_t stride;
374          if (section_type == MachO::S_SYMBOL_STUBS)
375            stride = Sec.reserved2;
376          else
377            stride = 8;
378          if (stride == 0) {
379            outs() << "Can't print indirect symbols for (" << Sec.segname << ","
380                   << Sec.sectname << ") "
381                   << "(size of stubs in reserved2 field is zero)\n";
382            continue;
383          }
384          uint32_t count = Sec.size / stride;
385          outs() << "Indirect symbols for (" << Sec.segname << ","
386                 << Sec.sectname << ") " << count << " entries";
387          uint32_t n = Sec.reserved1;
388          PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
389        }
390      }
391    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
392      MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
393      for (unsigned J = 0; J < Seg.nsects; ++J) {
394        MachO::section Sec = O->getSection(Load, J);
395        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
396        if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
397            section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
398            section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
399            section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
400            section_type == MachO::S_SYMBOL_STUBS) {
401          uint32_t stride;
402          if (section_type == MachO::S_SYMBOL_STUBS)
403            stride = Sec.reserved2;
404          else
405            stride = 4;
406          if (stride == 0) {
407            outs() << "Can't print indirect symbols for (" << Sec.segname << ","
408                   << Sec.sectname << ") "
409                   << "(size of stubs in reserved2 field is zero)\n";
410            continue;
411          }
412          uint32_t count = Sec.size / stride;
413          outs() << "Indirect symbols for (" << Sec.segname << ","
414                 << Sec.sectname << ") " << count << " entries";
415          uint32_t n = Sec.reserved1;
416          PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
417        }
418      }
419    }
420  }
421}
422
423static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
424  MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
425  uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
426  outs() << "Data in code table (" << nentries << " entries)\n";
427  outs() << "offset     length kind\n";
428  for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
429       ++DI) {
430    uint32_t Offset;
431    DI->getOffset(Offset);
432    outs() << format("0x%08" PRIx32, Offset) << " ";
433    uint16_t Length;
434    DI->getLength(Length);
435    outs() << format("%6u", Length) << " ";
436    uint16_t Kind;
437    DI->getKind(Kind);
438    if (verbose) {
439      switch (Kind) {
440      case MachO::DICE_KIND_DATA:
441        outs() << "DATA";
442        break;
443      case MachO::DICE_KIND_JUMP_TABLE8:
444        outs() << "JUMP_TABLE8";
445        break;
446      case MachO::DICE_KIND_JUMP_TABLE16:
447        outs() << "JUMP_TABLE16";
448        break;
449      case MachO::DICE_KIND_JUMP_TABLE32:
450        outs() << "JUMP_TABLE32";
451        break;
452      case MachO::DICE_KIND_ABS_JUMP_TABLE32:
453        outs() << "ABS_JUMP_TABLE32";
454        break;
455      default:
456        outs() << format("0x%04" PRIx32, Kind);
457        break;
458      }
459    } else
460      outs() << format("0x%04" PRIx32, Kind);
461    outs() << "\n";
462  }
463}
464
465static void PrintLinkOptHints(MachOObjectFile *O) {
466  MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
467  const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
468  uint32_t nloh = LohLC.datasize;
469  outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
470  for (uint32_t i = 0; i < nloh;) {
471    unsigned n;
472    uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
473    i += n;
474    outs() << "    identifier " << identifier << " ";
475    if (i >= nloh)
476      return;
477    switch (identifier) {
478    case 1:
479      outs() << "AdrpAdrp\n";
480      break;
481    case 2:
482      outs() << "AdrpLdr\n";
483      break;
484    case 3:
485      outs() << "AdrpAddLdr\n";
486      break;
487    case 4:
488      outs() << "AdrpLdrGotLdr\n";
489      break;
490    case 5:
491      outs() << "AdrpAddStr\n";
492      break;
493    case 6:
494      outs() << "AdrpLdrGotStr\n";
495      break;
496    case 7:
497      outs() << "AdrpAdd\n";
498      break;
499    case 8:
500      outs() << "AdrpLdrGot\n";
501      break;
502    default:
503      outs() << "Unknown identifier value\n";
504      break;
505    }
506    uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
507    i += n;
508    outs() << "    narguments " << narguments << "\n";
509    if (i >= nloh)
510      return;
511
512    for (uint32_t j = 0; j < narguments; j++) {
513      uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
514      i += n;
515      outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
516      if (i >= nloh)
517        return;
518    }
519  }
520}
521
522static void PrintDylibs(MachOObjectFile *O, bool JustId) {
523  unsigned Index = 0;
524  for (const auto &Load : O->load_commands()) {
525    if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
526        (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
527                     Load.C.cmd == MachO::LC_LOAD_DYLIB ||
528                     Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
529                     Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
530                     Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
531                     Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
532      MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
533      if (dl.dylib.name < dl.cmdsize) {
534        const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
535        if (JustId)
536          outs() << p << "\n";
537        else {
538          outs() << "\t" << p;
539          outs() << " (compatibility version "
540                 << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
541                 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
542                 << (dl.dylib.compatibility_version & 0xff) << ",";
543          outs() << " current version "
544                 << ((dl.dylib.current_version >> 16) & 0xffff) << "."
545                 << ((dl.dylib.current_version >> 8) & 0xff) << "."
546                 << (dl.dylib.current_version & 0xff) << ")\n";
547        }
548      } else {
549        outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
550        if (Load.C.cmd == MachO::LC_ID_DYLIB)
551          outs() << "LC_ID_DYLIB ";
552        else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
553          outs() << "LC_LOAD_DYLIB ";
554        else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
555          outs() << "LC_LOAD_WEAK_DYLIB ";
556        else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
557          outs() << "LC_LAZY_LOAD_DYLIB ";
558        else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
559          outs() << "LC_REEXPORT_DYLIB ";
560        else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
561          outs() << "LC_LOAD_UPWARD_DYLIB ";
562        else
563          outs() << "LC_??? ";
564        outs() << "command " << Index++ << "\n";
565      }
566    }
567  }
568}
569
570typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
571
572static void CreateSymbolAddressMap(MachOObjectFile *O,
573                                   SymbolAddressMap *AddrMap) {
574  // Create a map of symbol addresses to symbol names.
575  for (const SymbolRef &Symbol : O->symbols()) {
576    SymbolRef::Type ST = Symbol.getType();
577    if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
578        ST == SymbolRef::ST_Other) {
579      uint64_t Address = Symbol.getValue();
580      ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
581      if (std::error_code EC = SymNameOrErr.getError())
582        report_fatal_error(EC.message());
583      StringRef SymName = *SymNameOrErr;
584      if (!SymName.startswith(".objc"))
585        (*AddrMap)[Address] = SymName;
586    }
587  }
588}
589
590// GuessSymbolName is passed the address of what might be a symbol and a
591// pointer to the SymbolAddressMap.  It returns the name of a symbol
592// with that address or nullptr if no symbol is found with that address.
593static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
594  const char *SymbolName = nullptr;
595  // A DenseMap can't lookup up some values.
596  if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
597    StringRef name = AddrMap->lookup(value);
598    if (!name.empty())
599      SymbolName = name.data();
600  }
601  return SymbolName;
602}
603
604static void DumpCstringChar(const char c) {
605  char p[2];
606  p[0] = c;
607  p[1] = '\0';
608  outs().write_escaped(p);
609}
610
611static void DumpCstringSection(MachOObjectFile *O, const char *sect,
612                               uint32_t sect_size, uint64_t sect_addr,
613                               bool print_addresses) {
614  for (uint32_t i = 0; i < sect_size; i++) {
615    if (print_addresses) {
616      if (O->is64Bit())
617        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
618      else
619        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
620    }
621    for (; i < sect_size && sect[i] != '\0'; i++)
622      DumpCstringChar(sect[i]);
623    if (i < sect_size && sect[i] == '\0')
624      outs() << "\n";
625  }
626}
627
628static void DumpLiteral4(uint32_t l, float f) {
629  outs() << format("0x%08" PRIx32, l);
630  if ((l & 0x7f800000) != 0x7f800000)
631    outs() << format(" (%.16e)\n", f);
632  else {
633    if (l == 0x7f800000)
634      outs() << " (+Infinity)\n";
635    else if (l == 0xff800000)
636      outs() << " (-Infinity)\n";
637    else if ((l & 0x00400000) == 0x00400000)
638      outs() << " (non-signaling Not-a-Number)\n";
639    else
640      outs() << " (signaling Not-a-Number)\n";
641  }
642}
643
644static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
645                                uint32_t sect_size, uint64_t sect_addr,
646                                bool print_addresses) {
647  for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
648    if (print_addresses) {
649      if (O->is64Bit())
650        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
651      else
652        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
653    }
654    float f;
655    memcpy(&f, sect + i, sizeof(float));
656    if (O->isLittleEndian() != sys::IsLittleEndianHost)
657      sys::swapByteOrder(f);
658    uint32_t l;
659    memcpy(&l, sect + i, sizeof(uint32_t));
660    if (O->isLittleEndian() != sys::IsLittleEndianHost)
661      sys::swapByteOrder(l);
662    DumpLiteral4(l, f);
663  }
664}
665
666static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
667                         double d) {
668  outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
669  uint32_t Hi, Lo;
670  Hi = (O->isLittleEndian()) ? l1 : l0;
671  Lo = (O->isLittleEndian()) ? l0 : l1;
672
673  // Hi is the high word, so this is equivalent to if(isfinite(d))
674  if ((Hi & 0x7ff00000) != 0x7ff00000)
675    outs() << format(" (%.16e)\n", d);
676  else {
677    if (Hi == 0x7ff00000 && Lo == 0)
678      outs() << " (+Infinity)\n";
679    else if (Hi == 0xfff00000 && Lo == 0)
680      outs() << " (-Infinity)\n";
681    else if ((Hi & 0x00080000) == 0x00080000)
682      outs() << " (non-signaling Not-a-Number)\n";
683    else
684      outs() << " (signaling Not-a-Number)\n";
685  }
686}
687
688static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
689                                uint32_t sect_size, uint64_t sect_addr,
690                                bool print_addresses) {
691  for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
692    if (print_addresses) {
693      if (O->is64Bit())
694        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
695      else
696        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
697    }
698    double d;
699    memcpy(&d, sect + i, sizeof(double));
700    if (O->isLittleEndian() != sys::IsLittleEndianHost)
701      sys::swapByteOrder(d);
702    uint32_t l0, l1;
703    memcpy(&l0, sect + i, sizeof(uint32_t));
704    memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
705    if (O->isLittleEndian() != sys::IsLittleEndianHost) {
706      sys::swapByteOrder(l0);
707      sys::swapByteOrder(l1);
708    }
709    DumpLiteral8(O, l0, l1, d);
710  }
711}
712
713static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
714  outs() << format("0x%08" PRIx32, l0) << " ";
715  outs() << format("0x%08" PRIx32, l1) << " ";
716  outs() << format("0x%08" PRIx32, l2) << " ";
717  outs() << format("0x%08" PRIx32, l3) << "\n";
718}
719
720static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
721                                 uint32_t sect_size, uint64_t sect_addr,
722                                 bool print_addresses) {
723  for (uint32_t i = 0; i < sect_size; i += 16) {
724    if (print_addresses) {
725      if (O->is64Bit())
726        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
727      else
728        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
729    }
730    uint32_t l0, l1, l2, l3;
731    memcpy(&l0, sect + i, sizeof(uint32_t));
732    memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
733    memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
734    memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
735    if (O->isLittleEndian() != sys::IsLittleEndianHost) {
736      sys::swapByteOrder(l0);
737      sys::swapByteOrder(l1);
738      sys::swapByteOrder(l2);
739      sys::swapByteOrder(l3);
740    }
741    DumpLiteral16(l0, l1, l2, l3);
742  }
743}
744
745static void DumpLiteralPointerSection(MachOObjectFile *O,
746                                      const SectionRef &Section,
747                                      const char *sect, uint32_t sect_size,
748                                      uint64_t sect_addr,
749                                      bool print_addresses) {
750  // Collect the literal sections in this Mach-O file.
751  std::vector<SectionRef> LiteralSections;
752  for (const SectionRef &Section : O->sections()) {
753    DataRefImpl Ref = Section.getRawDataRefImpl();
754    uint32_t section_type;
755    if (O->is64Bit()) {
756      const MachO::section_64 Sec = O->getSection64(Ref);
757      section_type = Sec.flags & MachO::SECTION_TYPE;
758    } else {
759      const MachO::section Sec = O->getSection(Ref);
760      section_type = Sec.flags & MachO::SECTION_TYPE;
761    }
762    if (section_type == MachO::S_CSTRING_LITERALS ||
763        section_type == MachO::S_4BYTE_LITERALS ||
764        section_type == MachO::S_8BYTE_LITERALS ||
765        section_type == MachO::S_16BYTE_LITERALS)
766      LiteralSections.push_back(Section);
767  }
768
769  // Set the size of the literal pointer.
770  uint32_t lp_size = O->is64Bit() ? 8 : 4;
771
772  // Collect the external relocation symbols for the literal pointers.
773  std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
774  for (const RelocationRef &Reloc : Section.relocations()) {
775    DataRefImpl Rel;
776    MachO::any_relocation_info RE;
777    bool isExtern = false;
778    Rel = Reloc.getRawDataRefImpl();
779    RE = O->getRelocation(Rel);
780    isExtern = O->getPlainRelocationExternal(RE);
781    if (isExtern) {
782      uint64_t RelocOffset = Reloc.getOffset();
783      symbol_iterator RelocSym = Reloc.getSymbol();
784      Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
785    }
786  }
787  array_pod_sort(Relocs.begin(), Relocs.end());
788
789  // Dump each literal pointer.
790  for (uint32_t i = 0; i < sect_size; i += lp_size) {
791    if (print_addresses) {
792      if (O->is64Bit())
793        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
794      else
795        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
796    }
797    uint64_t lp;
798    if (O->is64Bit()) {
799      memcpy(&lp, sect + i, sizeof(uint64_t));
800      if (O->isLittleEndian() != sys::IsLittleEndianHost)
801        sys::swapByteOrder(lp);
802    } else {
803      uint32_t li;
804      memcpy(&li, sect + i, sizeof(uint32_t));
805      if (O->isLittleEndian() != sys::IsLittleEndianHost)
806        sys::swapByteOrder(li);
807      lp = li;
808    }
809
810    // First look for an external relocation entry for this literal pointer.
811    auto Reloc = std::find_if(
812        Relocs.begin(), Relocs.end(),
813        [&](const std::pair<uint64_t, SymbolRef> &P) { return P.first == i; });
814    if (Reloc != Relocs.end()) {
815      symbol_iterator RelocSym = Reloc->second;
816      ErrorOr<StringRef> SymName = RelocSym->getName();
817      if (std::error_code EC = SymName.getError())
818        report_fatal_error(EC.message());
819      outs() << "external relocation entry for symbol:" << *SymName << "\n";
820      continue;
821    }
822
823    // For local references see what the section the literal pointer points to.
824    auto Sect = std::find_if(LiteralSections.begin(), LiteralSections.end(),
825                             [&](const SectionRef &R) {
826                               return lp >= R.getAddress() &&
827                                      lp < R.getAddress() + R.getSize();
828                             });
829    if (Sect == LiteralSections.end()) {
830      outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
831      continue;
832    }
833
834    uint64_t SectAddress = Sect->getAddress();
835    uint64_t SectSize = Sect->getSize();
836
837    StringRef SectName;
838    Sect->getName(SectName);
839    DataRefImpl Ref = Sect->getRawDataRefImpl();
840    StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
841    outs() << SegmentName << ":" << SectName << ":";
842
843    uint32_t section_type;
844    if (O->is64Bit()) {
845      const MachO::section_64 Sec = O->getSection64(Ref);
846      section_type = Sec.flags & MachO::SECTION_TYPE;
847    } else {
848      const MachO::section Sec = O->getSection(Ref);
849      section_type = Sec.flags & MachO::SECTION_TYPE;
850    }
851
852    StringRef BytesStr;
853    Sect->getContents(BytesStr);
854    const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
855
856    switch (section_type) {
857    case MachO::S_CSTRING_LITERALS:
858      for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
859           i++) {
860        DumpCstringChar(Contents[i]);
861      }
862      outs() << "\n";
863      break;
864    case MachO::S_4BYTE_LITERALS:
865      float f;
866      memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
867      uint32_t l;
868      memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
869      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
870        sys::swapByteOrder(f);
871        sys::swapByteOrder(l);
872      }
873      DumpLiteral4(l, f);
874      break;
875    case MachO::S_8BYTE_LITERALS: {
876      double d;
877      memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
878      uint32_t l0, l1;
879      memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
880      memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
881             sizeof(uint32_t));
882      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
883        sys::swapByteOrder(f);
884        sys::swapByteOrder(l0);
885        sys::swapByteOrder(l1);
886      }
887      DumpLiteral8(O, l0, l1, d);
888      break;
889    }
890    case MachO::S_16BYTE_LITERALS: {
891      uint32_t l0, l1, l2, l3;
892      memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
893      memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
894             sizeof(uint32_t));
895      memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
896             sizeof(uint32_t));
897      memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
898             sizeof(uint32_t));
899      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
900        sys::swapByteOrder(l0);
901        sys::swapByteOrder(l1);
902        sys::swapByteOrder(l2);
903        sys::swapByteOrder(l3);
904      }
905      DumpLiteral16(l0, l1, l2, l3);
906      break;
907    }
908    }
909  }
910}
911
912static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
913                                       uint32_t sect_size, uint64_t sect_addr,
914                                       SymbolAddressMap *AddrMap,
915                                       bool verbose) {
916  uint32_t stride;
917  stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
918  for (uint32_t i = 0; i < sect_size; i += stride) {
919    const char *SymbolName = nullptr;
920    if (O->is64Bit()) {
921      outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
922      uint64_t pointer_value;
923      memcpy(&pointer_value, sect + i, stride);
924      if (O->isLittleEndian() != sys::IsLittleEndianHost)
925        sys::swapByteOrder(pointer_value);
926      outs() << format("0x%016" PRIx64, pointer_value);
927      if (verbose)
928        SymbolName = GuessSymbolName(pointer_value, AddrMap);
929    } else {
930      outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
931      uint32_t pointer_value;
932      memcpy(&pointer_value, sect + i, stride);
933      if (O->isLittleEndian() != sys::IsLittleEndianHost)
934        sys::swapByteOrder(pointer_value);
935      outs() << format("0x%08" PRIx32, pointer_value);
936      if (verbose)
937        SymbolName = GuessSymbolName(pointer_value, AddrMap);
938    }
939    if (SymbolName)
940      outs() << " " << SymbolName;
941    outs() << "\n";
942  }
943}
944
945static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
946                                   uint32_t size, uint64_t addr) {
947  uint32_t cputype = O->getHeader().cputype;
948  if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
949    uint32_t j;
950    for (uint32_t i = 0; i < size; i += j, addr += j) {
951      if (O->is64Bit())
952        outs() << format("%016" PRIx64, addr) << "\t";
953      else
954        outs() << format("%08" PRIx64, addr) << "\t";
955      for (j = 0; j < 16 && i + j < size; j++) {
956        uint8_t byte_word = *(sect + i + j);
957        outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
958      }
959      outs() << "\n";
960    }
961  } else {
962    uint32_t j;
963    for (uint32_t i = 0; i < size; i += j, addr += j) {
964      if (O->is64Bit())
965        outs() << format("%016" PRIx64, addr) << "\t";
966      else
967        outs() << format("%08" PRIx64, sect) << "\t";
968      for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
969           j += sizeof(int32_t)) {
970        if (i + j + sizeof(int32_t) < size) {
971          uint32_t long_word;
972          memcpy(&long_word, sect + i + j, sizeof(int32_t));
973          if (O->isLittleEndian() != sys::IsLittleEndianHost)
974            sys::swapByteOrder(long_word);
975          outs() << format("%08" PRIx32, long_word) << " ";
976        } else {
977          for (uint32_t k = 0; i + j + k < size; k++) {
978            uint8_t byte_word = *(sect + i + j);
979            outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
980          }
981        }
982      }
983      outs() << "\n";
984    }
985  }
986}
987
988static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
989                             StringRef DisSegName, StringRef DisSectName);
990static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
991                                uint32_t size, uint32_t addr);
992
993static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
994                                bool verbose) {
995  SymbolAddressMap AddrMap;
996  if (verbose)
997    CreateSymbolAddressMap(O, &AddrMap);
998
999  for (unsigned i = 0; i < FilterSections.size(); ++i) {
1000    StringRef DumpSection = FilterSections[i];
1001    std::pair<StringRef, StringRef> DumpSegSectName;
1002    DumpSegSectName = DumpSection.split(',');
1003    StringRef DumpSegName, DumpSectName;
1004    if (DumpSegSectName.second.size()) {
1005      DumpSegName = DumpSegSectName.first;
1006      DumpSectName = DumpSegSectName.second;
1007    } else {
1008      DumpSegName = "";
1009      DumpSectName = DumpSegSectName.first;
1010    }
1011    for (const SectionRef &Section : O->sections()) {
1012      StringRef SectName;
1013      Section.getName(SectName);
1014      DataRefImpl Ref = Section.getRawDataRefImpl();
1015      StringRef SegName = O->getSectionFinalSegmentName(Ref);
1016      if ((DumpSegName.empty() || SegName == DumpSegName) &&
1017          (SectName == DumpSectName)) {
1018
1019        uint32_t section_flags;
1020        if (O->is64Bit()) {
1021          const MachO::section_64 Sec = O->getSection64(Ref);
1022          section_flags = Sec.flags;
1023
1024        } else {
1025          const MachO::section Sec = O->getSection(Ref);
1026          section_flags = Sec.flags;
1027        }
1028        uint32_t section_type = section_flags & MachO::SECTION_TYPE;
1029
1030        StringRef BytesStr;
1031        Section.getContents(BytesStr);
1032        const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1033        uint32_t sect_size = BytesStr.size();
1034        uint64_t sect_addr = Section.getAddress();
1035
1036        outs() << "Contents of (" << SegName << "," << SectName
1037               << ") section\n";
1038
1039        if (verbose) {
1040          if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
1041              (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
1042            DisassembleMachO(Filename, O, SegName, SectName);
1043            continue;
1044          }
1045          if (SegName == "__TEXT" && SectName == "__info_plist") {
1046            outs() << sect;
1047            continue;
1048          }
1049          if (SegName == "__OBJC" && SectName == "__protocol") {
1050            DumpProtocolSection(O, sect, sect_size, sect_addr);
1051            continue;
1052          }
1053          switch (section_type) {
1054          case MachO::S_REGULAR:
1055            DumpRawSectionContents(O, sect, sect_size, sect_addr);
1056            break;
1057          case MachO::S_ZEROFILL:
1058            outs() << "zerofill section and has no contents in the file\n";
1059            break;
1060          case MachO::S_CSTRING_LITERALS:
1061            DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1062            break;
1063          case MachO::S_4BYTE_LITERALS:
1064            DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1065            break;
1066          case MachO::S_8BYTE_LITERALS:
1067            DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1068            break;
1069          case MachO::S_16BYTE_LITERALS:
1070            DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1071            break;
1072          case MachO::S_LITERAL_POINTERS:
1073            DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
1074                                      !NoLeadingAddr);
1075            break;
1076          case MachO::S_MOD_INIT_FUNC_POINTERS:
1077          case MachO::S_MOD_TERM_FUNC_POINTERS:
1078            DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
1079                                       verbose);
1080            break;
1081          default:
1082            outs() << "Unknown section type ("
1083                   << format("0x%08" PRIx32, section_type) << ")\n";
1084            DumpRawSectionContents(O, sect, sect_size, sect_addr);
1085            break;
1086          }
1087        } else {
1088          if (section_type == MachO::S_ZEROFILL)
1089            outs() << "zerofill section and has no contents in the file\n";
1090          else
1091            DumpRawSectionContents(O, sect, sect_size, sect_addr);
1092        }
1093      }
1094    }
1095  }
1096}
1097
1098static void DumpInfoPlistSectionContents(StringRef Filename,
1099                                         MachOObjectFile *O) {
1100  for (const SectionRef &Section : O->sections()) {
1101    StringRef SectName;
1102    Section.getName(SectName);
1103    DataRefImpl Ref = Section.getRawDataRefImpl();
1104    StringRef SegName = O->getSectionFinalSegmentName(Ref);
1105    if (SegName == "__TEXT" && SectName == "__info_plist") {
1106      outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
1107      StringRef BytesStr;
1108      Section.getContents(BytesStr);
1109      const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1110      outs() << sect;
1111      return;
1112    }
1113  }
1114}
1115
1116// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
1117// and if it is and there is a list of architecture flags is specified then
1118// check to make sure this Mach-O file is one of those architectures or all
1119// architectures were specified.  If not then an error is generated and this
1120// routine returns false.  Else it returns true.
1121static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
1122  if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
1123    MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
1124    bool ArchFound = false;
1125    MachO::mach_header H;
1126    MachO::mach_header_64 H_64;
1127    Triple T;
1128    if (MachO->is64Bit()) {
1129      H_64 = MachO->MachOObjectFile::getHeader64();
1130      T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
1131    } else {
1132      H = MachO->MachOObjectFile::getHeader();
1133      T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
1134    }
1135    unsigned i;
1136    for (i = 0; i < ArchFlags.size(); ++i) {
1137      if (ArchFlags[i] == T.getArchName())
1138        ArchFound = true;
1139      break;
1140    }
1141    if (!ArchFound) {
1142      errs() << "llvm-objdump: file: " + Filename + " does not contain "
1143             << "architecture: " + ArchFlags[i] + "\n";
1144      return false;
1145    }
1146  }
1147  return true;
1148}
1149
1150static void printObjcMetaData(MachOObjectFile *O, bool verbose);
1151
1152// ProcessMachO() is passed a single opened Mach-O file, which may be an
1153// archive member and or in a slice of a universal file.  It prints the
1154// the file name and header info and then processes it according to the
1155// command line options.
1156static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
1157                         StringRef ArchiveMemberName = StringRef(),
1158                         StringRef ArchitectureName = StringRef()) {
1159  // If we are doing some processing here on the Mach-O file print the header
1160  // info.  And don't print it otherwise like in the case of printing the
1161  // UniversalHeaders or ArchiveHeaders.
1162  if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
1163      LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
1164      DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
1165    outs() << Filename;
1166    if (!ArchiveMemberName.empty())
1167      outs() << '(' << ArchiveMemberName << ')';
1168    if (!ArchitectureName.empty())
1169      outs() << " (architecture " << ArchitectureName << ")";
1170    outs() << ":\n";
1171  }
1172
1173  if (Disassemble)
1174    DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
1175  if (IndirectSymbols)
1176    PrintIndirectSymbols(MachOOF, !NonVerbose);
1177  if (DataInCode)
1178    PrintDataInCodeTable(MachOOF, !NonVerbose);
1179  if (LinkOptHints)
1180    PrintLinkOptHints(MachOOF);
1181  if (Relocations)
1182    PrintRelocations(MachOOF);
1183  if (SectionHeaders)
1184    PrintSectionHeaders(MachOOF);
1185  if (SectionContents)
1186    PrintSectionContents(MachOOF);
1187  if (FilterSections.size() != 0)
1188    DumpSectionContents(Filename, MachOOF, !NonVerbose);
1189  if (InfoPlist)
1190    DumpInfoPlistSectionContents(Filename, MachOOF);
1191  if (DylibsUsed)
1192    PrintDylibs(MachOOF, false);
1193  if (DylibId)
1194    PrintDylibs(MachOOF, true);
1195  if (SymbolTable)
1196    PrintSymbolTable(MachOOF);
1197  if (UnwindInfo)
1198    printMachOUnwindInfo(MachOOF);
1199  if (PrivateHeaders)
1200    printMachOFileHeader(MachOOF);
1201  if (ObjcMetaData)
1202    printObjcMetaData(MachOOF, !NonVerbose);
1203  if (ExportsTrie)
1204    printExportsTrie(MachOOF);
1205  if (Rebase)
1206    printRebaseTable(MachOOF);
1207  if (Bind)
1208    printBindTable(MachOOF);
1209  if (LazyBind)
1210    printLazyBindTable(MachOOF);
1211  if (WeakBind)
1212    printWeakBindTable(MachOOF);
1213}
1214
1215// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
1216static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
1217  outs() << "    cputype (" << cputype << ")\n";
1218  outs() << "    cpusubtype (" << cpusubtype << ")\n";
1219}
1220
1221// printCPUType() helps print_fat_headers by printing the cputype and
1222// pusubtype (symbolically for the one's it knows about).
1223static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
1224  switch (cputype) {
1225  case MachO::CPU_TYPE_I386:
1226    switch (cpusubtype) {
1227    case MachO::CPU_SUBTYPE_I386_ALL:
1228      outs() << "    cputype CPU_TYPE_I386\n";
1229      outs() << "    cpusubtype CPU_SUBTYPE_I386_ALL\n";
1230      break;
1231    default:
1232      printUnknownCPUType(cputype, cpusubtype);
1233      break;
1234    }
1235    break;
1236  case MachO::CPU_TYPE_X86_64:
1237    switch (cpusubtype) {
1238    case MachO::CPU_SUBTYPE_X86_64_ALL:
1239      outs() << "    cputype CPU_TYPE_X86_64\n";
1240      outs() << "    cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
1241      break;
1242    case MachO::CPU_SUBTYPE_X86_64_H:
1243      outs() << "    cputype CPU_TYPE_X86_64\n";
1244      outs() << "    cpusubtype CPU_SUBTYPE_X86_64_H\n";
1245      break;
1246    default:
1247      printUnknownCPUType(cputype, cpusubtype);
1248      break;
1249    }
1250    break;
1251  case MachO::CPU_TYPE_ARM:
1252    switch (cpusubtype) {
1253    case MachO::CPU_SUBTYPE_ARM_ALL:
1254      outs() << "    cputype CPU_TYPE_ARM\n";
1255      outs() << "    cpusubtype CPU_SUBTYPE_ARM_ALL\n";
1256      break;
1257    case MachO::CPU_SUBTYPE_ARM_V4T:
1258      outs() << "    cputype CPU_TYPE_ARM\n";
1259      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V4T\n";
1260      break;
1261    case MachO::CPU_SUBTYPE_ARM_V5TEJ:
1262      outs() << "    cputype CPU_TYPE_ARM\n";
1263      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
1264      break;
1265    case MachO::CPU_SUBTYPE_ARM_XSCALE:
1266      outs() << "    cputype CPU_TYPE_ARM\n";
1267      outs() << "    cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
1268      break;
1269    case MachO::CPU_SUBTYPE_ARM_V6:
1270      outs() << "    cputype CPU_TYPE_ARM\n";
1271      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6\n";
1272      break;
1273    case MachO::CPU_SUBTYPE_ARM_V6M:
1274      outs() << "    cputype CPU_TYPE_ARM\n";
1275      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6M\n";
1276      break;
1277    case MachO::CPU_SUBTYPE_ARM_V7:
1278      outs() << "    cputype CPU_TYPE_ARM\n";
1279      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7\n";
1280      break;
1281    case MachO::CPU_SUBTYPE_ARM_V7EM:
1282      outs() << "    cputype CPU_TYPE_ARM\n";
1283      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
1284      break;
1285    case MachO::CPU_SUBTYPE_ARM_V7K:
1286      outs() << "    cputype CPU_TYPE_ARM\n";
1287      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7K\n";
1288      break;
1289    case MachO::CPU_SUBTYPE_ARM_V7M:
1290      outs() << "    cputype CPU_TYPE_ARM\n";
1291      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7M\n";
1292      break;
1293    case MachO::CPU_SUBTYPE_ARM_V7S:
1294      outs() << "    cputype CPU_TYPE_ARM\n";
1295      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7S\n";
1296      break;
1297    default:
1298      printUnknownCPUType(cputype, cpusubtype);
1299      break;
1300    }
1301    break;
1302  case MachO::CPU_TYPE_ARM64:
1303    switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
1304    case MachO::CPU_SUBTYPE_ARM64_ALL:
1305      outs() << "    cputype CPU_TYPE_ARM64\n";
1306      outs() << "    cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
1307      break;
1308    default:
1309      printUnknownCPUType(cputype, cpusubtype);
1310      break;
1311    }
1312    break;
1313  default:
1314    printUnknownCPUType(cputype, cpusubtype);
1315    break;
1316  }
1317}
1318
1319static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
1320                                       bool verbose) {
1321  outs() << "Fat headers\n";
1322  if (verbose)
1323    outs() << "fat_magic FAT_MAGIC\n";
1324  else
1325    outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
1326
1327  uint32_t nfat_arch = UB->getNumberOfObjects();
1328  StringRef Buf = UB->getData();
1329  uint64_t size = Buf.size();
1330  uint64_t big_size = sizeof(struct MachO::fat_header) +
1331                      nfat_arch * sizeof(struct MachO::fat_arch);
1332  outs() << "nfat_arch " << UB->getNumberOfObjects();
1333  if (nfat_arch == 0)
1334    outs() << " (malformed, contains zero architecture types)\n";
1335  else if (big_size > size)
1336    outs() << " (malformed, architectures past end of file)\n";
1337  else
1338    outs() << "\n";
1339
1340  for (uint32_t i = 0; i < nfat_arch; ++i) {
1341    MachOUniversalBinary::ObjectForArch OFA(UB, i);
1342    uint32_t cputype = OFA.getCPUType();
1343    uint32_t cpusubtype = OFA.getCPUSubType();
1344    outs() << "architecture ";
1345    for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
1346      MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
1347      uint32_t other_cputype = other_OFA.getCPUType();
1348      uint32_t other_cpusubtype = other_OFA.getCPUSubType();
1349      if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
1350          (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
1351              (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
1352        outs() << "(illegal duplicate architecture) ";
1353        break;
1354      }
1355    }
1356    if (verbose) {
1357      outs() << OFA.getArchTypeName() << "\n";
1358      printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
1359    } else {
1360      outs() << i << "\n";
1361      outs() << "    cputype " << cputype << "\n";
1362      outs() << "    cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
1363             << "\n";
1364    }
1365    if (verbose &&
1366        (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
1367      outs() << "    capabilities CPU_SUBTYPE_LIB64\n";
1368    else
1369      outs() << "    capabilities "
1370             << format("0x%" PRIx32,
1371                       (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
1372    outs() << "    offset " << OFA.getOffset();
1373    if (OFA.getOffset() > size)
1374      outs() << " (past end of file)";
1375    if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
1376      outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
1377    outs() << "\n";
1378    outs() << "    size " << OFA.getSize();
1379    big_size = OFA.getOffset() + OFA.getSize();
1380    if (big_size > size)
1381      outs() << " (past end of file)";
1382    outs() << "\n";
1383    outs() << "    align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
1384           << ")\n";
1385  }
1386}
1387
1388static void printArchiveChild(const Archive::Child &C, bool verbose,
1389                              bool print_offset) {
1390  if (print_offset)
1391    outs() << C.getChildOffset() << "\t";
1392  sys::fs::perms Mode = C.getAccessMode();
1393  if (verbose) {
1394    // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
1395    // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
1396    outs() << "-";
1397    outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1398    outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1399    outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1400    outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1401    outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1402    outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1403    outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1404    outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1405    outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1406  } else {
1407    outs() << format("0%o ", Mode);
1408  }
1409
1410  unsigned UID = C.getUID();
1411  outs() << format("%3d/", UID);
1412  unsigned GID = C.getGID();
1413  outs() << format("%-3d ", GID);
1414  ErrorOr<uint64_t> Size = C.getRawSize();
1415  if (std::error_code EC = Size.getError())
1416    report_fatal_error(EC.message());
1417  outs() << format("%5" PRId64, Size.get()) << " ";
1418
1419  StringRef RawLastModified = C.getRawLastModified();
1420  if (verbose) {
1421    unsigned Seconds;
1422    if (RawLastModified.getAsInteger(10, Seconds))
1423      outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
1424    else {
1425      // Since cime(3) returns a 26 character string of the form:
1426      // "Sun Sep 16 01:03:52 1973\n\0"
1427      // just print 24 characters.
1428      time_t t = Seconds;
1429      outs() << format("%.24s ", ctime(&t));
1430    }
1431  } else {
1432    outs() << RawLastModified << " ";
1433  }
1434
1435  if (verbose) {
1436    ErrorOr<StringRef> NameOrErr = C.getName();
1437    if (NameOrErr.getError()) {
1438      StringRef RawName = C.getRawName();
1439      outs() << RawName << "\n";
1440    } else {
1441      StringRef Name = NameOrErr.get();
1442      outs() << Name << "\n";
1443    }
1444  } else {
1445    StringRef RawName = C.getRawName();
1446    outs() << RawName << "\n";
1447  }
1448}
1449
1450static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
1451  for (Archive::child_iterator I = A->child_begin(false), E = A->child_end();
1452       I != E; ++I) {
1453    if (std::error_code EC = I->getError())
1454      report_fatal_error(EC.message());
1455    const Archive::Child &C = **I;
1456    printArchiveChild(C, verbose, print_offset);
1457  }
1458}
1459
1460// ParseInputMachO() parses the named Mach-O file in Filename and handles the
1461// -arch flags selecting just those slices as specified by them and also parses
1462// archive files.  Then for each individual Mach-O file ProcessMachO() is
1463// called to process the file based on the command line options.
1464void llvm::ParseInputMachO(StringRef Filename) {
1465  // Check for -arch all and verifiy the -arch flags are valid.
1466  for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1467    if (ArchFlags[i] == "all") {
1468      ArchAll = true;
1469    } else {
1470      if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
1471        errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
1472                      "'for the -arch option\n";
1473        return;
1474      }
1475    }
1476  }
1477
1478  // Attempt to open the binary.
1479  ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
1480  if (std::error_code EC = BinaryOrErr.getError()) {
1481    errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
1482    return;
1483  }
1484  Binary &Bin = *BinaryOrErr.get().getBinary();
1485
1486  if (Archive *A = dyn_cast<Archive>(&Bin)) {
1487    outs() << "Archive : " << Filename << "\n";
1488    if (ArchiveHeaders)
1489      printArchiveHeaders(A, !NonVerbose, ArchiveMemberOffsets);
1490    for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
1491         I != E; ++I) {
1492      if (std::error_code EC = I->getError())
1493        report_error(Filename, EC);
1494      auto &C = I->get();
1495      ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1496      if (ChildOrErr.getError())
1497        continue;
1498      if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1499        if (!checkMachOAndArchFlags(O, Filename))
1500          return;
1501        ProcessMachO(Filename, O, O->getFileName());
1502      }
1503    }
1504    return;
1505  }
1506  if (UniversalHeaders) {
1507    if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
1508      printMachOUniversalHeaders(UB, !NonVerbose);
1509  }
1510  if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
1511    // If we have a list of architecture flags specified dump only those.
1512    if (!ArchAll && ArchFlags.size() != 0) {
1513      // Look for a slice in the universal binary that matches each ArchFlag.
1514      bool ArchFound;
1515      for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1516        ArchFound = false;
1517        for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1518                                                   E = UB->end_objects();
1519             I != E; ++I) {
1520          if (ArchFlags[i] == I->getArchTypeName()) {
1521            ArchFound = true;
1522            ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
1523                I->getAsObjectFile();
1524            std::string ArchitectureName = "";
1525            if (ArchFlags.size() > 1)
1526              ArchitectureName = I->getArchTypeName();
1527            if (ObjOrErr) {
1528              ObjectFile &O = *ObjOrErr.get();
1529              if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1530                ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1531            } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
1532                           I->getAsArchive()) {
1533              std::unique_ptr<Archive> &A = *AOrErr;
1534              outs() << "Archive : " << Filename;
1535              if (!ArchitectureName.empty())
1536                outs() << " (architecture " << ArchitectureName << ")";
1537              outs() << "\n";
1538              if (ArchiveHeaders)
1539                printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1540              for (Archive::child_iterator AI = A->child_begin(),
1541                                           AE = A->child_end();
1542                   AI != AE; ++AI) {
1543                if (std::error_code EC = AI->getError())
1544                  report_error(Filename, EC);
1545                auto &C = AI->get();
1546                ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1547                if (ChildOrErr.getError())
1548                  continue;
1549                if (MachOObjectFile *O =
1550                        dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1551                  ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
1552              }
1553            }
1554          }
1555        }
1556        if (!ArchFound) {
1557          errs() << "llvm-objdump: file: " + Filename + " does not contain "
1558                 << "architecture: " + ArchFlags[i] + "\n";
1559          return;
1560        }
1561      }
1562      return;
1563    }
1564    // No architecture flags were specified so if this contains a slice that
1565    // matches the host architecture dump only that.
1566    if (!ArchAll) {
1567      for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1568                                                 E = UB->end_objects();
1569           I != E; ++I) {
1570        if (MachOObjectFile::getHostArch().getArchName() ==
1571            I->getArchTypeName()) {
1572          ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1573          std::string ArchiveName;
1574          ArchiveName.clear();
1575          if (ObjOrErr) {
1576            ObjectFile &O = *ObjOrErr.get();
1577            if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1578              ProcessMachO(Filename, MachOOF);
1579          } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
1580                         I->getAsArchive()) {
1581            std::unique_ptr<Archive> &A = *AOrErr;
1582            outs() << "Archive : " << Filename << "\n";
1583            if (ArchiveHeaders)
1584              printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1585            for (Archive::child_iterator AI = A->child_begin(),
1586                                         AE = A->child_end();
1587                 AI != AE; ++AI) {
1588              if (std::error_code EC = AI->getError())
1589                report_error(Filename, EC);
1590              auto &C = AI->get();
1591              ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1592              if (ChildOrErr.getError())
1593                continue;
1594              if (MachOObjectFile *O =
1595                      dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1596                ProcessMachO(Filename, O, O->getFileName());
1597            }
1598          }
1599          return;
1600        }
1601      }
1602    }
1603    // Either all architectures have been specified or none have been specified
1604    // and this does not contain the host architecture so dump all the slices.
1605    bool moreThanOneArch = UB->getNumberOfObjects() > 1;
1606    for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1607                                               E = UB->end_objects();
1608         I != E; ++I) {
1609      ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1610      std::string ArchitectureName = "";
1611      if (moreThanOneArch)
1612        ArchitectureName = I->getArchTypeName();
1613      if (ObjOrErr) {
1614        ObjectFile &Obj = *ObjOrErr.get();
1615        if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
1616          ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1617      } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
1618        std::unique_ptr<Archive> &A = *AOrErr;
1619        outs() << "Archive : " << Filename;
1620        if (!ArchitectureName.empty())
1621          outs() << " (architecture " << ArchitectureName << ")";
1622        outs() << "\n";
1623        if (ArchiveHeaders)
1624          printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1625        for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
1626             AI != AE; ++AI) {
1627          if (std::error_code EC = AI->getError())
1628            report_error(Filename, EC);
1629          auto &C = AI->get();
1630          ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1631          if (ChildOrErr.getError())
1632            continue;
1633          if (MachOObjectFile *O =
1634                  dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1635            if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
1636              ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
1637                           ArchitectureName);
1638          }
1639        }
1640      }
1641    }
1642    return;
1643  }
1644  if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
1645    if (!checkMachOAndArchFlags(O, Filename))
1646      return;
1647    if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
1648      ProcessMachO(Filename, MachOOF);
1649    } else
1650      errs() << "llvm-objdump: '" << Filename << "': "
1651             << "Object is not a Mach-O file type.\n";
1652  } else
1653    report_error(Filename, object_error::invalid_file_type);
1654}
1655
1656typedef std::pair<uint64_t, const char *> BindInfoEntry;
1657typedef std::vector<BindInfoEntry> BindTable;
1658typedef BindTable::iterator bind_table_iterator;
1659
1660// The block of info used by the Symbolizer call backs.
1661struct DisassembleInfo {
1662  bool verbose;
1663  MachOObjectFile *O;
1664  SectionRef S;
1665  SymbolAddressMap *AddrMap;
1666  std::vector<SectionRef> *Sections;
1667  const char *class_name;
1668  const char *selector_name;
1669  char *method;
1670  char *demangled_name;
1671  uint64_t adrp_addr;
1672  uint32_t adrp_inst;
1673  BindTable *bindtable;
1674  uint32_t depth;
1675};
1676
1677// SymbolizerGetOpInfo() is the operand information call back function.
1678// This is called to get the symbolic information for operand(s) of an
1679// instruction when it is being done.  This routine does this from
1680// the relocation information, symbol table, etc. That block of information
1681// is a pointer to the struct DisassembleInfo that was passed when the
1682// disassembler context was created and passed to back to here when
1683// called back by the disassembler for instruction operands that could have
1684// relocation information. The address of the instruction containing operand is
1685// at the Pc parameter.  The immediate value the operand has is passed in
1686// op_info->Value and is at Offset past the start of the instruction and has a
1687// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
1688// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
1689// names and addends of the symbolic expression to add for the operand.  The
1690// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
1691// information is returned then this function returns 1 else it returns 0.
1692static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
1693                               uint64_t Size, int TagType, void *TagBuf) {
1694  struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
1695  struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
1696  uint64_t value = op_info->Value;
1697
1698  // Make sure all fields returned are zero if we don't set them.
1699  memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
1700  op_info->Value = value;
1701
1702  // If the TagType is not the value 1 which it code knows about or if no
1703  // verbose symbolic information is wanted then just return 0, indicating no
1704  // information is being returned.
1705  if (TagType != 1 || !info->verbose)
1706    return 0;
1707
1708  unsigned int Arch = info->O->getArch();
1709  if (Arch == Triple::x86) {
1710    if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1711      return 0;
1712    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1713      // TODO:
1714      // Search the external relocation entries of a fully linked image
1715      // (if any) for an entry that matches this segment offset.
1716      // uint32_t seg_offset = (Pc + Offset);
1717      return 0;
1718    }
1719    // In MH_OBJECT filetypes search the section's relocation entries (if any)
1720    // for an entry for this section offset.
1721    uint32_t sect_addr = info->S.getAddress();
1722    uint32_t sect_offset = (Pc + Offset) - sect_addr;
1723    bool reloc_found = false;
1724    DataRefImpl Rel;
1725    MachO::any_relocation_info RE;
1726    bool isExtern = false;
1727    SymbolRef Symbol;
1728    bool r_scattered = false;
1729    uint32_t r_value, pair_r_value, r_type;
1730    for (const RelocationRef &Reloc : info->S.relocations()) {
1731      uint64_t RelocOffset = Reloc.getOffset();
1732      if (RelocOffset == sect_offset) {
1733        Rel = Reloc.getRawDataRefImpl();
1734        RE = info->O->getRelocation(Rel);
1735        r_type = info->O->getAnyRelocationType(RE);
1736        r_scattered = info->O->isRelocationScattered(RE);
1737        if (r_scattered) {
1738          r_value = info->O->getScatteredRelocationValue(RE);
1739          if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1740              r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
1741            DataRefImpl RelNext = Rel;
1742            info->O->moveRelocationNext(RelNext);
1743            MachO::any_relocation_info RENext;
1744            RENext = info->O->getRelocation(RelNext);
1745            if (info->O->isRelocationScattered(RENext))
1746              pair_r_value = info->O->getScatteredRelocationValue(RENext);
1747            else
1748              return 0;
1749          }
1750        } else {
1751          isExtern = info->O->getPlainRelocationExternal(RE);
1752          if (isExtern) {
1753            symbol_iterator RelocSym = Reloc.getSymbol();
1754            Symbol = *RelocSym;
1755          }
1756        }
1757        reloc_found = true;
1758        break;
1759      }
1760    }
1761    if (reloc_found && isExtern) {
1762      ErrorOr<StringRef> SymName = Symbol.getName();
1763      if (std::error_code EC = SymName.getError())
1764        report_fatal_error(EC.message());
1765      const char *name = SymName->data();
1766      op_info->AddSymbol.Present = 1;
1767      op_info->AddSymbol.Name = name;
1768      // For i386 extern relocation entries the value in the instruction is
1769      // the offset from the symbol, and value is already set in op_info->Value.
1770      return 1;
1771    }
1772    if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1773                        r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
1774      const char *add = GuessSymbolName(r_value, info->AddrMap);
1775      const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1776      uint32_t offset = value - (r_value - pair_r_value);
1777      op_info->AddSymbol.Present = 1;
1778      if (add != nullptr)
1779        op_info->AddSymbol.Name = add;
1780      else
1781        op_info->AddSymbol.Value = r_value;
1782      op_info->SubtractSymbol.Present = 1;
1783      if (sub != nullptr)
1784        op_info->SubtractSymbol.Name = sub;
1785      else
1786        op_info->SubtractSymbol.Value = pair_r_value;
1787      op_info->Value = offset;
1788      return 1;
1789    }
1790    return 0;
1791  }
1792  if (Arch == Triple::x86_64) {
1793    if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1794      return 0;
1795    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1796      // TODO:
1797      // Search the external relocation entries of a fully linked image
1798      // (if any) for an entry that matches this segment offset.
1799      // uint64_t seg_offset = (Pc + Offset);
1800      return 0;
1801    }
1802    // In MH_OBJECT filetypes search the section's relocation entries (if any)
1803    // for an entry for this section offset.
1804    uint64_t sect_addr = info->S.getAddress();
1805    uint64_t sect_offset = (Pc + Offset) - sect_addr;
1806    bool reloc_found = false;
1807    DataRefImpl Rel;
1808    MachO::any_relocation_info RE;
1809    bool isExtern = false;
1810    SymbolRef Symbol;
1811    for (const RelocationRef &Reloc : info->S.relocations()) {
1812      uint64_t RelocOffset = Reloc.getOffset();
1813      if (RelocOffset == sect_offset) {
1814        Rel = Reloc.getRawDataRefImpl();
1815        RE = info->O->getRelocation(Rel);
1816        // NOTE: Scattered relocations don't exist on x86_64.
1817        isExtern = info->O->getPlainRelocationExternal(RE);
1818        if (isExtern) {
1819          symbol_iterator RelocSym = Reloc.getSymbol();
1820          Symbol = *RelocSym;
1821        }
1822        reloc_found = true;
1823        break;
1824      }
1825    }
1826    if (reloc_found && isExtern) {
1827      // The Value passed in will be adjusted by the Pc if the instruction
1828      // adds the Pc.  But for x86_64 external relocation entries the Value
1829      // is the offset from the external symbol.
1830      if (info->O->getAnyRelocationPCRel(RE))
1831        op_info->Value -= Pc + Offset + Size;
1832      ErrorOr<StringRef> SymName = Symbol.getName();
1833      if (std::error_code EC = SymName.getError())
1834        report_fatal_error(EC.message());
1835      const char *name = SymName->data();
1836      unsigned Type = info->O->getAnyRelocationType(RE);
1837      if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
1838        DataRefImpl RelNext = Rel;
1839        info->O->moveRelocationNext(RelNext);
1840        MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
1841        unsigned TypeNext = info->O->getAnyRelocationType(RENext);
1842        bool isExternNext = info->O->getPlainRelocationExternal(RENext);
1843        unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
1844        if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
1845          op_info->SubtractSymbol.Present = 1;
1846          op_info->SubtractSymbol.Name = name;
1847          symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
1848          Symbol = *RelocSymNext;
1849          ErrorOr<StringRef> SymNameNext = Symbol.getName();
1850          if (std::error_code EC = SymNameNext.getError())
1851            report_fatal_error(EC.message());
1852          name = SymNameNext->data();
1853        }
1854      }
1855      // TODO: add the VariantKinds to op_info->VariantKind for relocation types
1856      // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
1857      op_info->AddSymbol.Present = 1;
1858      op_info->AddSymbol.Name = name;
1859      return 1;
1860    }
1861    return 0;
1862  }
1863  if (Arch == Triple::arm) {
1864    if (Offset != 0 || (Size != 4 && Size != 2))
1865      return 0;
1866    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1867      // TODO:
1868      // Search the external relocation entries of a fully linked image
1869      // (if any) for an entry that matches this segment offset.
1870      // uint32_t seg_offset = (Pc + Offset);
1871      return 0;
1872    }
1873    // In MH_OBJECT filetypes search the section's relocation entries (if any)
1874    // for an entry for this section offset.
1875    uint32_t sect_addr = info->S.getAddress();
1876    uint32_t sect_offset = (Pc + Offset) - sect_addr;
1877    DataRefImpl Rel;
1878    MachO::any_relocation_info RE;
1879    bool isExtern = false;
1880    SymbolRef Symbol;
1881    bool r_scattered = false;
1882    uint32_t r_value, pair_r_value, r_type, r_length, other_half;
1883    auto Reloc =
1884        std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
1885                     [&](const RelocationRef &Reloc) {
1886                       uint64_t RelocOffset = Reloc.getOffset();
1887                       return RelocOffset == sect_offset;
1888                     });
1889
1890    if (Reloc == info->S.relocations().end())
1891      return 0;
1892
1893    Rel = Reloc->getRawDataRefImpl();
1894    RE = info->O->getRelocation(Rel);
1895    r_length = info->O->getAnyRelocationLength(RE);
1896    r_scattered = info->O->isRelocationScattered(RE);
1897    if (r_scattered) {
1898      r_value = info->O->getScatteredRelocationValue(RE);
1899      r_type = info->O->getScatteredRelocationType(RE);
1900    } else {
1901      r_type = info->O->getAnyRelocationType(RE);
1902      isExtern = info->O->getPlainRelocationExternal(RE);
1903      if (isExtern) {
1904        symbol_iterator RelocSym = Reloc->getSymbol();
1905        Symbol = *RelocSym;
1906      }
1907    }
1908    if (r_type == MachO::ARM_RELOC_HALF ||
1909        r_type == MachO::ARM_RELOC_SECTDIFF ||
1910        r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
1911        r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1912      DataRefImpl RelNext = Rel;
1913      info->O->moveRelocationNext(RelNext);
1914      MachO::any_relocation_info RENext;
1915      RENext = info->O->getRelocation(RelNext);
1916      other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
1917      if (info->O->isRelocationScattered(RENext))
1918        pair_r_value = info->O->getScatteredRelocationValue(RENext);
1919    }
1920
1921    if (isExtern) {
1922      ErrorOr<StringRef> SymName = Symbol.getName();
1923      if (std::error_code EC = SymName.getError())
1924        report_fatal_error(EC.message());
1925      const char *name = SymName->data();
1926      op_info->AddSymbol.Present = 1;
1927      op_info->AddSymbol.Name = name;
1928      switch (r_type) {
1929      case MachO::ARM_RELOC_HALF:
1930        if ((r_length & 0x1) == 1) {
1931          op_info->Value = value << 16 | other_half;
1932          op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1933        } else {
1934          op_info->Value = other_half << 16 | value;
1935          op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1936        }
1937        break;
1938      default:
1939        break;
1940      }
1941      return 1;
1942    }
1943    // If we have a branch that is not an external relocation entry then
1944    // return 0 so the code in tryAddingSymbolicOperand() can use the
1945    // SymbolLookUp call back with the branch target address to look up the
1946    // symbol and possiblity add an annotation for a symbol stub.
1947    if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
1948                          r_type == MachO::ARM_THUMB_RELOC_BR22))
1949      return 0;
1950
1951    uint32_t offset = 0;
1952    if (r_type == MachO::ARM_RELOC_HALF ||
1953        r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1954      if ((r_length & 0x1) == 1)
1955        value = value << 16 | other_half;
1956      else
1957        value = other_half << 16 | value;
1958    }
1959    if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
1960                        r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
1961      offset = value - r_value;
1962      value = r_value;
1963    }
1964
1965    if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1966      if ((r_length & 0x1) == 1)
1967        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1968      else
1969        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1970      const char *add = GuessSymbolName(r_value, info->AddrMap);
1971      const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1972      int32_t offset = value - (r_value - pair_r_value);
1973      op_info->AddSymbol.Present = 1;
1974      if (add != nullptr)
1975        op_info->AddSymbol.Name = add;
1976      else
1977        op_info->AddSymbol.Value = r_value;
1978      op_info->SubtractSymbol.Present = 1;
1979      if (sub != nullptr)
1980        op_info->SubtractSymbol.Name = sub;
1981      else
1982        op_info->SubtractSymbol.Value = pair_r_value;
1983      op_info->Value = offset;
1984      return 1;
1985    }
1986
1987    op_info->AddSymbol.Present = 1;
1988    op_info->Value = offset;
1989    if (r_type == MachO::ARM_RELOC_HALF) {
1990      if ((r_length & 0x1) == 1)
1991        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1992      else
1993        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1994    }
1995    const char *add = GuessSymbolName(value, info->AddrMap);
1996    if (add != nullptr) {
1997      op_info->AddSymbol.Name = add;
1998      return 1;
1999    }
2000    op_info->AddSymbol.Value = value;
2001    return 1;
2002  }
2003  if (Arch == Triple::aarch64) {
2004    if (Offset != 0 || Size != 4)
2005      return 0;
2006    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2007      // TODO:
2008      // Search the external relocation entries of a fully linked image
2009      // (if any) for an entry that matches this segment offset.
2010      // uint64_t seg_offset = (Pc + Offset);
2011      return 0;
2012    }
2013    // In MH_OBJECT filetypes search the section's relocation entries (if any)
2014    // for an entry for this section offset.
2015    uint64_t sect_addr = info->S.getAddress();
2016    uint64_t sect_offset = (Pc + Offset) - sect_addr;
2017    auto Reloc =
2018        std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
2019                     [&](const RelocationRef &Reloc) {
2020                       uint64_t RelocOffset = Reloc.getOffset();
2021                       return RelocOffset == sect_offset;
2022                     });
2023
2024    if (Reloc == info->S.relocations().end())
2025      return 0;
2026
2027    DataRefImpl Rel = Reloc->getRawDataRefImpl();
2028    MachO::any_relocation_info RE = info->O->getRelocation(Rel);
2029    uint32_t r_type = info->O->getAnyRelocationType(RE);
2030    if (r_type == MachO::ARM64_RELOC_ADDEND) {
2031      DataRefImpl RelNext = Rel;
2032      info->O->moveRelocationNext(RelNext);
2033      MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
2034      if (value == 0) {
2035        value = info->O->getPlainRelocationSymbolNum(RENext);
2036        op_info->Value = value;
2037      }
2038    }
2039    // NOTE: Scattered relocations don't exist on arm64.
2040    if (!info->O->getPlainRelocationExternal(RE))
2041      return 0;
2042    ErrorOr<StringRef> SymName = Reloc->getSymbol()->getName();
2043    if (std::error_code EC = SymName.getError())
2044      report_fatal_error(EC.message());
2045    const char *name = SymName->data();
2046    op_info->AddSymbol.Present = 1;
2047    op_info->AddSymbol.Name = name;
2048
2049    switch (r_type) {
2050    case MachO::ARM64_RELOC_PAGE21:
2051      /* @page */
2052      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
2053      break;
2054    case MachO::ARM64_RELOC_PAGEOFF12:
2055      /* @pageoff */
2056      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
2057      break;
2058    case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
2059      /* @gotpage */
2060      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
2061      break;
2062    case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
2063      /* @gotpageoff */
2064      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
2065      break;
2066    case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
2067      /* @tvlppage is not implemented in llvm-mc */
2068      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
2069      break;
2070    case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
2071      /* @tvlppageoff is not implemented in llvm-mc */
2072      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
2073      break;
2074    default:
2075    case MachO::ARM64_RELOC_BRANCH26:
2076      op_info->VariantKind = LLVMDisassembler_VariantKind_None;
2077      break;
2078    }
2079    return 1;
2080  }
2081  return 0;
2082}
2083
2084// GuessCstringPointer is passed the address of what might be a pointer to a
2085// literal string in a cstring section.  If that address is in a cstring section
2086// it returns a pointer to that string.  Else it returns nullptr.
2087static const char *GuessCstringPointer(uint64_t ReferenceValue,
2088                                       struct DisassembleInfo *info) {
2089  for (const auto &Load : info->O->load_commands()) {
2090    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2091      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2092      for (unsigned J = 0; J < Seg.nsects; ++J) {
2093        MachO::section_64 Sec = info->O->getSection64(Load, J);
2094        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2095        if (section_type == MachO::S_CSTRING_LITERALS &&
2096            ReferenceValue >= Sec.addr &&
2097            ReferenceValue < Sec.addr + Sec.size) {
2098          uint64_t sect_offset = ReferenceValue - Sec.addr;
2099          uint64_t object_offset = Sec.offset + sect_offset;
2100          StringRef MachOContents = info->O->getData();
2101          uint64_t object_size = MachOContents.size();
2102          const char *object_addr = (const char *)MachOContents.data();
2103          if (object_offset < object_size) {
2104            const char *name = object_addr + object_offset;
2105            return name;
2106          } else {
2107            return nullptr;
2108          }
2109        }
2110      }
2111    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2112      MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2113      for (unsigned J = 0; J < Seg.nsects; ++J) {
2114        MachO::section Sec = info->O->getSection(Load, J);
2115        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2116        if (section_type == MachO::S_CSTRING_LITERALS &&
2117            ReferenceValue >= Sec.addr &&
2118            ReferenceValue < Sec.addr + Sec.size) {
2119          uint64_t sect_offset = ReferenceValue - Sec.addr;
2120          uint64_t object_offset = Sec.offset + sect_offset;
2121          StringRef MachOContents = info->O->getData();
2122          uint64_t object_size = MachOContents.size();
2123          const char *object_addr = (const char *)MachOContents.data();
2124          if (object_offset < object_size) {
2125            const char *name = object_addr + object_offset;
2126            return name;
2127          } else {
2128            return nullptr;
2129          }
2130        }
2131      }
2132    }
2133  }
2134  return nullptr;
2135}
2136
2137// GuessIndirectSymbol returns the name of the indirect symbol for the
2138// ReferenceValue passed in or nullptr.  This is used when ReferenceValue maybe
2139// an address of a symbol stub or a lazy or non-lazy pointer to associate the
2140// symbol name being referenced by the stub or pointer.
2141static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
2142                                       struct DisassembleInfo *info) {
2143  MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
2144  MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
2145  for (const auto &Load : info->O->load_commands()) {
2146    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2147      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2148      for (unsigned J = 0; J < Seg.nsects; ++J) {
2149        MachO::section_64 Sec = info->O->getSection64(Load, J);
2150        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2151        if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2152             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2153             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2154             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2155             section_type == MachO::S_SYMBOL_STUBS) &&
2156            ReferenceValue >= Sec.addr &&
2157            ReferenceValue < Sec.addr + Sec.size) {
2158          uint32_t stride;
2159          if (section_type == MachO::S_SYMBOL_STUBS)
2160            stride = Sec.reserved2;
2161          else
2162            stride = 8;
2163          if (stride == 0)
2164            return nullptr;
2165          uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2166          if (index < Dysymtab.nindirectsyms) {
2167            uint32_t indirect_symbol =
2168                info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2169            if (indirect_symbol < Symtab.nsyms) {
2170              symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2171              SymbolRef Symbol = *Sym;
2172              ErrorOr<StringRef> SymName = Symbol.getName();
2173              if (std::error_code EC = SymName.getError())
2174                report_fatal_error(EC.message());
2175              const char *name = SymName->data();
2176              return name;
2177            }
2178          }
2179        }
2180      }
2181    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2182      MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2183      for (unsigned J = 0; J < Seg.nsects; ++J) {
2184        MachO::section Sec = info->O->getSection(Load, J);
2185        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2186        if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2187             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2188             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2189             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2190             section_type == MachO::S_SYMBOL_STUBS) &&
2191            ReferenceValue >= Sec.addr &&
2192            ReferenceValue < Sec.addr + Sec.size) {
2193          uint32_t stride;
2194          if (section_type == MachO::S_SYMBOL_STUBS)
2195            stride = Sec.reserved2;
2196          else
2197            stride = 4;
2198          if (stride == 0)
2199            return nullptr;
2200          uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2201          if (index < Dysymtab.nindirectsyms) {
2202            uint32_t indirect_symbol =
2203                info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2204            if (indirect_symbol < Symtab.nsyms) {
2205              symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2206              SymbolRef Symbol = *Sym;
2207              ErrorOr<StringRef> SymName = Symbol.getName();
2208              if (std::error_code EC = SymName.getError())
2209                report_fatal_error(EC.message());
2210              const char *name = SymName->data();
2211              return name;
2212            }
2213          }
2214        }
2215      }
2216    }
2217  }
2218  return nullptr;
2219}
2220
2221// method_reference() is called passing it the ReferenceName that might be
2222// a reference it to an Objective-C method call.  If so then it allocates and
2223// assembles a method call string with the values last seen and saved in
2224// the DisassembleInfo's class_name and selector_name fields.  This is saved
2225// into the method field of the info and any previous string is free'ed.
2226// Then the class_name field in the info is set to nullptr.  The method call
2227// string is set into ReferenceName and ReferenceType is set to
2228// LLVMDisassembler_ReferenceType_Out_Objc_Message.  If this not a method call
2229// then both ReferenceType and ReferenceName are left unchanged.
2230static void method_reference(struct DisassembleInfo *info,
2231                             uint64_t *ReferenceType,
2232                             const char **ReferenceName) {
2233  unsigned int Arch = info->O->getArch();
2234  if (*ReferenceName != nullptr) {
2235    if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
2236      if (info->selector_name != nullptr) {
2237        if (info->method != nullptr)
2238          free(info->method);
2239        if (info->class_name != nullptr) {
2240          info->method = (char *)malloc(5 + strlen(info->class_name) +
2241                                        strlen(info->selector_name));
2242          if (info->method != nullptr) {
2243            strcpy(info->method, "+[");
2244            strcat(info->method, info->class_name);
2245            strcat(info->method, " ");
2246            strcat(info->method, info->selector_name);
2247            strcat(info->method, "]");
2248            *ReferenceName = info->method;
2249            *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2250          }
2251        } else {
2252          info->method = (char *)malloc(9 + strlen(info->selector_name));
2253          if (info->method != nullptr) {
2254            if (Arch == Triple::x86_64)
2255              strcpy(info->method, "-[%rdi ");
2256            else if (Arch == Triple::aarch64)
2257              strcpy(info->method, "-[x0 ");
2258            else
2259              strcpy(info->method, "-[r? ");
2260            strcat(info->method, info->selector_name);
2261            strcat(info->method, "]");
2262            *ReferenceName = info->method;
2263            *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2264          }
2265        }
2266        info->class_name = nullptr;
2267      }
2268    } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
2269      if (info->selector_name != nullptr) {
2270        if (info->method != nullptr)
2271          free(info->method);
2272        info->method = (char *)malloc(17 + strlen(info->selector_name));
2273        if (info->method != nullptr) {
2274          if (Arch == Triple::x86_64)
2275            strcpy(info->method, "-[[%rdi super] ");
2276          else if (Arch == Triple::aarch64)
2277            strcpy(info->method, "-[[x0 super] ");
2278          else
2279            strcpy(info->method, "-[[r? super] ");
2280          strcat(info->method, info->selector_name);
2281          strcat(info->method, "]");
2282          *ReferenceName = info->method;
2283          *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2284        }
2285        info->class_name = nullptr;
2286      }
2287    }
2288  }
2289}
2290
2291// GuessPointerPointer() is passed the address of what might be a pointer to
2292// a reference to an Objective-C class, selector, message ref or cfstring.
2293// If so the value of the pointer is returned and one of the booleans are set
2294// to true.  If not zero is returned and all the booleans are set to false.
2295static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
2296                                    struct DisassembleInfo *info,
2297                                    bool &classref, bool &selref, bool &msgref,
2298                                    bool &cfstring) {
2299  classref = false;
2300  selref = false;
2301  msgref = false;
2302  cfstring = false;
2303  for (const auto &Load : info->O->load_commands()) {
2304    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2305      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2306      for (unsigned J = 0; J < Seg.nsects; ++J) {
2307        MachO::section_64 Sec = info->O->getSection64(Load, J);
2308        if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
2309             strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2310             strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
2311             strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
2312             strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
2313            ReferenceValue >= Sec.addr &&
2314            ReferenceValue < Sec.addr + Sec.size) {
2315          uint64_t sect_offset = ReferenceValue - Sec.addr;
2316          uint64_t object_offset = Sec.offset + sect_offset;
2317          StringRef MachOContents = info->O->getData();
2318          uint64_t object_size = MachOContents.size();
2319          const char *object_addr = (const char *)MachOContents.data();
2320          if (object_offset < object_size) {
2321            uint64_t pointer_value;
2322            memcpy(&pointer_value, object_addr + object_offset,
2323                   sizeof(uint64_t));
2324            if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2325              sys::swapByteOrder(pointer_value);
2326            if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
2327              selref = true;
2328            else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2329                     strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
2330              classref = true;
2331            else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
2332                     ReferenceValue + 8 < Sec.addr + Sec.size) {
2333              msgref = true;
2334              memcpy(&pointer_value, object_addr + object_offset + 8,
2335                     sizeof(uint64_t));
2336              if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2337                sys::swapByteOrder(pointer_value);
2338            } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
2339              cfstring = true;
2340            return pointer_value;
2341          } else {
2342            return 0;
2343          }
2344        }
2345      }
2346    }
2347    // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
2348  }
2349  return 0;
2350}
2351
2352// get_pointer_64 returns a pointer to the bytes in the object file at the
2353// Address from a section in the Mach-O file.  And indirectly returns the
2354// offset into the section, number of bytes left in the section past the offset
2355// and which section is was being referenced.  If the Address is not in a
2356// section nullptr is returned.
2357static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
2358                                  uint32_t &left, SectionRef &S,
2359                                  DisassembleInfo *info,
2360                                  bool objc_only = false) {
2361  offset = 0;
2362  left = 0;
2363  S = SectionRef();
2364  for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
2365    uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
2366    uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
2367    if (SectSize == 0)
2368      continue;
2369    if (objc_only) {
2370      StringRef SectName;
2371      ((*(info->Sections))[SectIdx]).getName(SectName);
2372      DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
2373      StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
2374      if (SegName != "__OBJC" && SectName != "__cstring")
2375        continue;
2376    }
2377    if (Address >= SectAddress && Address < SectAddress + SectSize) {
2378      S = (*(info->Sections))[SectIdx];
2379      offset = Address - SectAddress;
2380      left = SectSize - offset;
2381      StringRef SectContents;
2382      ((*(info->Sections))[SectIdx]).getContents(SectContents);
2383      return SectContents.data() + offset;
2384    }
2385  }
2386  return nullptr;
2387}
2388
2389static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
2390                                  uint32_t &left, SectionRef &S,
2391                                  DisassembleInfo *info,
2392                                  bool objc_only = false) {
2393  return get_pointer_64(Address, offset, left, S, info, objc_only);
2394}
2395
2396// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
2397// the symbol indirectly through n_value. Based on the relocation information
2398// for the specified section offset in the specified section reference.
2399// If no relocation information is found and a non-zero ReferenceValue for the
2400// symbol is passed, look up that address in the info's AddrMap.
2401static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
2402                                 DisassembleInfo *info, uint64_t &n_value,
2403                                 uint64_t ReferenceValue = 0) {
2404  n_value = 0;
2405  if (!info->verbose)
2406    return nullptr;
2407
2408  // See if there is an external relocation entry at the sect_offset.
2409  bool reloc_found = false;
2410  DataRefImpl Rel;
2411  MachO::any_relocation_info RE;
2412  bool isExtern = false;
2413  SymbolRef Symbol;
2414  for (const RelocationRef &Reloc : S.relocations()) {
2415    uint64_t RelocOffset = Reloc.getOffset();
2416    if (RelocOffset == sect_offset) {
2417      Rel = Reloc.getRawDataRefImpl();
2418      RE = info->O->getRelocation(Rel);
2419      if (info->O->isRelocationScattered(RE))
2420        continue;
2421      isExtern = info->O->getPlainRelocationExternal(RE);
2422      if (isExtern) {
2423        symbol_iterator RelocSym = Reloc.getSymbol();
2424        Symbol = *RelocSym;
2425      }
2426      reloc_found = true;
2427      break;
2428    }
2429  }
2430  // If there is an external relocation entry for a symbol in this section
2431  // at this section_offset then use that symbol's value for the n_value
2432  // and return its name.
2433  const char *SymbolName = nullptr;
2434  if (reloc_found && isExtern) {
2435    n_value = Symbol.getValue();
2436    ErrorOr<StringRef> NameOrError = Symbol.getName();
2437    if (std::error_code EC = NameOrError.getError())
2438      report_fatal_error(EC.message());
2439    StringRef Name = *NameOrError;
2440    if (!Name.empty()) {
2441      SymbolName = Name.data();
2442      return SymbolName;
2443    }
2444  }
2445
2446  // TODO: For fully linked images, look through the external relocation
2447  // entries off the dynamic symtab command. For these the r_offset is from the
2448  // start of the first writeable segment in the Mach-O file.  So the offset
2449  // to this section from that segment is passed to this routine by the caller,
2450  // as the database_offset. Which is the difference of the section's starting
2451  // address and the first writable segment.
2452  //
2453  // NOTE: need add passing the database_offset to this routine.
2454
2455  // We did not find an external relocation entry so look up the ReferenceValue
2456  // as an address of a symbol and if found return that symbol's name.
2457  SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
2458
2459  return SymbolName;
2460}
2461
2462static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
2463                                 DisassembleInfo *info,
2464                                 uint32_t ReferenceValue) {
2465  uint64_t n_value64;
2466  return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
2467}
2468
2469// These are structs in the Objective-C meta data and read to produce the
2470// comments for disassembly.  While these are part of the ABI they are no
2471// public defintions.  So the are here not in include/llvm/Support/MachO.h .
2472
2473// The cfstring object in a 64-bit Mach-O file.
2474struct cfstring64_t {
2475  uint64_t isa;        // class64_t * (64-bit pointer)
2476  uint64_t flags;      // flag bits
2477  uint64_t characters; // char * (64-bit pointer)
2478  uint64_t length;     // number of non-NULL characters in above
2479};
2480
2481// The class object in a 64-bit Mach-O file.
2482struct class64_t {
2483  uint64_t isa;        // class64_t * (64-bit pointer)
2484  uint64_t superclass; // class64_t * (64-bit pointer)
2485  uint64_t cache;      // Cache (64-bit pointer)
2486  uint64_t vtable;     // IMP * (64-bit pointer)
2487  uint64_t data;       // class_ro64_t * (64-bit pointer)
2488};
2489
2490struct class32_t {
2491  uint32_t isa;        /* class32_t * (32-bit pointer) */
2492  uint32_t superclass; /* class32_t * (32-bit pointer) */
2493  uint32_t cache;      /* Cache (32-bit pointer) */
2494  uint32_t vtable;     /* IMP * (32-bit pointer) */
2495  uint32_t data;       /* class_ro32_t * (32-bit pointer) */
2496};
2497
2498struct class_ro64_t {
2499  uint32_t flags;
2500  uint32_t instanceStart;
2501  uint32_t instanceSize;
2502  uint32_t reserved;
2503  uint64_t ivarLayout;     // const uint8_t * (64-bit pointer)
2504  uint64_t name;           // const char * (64-bit pointer)
2505  uint64_t baseMethods;    // const method_list_t * (64-bit pointer)
2506  uint64_t baseProtocols;  // const protocol_list_t * (64-bit pointer)
2507  uint64_t ivars;          // const ivar_list_t * (64-bit pointer)
2508  uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
2509  uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
2510};
2511
2512struct class_ro32_t {
2513  uint32_t flags;
2514  uint32_t instanceStart;
2515  uint32_t instanceSize;
2516  uint32_t ivarLayout;     /* const uint8_t * (32-bit pointer) */
2517  uint32_t name;           /* const char * (32-bit pointer) */
2518  uint32_t baseMethods;    /* const method_list_t * (32-bit pointer) */
2519  uint32_t baseProtocols;  /* const protocol_list_t * (32-bit pointer) */
2520  uint32_t ivars;          /* const ivar_list_t * (32-bit pointer) */
2521  uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
2522  uint32_t baseProperties; /* const struct objc_property_list *
2523                                                   (32-bit pointer) */
2524};
2525
2526/* Values for class_ro{64,32}_t->flags */
2527#define RO_META (1 << 0)
2528#define RO_ROOT (1 << 1)
2529#define RO_HAS_CXX_STRUCTORS (1 << 2)
2530
2531struct method_list64_t {
2532  uint32_t entsize;
2533  uint32_t count;
2534  /* struct method64_t first;  These structures follow inline */
2535};
2536
2537struct method_list32_t {
2538  uint32_t entsize;
2539  uint32_t count;
2540  /* struct method32_t first;  These structures follow inline */
2541};
2542
2543struct method64_t {
2544  uint64_t name;  /* SEL (64-bit pointer) */
2545  uint64_t types; /* const char * (64-bit pointer) */
2546  uint64_t imp;   /* IMP (64-bit pointer) */
2547};
2548
2549struct method32_t {
2550  uint32_t name;  /* SEL (32-bit pointer) */
2551  uint32_t types; /* const char * (32-bit pointer) */
2552  uint32_t imp;   /* IMP (32-bit pointer) */
2553};
2554
2555struct protocol_list64_t {
2556  uint64_t count; /* uintptr_t (a 64-bit value) */
2557  /* struct protocol64_t * list[0];  These pointers follow inline */
2558};
2559
2560struct protocol_list32_t {
2561  uint32_t count; /* uintptr_t (a 32-bit value) */
2562  /* struct protocol32_t * list[0];  These pointers follow inline */
2563};
2564
2565struct protocol64_t {
2566  uint64_t isa;                     /* id * (64-bit pointer) */
2567  uint64_t name;                    /* const char * (64-bit pointer) */
2568  uint64_t protocols;               /* struct protocol_list64_t *
2569                                                    (64-bit pointer) */
2570  uint64_t instanceMethods;         /* method_list_t * (64-bit pointer) */
2571  uint64_t classMethods;            /* method_list_t * (64-bit pointer) */
2572  uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
2573  uint64_t optionalClassMethods;    /* method_list_t * (64-bit pointer) */
2574  uint64_t instanceProperties;      /* struct objc_property_list *
2575                                                       (64-bit pointer) */
2576};
2577
2578struct protocol32_t {
2579  uint32_t isa;                     /* id * (32-bit pointer) */
2580  uint32_t name;                    /* const char * (32-bit pointer) */
2581  uint32_t protocols;               /* struct protocol_list_t *
2582                                                    (32-bit pointer) */
2583  uint32_t instanceMethods;         /* method_list_t * (32-bit pointer) */
2584  uint32_t classMethods;            /* method_list_t * (32-bit pointer) */
2585  uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
2586  uint32_t optionalClassMethods;    /* method_list_t * (32-bit pointer) */
2587  uint32_t instanceProperties;      /* struct objc_property_list *
2588                                                       (32-bit pointer) */
2589};
2590
2591struct ivar_list64_t {
2592  uint32_t entsize;
2593  uint32_t count;
2594  /* struct ivar64_t first;  These structures follow inline */
2595};
2596
2597struct ivar_list32_t {
2598  uint32_t entsize;
2599  uint32_t count;
2600  /* struct ivar32_t first;  These structures follow inline */
2601};
2602
2603struct ivar64_t {
2604  uint64_t offset; /* uintptr_t * (64-bit pointer) */
2605  uint64_t name;   /* const char * (64-bit pointer) */
2606  uint64_t type;   /* const char * (64-bit pointer) */
2607  uint32_t alignment;
2608  uint32_t size;
2609};
2610
2611struct ivar32_t {
2612  uint32_t offset; /* uintptr_t * (32-bit pointer) */
2613  uint32_t name;   /* const char * (32-bit pointer) */
2614  uint32_t type;   /* const char * (32-bit pointer) */
2615  uint32_t alignment;
2616  uint32_t size;
2617};
2618
2619struct objc_property_list64 {
2620  uint32_t entsize;
2621  uint32_t count;
2622  /* struct objc_property64 first;  These structures follow inline */
2623};
2624
2625struct objc_property_list32 {
2626  uint32_t entsize;
2627  uint32_t count;
2628  /* struct objc_property32 first;  These structures follow inline */
2629};
2630
2631struct objc_property64 {
2632  uint64_t name;       /* const char * (64-bit pointer) */
2633  uint64_t attributes; /* const char * (64-bit pointer) */
2634};
2635
2636struct objc_property32 {
2637  uint32_t name;       /* const char * (32-bit pointer) */
2638  uint32_t attributes; /* const char * (32-bit pointer) */
2639};
2640
2641struct category64_t {
2642  uint64_t name;               /* const char * (64-bit pointer) */
2643  uint64_t cls;                /* struct class_t * (64-bit pointer) */
2644  uint64_t instanceMethods;    /* struct method_list_t * (64-bit pointer) */
2645  uint64_t classMethods;       /* struct method_list_t * (64-bit pointer) */
2646  uint64_t protocols;          /* struct protocol_list_t * (64-bit pointer) */
2647  uint64_t instanceProperties; /* struct objc_property_list *
2648                                  (64-bit pointer) */
2649};
2650
2651struct category32_t {
2652  uint32_t name;               /* const char * (32-bit pointer) */
2653  uint32_t cls;                /* struct class_t * (32-bit pointer) */
2654  uint32_t instanceMethods;    /* struct method_list_t * (32-bit pointer) */
2655  uint32_t classMethods;       /* struct method_list_t * (32-bit pointer) */
2656  uint32_t protocols;          /* struct protocol_list_t * (32-bit pointer) */
2657  uint32_t instanceProperties; /* struct objc_property_list *
2658                                  (32-bit pointer) */
2659};
2660
2661struct objc_image_info64 {
2662  uint32_t version;
2663  uint32_t flags;
2664};
2665struct objc_image_info32 {
2666  uint32_t version;
2667  uint32_t flags;
2668};
2669struct imageInfo_t {
2670  uint32_t version;
2671  uint32_t flags;
2672};
2673/* masks for objc_image_info.flags */
2674#define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
2675#define OBJC_IMAGE_SUPPORTS_GC (1 << 1)
2676
2677struct message_ref64 {
2678  uint64_t imp; /* IMP (64-bit pointer) */
2679  uint64_t sel; /* SEL (64-bit pointer) */
2680};
2681
2682struct message_ref32 {
2683  uint32_t imp; /* IMP (32-bit pointer) */
2684  uint32_t sel; /* SEL (32-bit pointer) */
2685};
2686
2687// Objective-C 1 (32-bit only) meta data structs.
2688
2689struct objc_module_t {
2690  uint32_t version;
2691  uint32_t size;
2692  uint32_t name;   /* char * (32-bit pointer) */
2693  uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
2694};
2695
2696struct objc_symtab_t {
2697  uint32_t sel_ref_cnt;
2698  uint32_t refs; /* SEL * (32-bit pointer) */
2699  uint16_t cls_def_cnt;
2700  uint16_t cat_def_cnt;
2701  // uint32_t defs[1];        /* void * (32-bit pointer) variable size */
2702};
2703
2704struct objc_class_t {
2705  uint32_t isa;         /* struct objc_class * (32-bit pointer) */
2706  uint32_t super_class; /* struct objc_class * (32-bit pointer) */
2707  uint32_t name;        /* const char * (32-bit pointer) */
2708  int32_t version;
2709  int32_t info;
2710  int32_t instance_size;
2711  uint32_t ivars;       /* struct objc_ivar_list * (32-bit pointer) */
2712  uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
2713  uint32_t cache;       /* struct objc_cache * (32-bit pointer) */
2714  uint32_t protocols;   /* struct objc_protocol_list * (32-bit pointer) */
2715};
2716
2717#define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
2718// class is not a metaclass
2719#define CLS_CLASS 0x1
2720// class is a metaclass
2721#define CLS_META 0x2
2722
2723struct objc_category_t {
2724  uint32_t category_name;    /* char * (32-bit pointer) */
2725  uint32_t class_name;       /* char * (32-bit pointer) */
2726  uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
2727  uint32_t class_methods;    /* struct objc_method_list * (32-bit pointer) */
2728  uint32_t protocols;        /* struct objc_protocol_list * (32-bit ptr) */
2729};
2730
2731struct objc_ivar_t {
2732  uint32_t ivar_name; /* char * (32-bit pointer) */
2733  uint32_t ivar_type; /* char * (32-bit pointer) */
2734  int32_t ivar_offset;
2735};
2736
2737struct objc_ivar_list_t {
2738  int32_t ivar_count;
2739  // struct objc_ivar_t ivar_list[1];          /* variable length structure */
2740};
2741
2742struct objc_method_list_t {
2743  uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
2744  int32_t method_count;
2745  // struct objc_method_t method_list[1];      /* variable length structure */
2746};
2747
2748struct objc_method_t {
2749  uint32_t method_name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
2750  uint32_t method_types; /* char * (32-bit pointer) */
2751  uint32_t method_imp;   /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
2752                            (32-bit pointer) */
2753};
2754
2755struct objc_protocol_list_t {
2756  uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
2757  int32_t count;
2758  // uint32_t list[1];   /* Protocol *, aka struct objc_protocol_t *
2759  //                        (32-bit pointer) */
2760};
2761
2762struct objc_protocol_t {
2763  uint32_t isa;              /* struct objc_class * (32-bit pointer) */
2764  uint32_t protocol_name;    /* char * (32-bit pointer) */
2765  uint32_t protocol_list;    /* struct objc_protocol_list * (32-bit pointer) */
2766  uint32_t instance_methods; /* struct objc_method_description_list *
2767                                (32-bit pointer) */
2768  uint32_t class_methods;    /* struct objc_method_description_list *
2769                                (32-bit pointer) */
2770};
2771
2772struct objc_method_description_list_t {
2773  int32_t count;
2774  // struct objc_method_description_t list[1];
2775};
2776
2777struct objc_method_description_t {
2778  uint32_t name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
2779  uint32_t types; /* char * (32-bit pointer) */
2780};
2781
2782inline void swapStruct(struct cfstring64_t &cfs) {
2783  sys::swapByteOrder(cfs.isa);
2784  sys::swapByteOrder(cfs.flags);
2785  sys::swapByteOrder(cfs.characters);
2786  sys::swapByteOrder(cfs.length);
2787}
2788
2789inline void swapStruct(struct class64_t &c) {
2790  sys::swapByteOrder(c.isa);
2791  sys::swapByteOrder(c.superclass);
2792  sys::swapByteOrder(c.cache);
2793  sys::swapByteOrder(c.vtable);
2794  sys::swapByteOrder(c.data);
2795}
2796
2797inline void swapStruct(struct class32_t &c) {
2798  sys::swapByteOrder(c.isa);
2799  sys::swapByteOrder(c.superclass);
2800  sys::swapByteOrder(c.cache);
2801  sys::swapByteOrder(c.vtable);
2802  sys::swapByteOrder(c.data);
2803}
2804
2805inline void swapStruct(struct class_ro64_t &cro) {
2806  sys::swapByteOrder(cro.flags);
2807  sys::swapByteOrder(cro.instanceStart);
2808  sys::swapByteOrder(cro.instanceSize);
2809  sys::swapByteOrder(cro.reserved);
2810  sys::swapByteOrder(cro.ivarLayout);
2811  sys::swapByteOrder(cro.name);
2812  sys::swapByteOrder(cro.baseMethods);
2813  sys::swapByteOrder(cro.baseProtocols);
2814  sys::swapByteOrder(cro.ivars);
2815  sys::swapByteOrder(cro.weakIvarLayout);
2816  sys::swapByteOrder(cro.baseProperties);
2817}
2818
2819inline void swapStruct(struct class_ro32_t &cro) {
2820  sys::swapByteOrder(cro.flags);
2821  sys::swapByteOrder(cro.instanceStart);
2822  sys::swapByteOrder(cro.instanceSize);
2823  sys::swapByteOrder(cro.ivarLayout);
2824  sys::swapByteOrder(cro.name);
2825  sys::swapByteOrder(cro.baseMethods);
2826  sys::swapByteOrder(cro.baseProtocols);
2827  sys::swapByteOrder(cro.ivars);
2828  sys::swapByteOrder(cro.weakIvarLayout);
2829  sys::swapByteOrder(cro.baseProperties);
2830}
2831
2832inline void swapStruct(struct method_list64_t &ml) {
2833  sys::swapByteOrder(ml.entsize);
2834  sys::swapByteOrder(ml.count);
2835}
2836
2837inline void swapStruct(struct method_list32_t &ml) {
2838  sys::swapByteOrder(ml.entsize);
2839  sys::swapByteOrder(ml.count);
2840}
2841
2842inline void swapStruct(struct method64_t &m) {
2843  sys::swapByteOrder(m.name);
2844  sys::swapByteOrder(m.types);
2845  sys::swapByteOrder(m.imp);
2846}
2847
2848inline void swapStruct(struct method32_t &m) {
2849  sys::swapByteOrder(m.name);
2850  sys::swapByteOrder(m.types);
2851  sys::swapByteOrder(m.imp);
2852}
2853
2854inline void swapStruct(struct protocol_list64_t &pl) {
2855  sys::swapByteOrder(pl.count);
2856}
2857
2858inline void swapStruct(struct protocol_list32_t &pl) {
2859  sys::swapByteOrder(pl.count);
2860}
2861
2862inline void swapStruct(struct protocol64_t &p) {
2863  sys::swapByteOrder(p.isa);
2864  sys::swapByteOrder(p.name);
2865  sys::swapByteOrder(p.protocols);
2866  sys::swapByteOrder(p.instanceMethods);
2867  sys::swapByteOrder(p.classMethods);
2868  sys::swapByteOrder(p.optionalInstanceMethods);
2869  sys::swapByteOrder(p.optionalClassMethods);
2870  sys::swapByteOrder(p.instanceProperties);
2871}
2872
2873inline void swapStruct(struct protocol32_t &p) {
2874  sys::swapByteOrder(p.isa);
2875  sys::swapByteOrder(p.name);
2876  sys::swapByteOrder(p.protocols);
2877  sys::swapByteOrder(p.instanceMethods);
2878  sys::swapByteOrder(p.classMethods);
2879  sys::swapByteOrder(p.optionalInstanceMethods);
2880  sys::swapByteOrder(p.optionalClassMethods);
2881  sys::swapByteOrder(p.instanceProperties);
2882}
2883
2884inline void swapStruct(struct ivar_list64_t &il) {
2885  sys::swapByteOrder(il.entsize);
2886  sys::swapByteOrder(il.count);
2887}
2888
2889inline void swapStruct(struct ivar_list32_t &il) {
2890  sys::swapByteOrder(il.entsize);
2891  sys::swapByteOrder(il.count);
2892}
2893
2894inline void swapStruct(struct ivar64_t &i) {
2895  sys::swapByteOrder(i.offset);
2896  sys::swapByteOrder(i.name);
2897  sys::swapByteOrder(i.type);
2898  sys::swapByteOrder(i.alignment);
2899  sys::swapByteOrder(i.size);
2900}
2901
2902inline void swapStruct(struct ivar32_t &i) {
2903  sys::swapByteOrder(i.offset);
2904  sys::swapByteOrder(i.name);
2905  sys::swapByteOrder(i.type);
2906  sys::swapByteOrder(i.alignment);
2907  sys::swapByteOrder(i.size);
2908}
2909
2910inline void swapStruct(struct objc_property_list64 &pl) {
2911  sys::swapByteOrder(pl.entsize);
2912  sys::swapByteOrder(pl.count);
2913}
2914
2915inline void swapStruct(struct objc_property_list32 &pl) {
2916  sys::swapByteOrder(pl.entsize);
2917  sys::swapByteOrder(pl.count);
2918}
2919
2920inline void swapStruct(struct objc_property64 &op) {
2921  sys::swapByteOrder(op.name);
2922  sys::swapByteOrder(op.attributes);
2923}
2924
2925inline void swapStruct(struct objc_property32 &op) {
2926  sys::swapByteOrder(op.name);
2927  sys::swapByteOrder(op.attributes);
2928}
2929
2930inline void swapStruct(struct category64_t &c) {
2931  sys::swapByteOrder(c.name);
2932  sys::swapByteOrder(c.cls);
2933  sys::swapByteOrder(c.instanceMethods);
2934  sys::swapByteOrder(c.classMethods);
2935  sys::swapByteOrder(c.protocols);
2936  sys::swapByteOrder(c.instanceProperties);
2937}
2938
2939inline void swapStruct(struct category32_t &c) {
2940  sys::swapByteOrder(c.name);
2941  sys::swapByteOrder(c.cls);
2942  sys::swapByteOrder(c.instanceMethods);
2943  sys::swapByteOrder(c.classMethods);
2944  sys::swapByteOrder(c.protocols);
2945  sys::swapByteOrder(c.instanceProperties);
2946}
2947
2948inline void swapStruct(struct objc_image_info64 &o) {
2949  sys::swapByteOrder(o.version);
2950  sys::swapByteOrder(o.flags);
2951}
2952
2953inline void swapStruct(struct objc_image_info32 &o) {
2954  sys::swapByteOrder(o.version);
2955  sys::swapByteOrder(o.flags);
2956}
2957
2958inline void swapStruct(struct imageInfo_t &o) {
2959  sys::swapByteOrder(o.version);
2960  sys::swapByteOrder(o.flags);
2961}
2962
2963inline void swapStruct(struct message_ref64 &mr) {
2964  sys::swapByteOrder(mr.imp);
2965  sys::swapByteOrder(mr.sel);
2966}
2967
2968inline void swapStruct(struct message_ref32 &mr) {
2969  sys::swapByteOrder(mr.imp);
2970  sys::swapByteOrder(mr.sel);
2971}
2972
2973inline void swapStruct(struct objc_module_t &module) {
2974  sys::swapByteOrder(module.version);
2975  sys::swapByteOrder(module.size);
2976  sys::swapByteOrder(module.name);
2977  sys::swapByteOrder(module.symtab);
2978}
2979
2980inline void swapStruct(struct objc_symtab_t &symtab) {
2981  sys::swapByteOrder(symtab.sel_ref_cnt);
2982  sys::swapByteOrder(symtab.refs);
2983  sys::swapByteOrder(symtab.cls_def_cnt);
2984  sys::swapByteOrder(symtab.cat_def_cnt);
2985}
2986
2987inline void swapStruct(struct objc_class_t &objc_class) {
2988  sys::swapByteOrder(objc_class.isa);
2989  sys::swapByteOrder(objc_class.super_class);
2990  sys::swapByteOrder(objc_class.name);
2991  sys::swapByteOrder(objc_class.version);
2992  sys::swapByteOrder(objc_class.info);
2993  sys::swapByteOrder(objc_class.instance_size);
2994  sys::swapByteOrder(objc_class.ivars);
2995  sys::swapByteOrder(objc_class.methodLists);
2996  sys::swapByteOrder(objc_class.cache);
2997  sys::swapByteOrder(objc_class.protocols);
2998}
2999
3000inline void swapStruct(struct objc_category_t &objc_category) {
3001  sys::swapByteOrder(objc_category.category_name);
3002  sys::swapByteOrder(objc_category.class_name);
3003  sys::swapByteOrder(objc_category.instance_methods);
3004  sys::swapByteOrder(objc_category.class_methods);
3005  sys::swapByteOrder(objc_category.protocols);
3006}
3007
3008inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
3009  sys::swapByteOrder(objc_ivar_list.ivar_count);
3010}
3011
3012inline void swapStruct(struct objc_ivar_t &objc_ivar) {
3013  sys::swapByteOrder(objc_ivar.ivar_name);
3014  sys::swapByteOrder(objc_ivar.ivar_type);
3015  sys::swapByteOrder(objc_ivar.ivar_offset);
3016}
3017
3018inline void swapStruct(struct objc_method_list_t &method_list) {
3019  sys::swapByteOrder(method_list.obsolete);
3020  sys::swapByteOrder(method_list.method_count);
3021}
3022
3023inline void swapStruct(struct objc_method_t &method) {
3024  sys::swapByteOrder(method.method_name);
3025  sys::swapByteOrder(method.method_types);
3026  sys::swapByteOrder(method.method_imp);
3027}
3028
3029inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
3030  sys::swapByteOrder(protocol_list.next);
3031  sys::swapByteOrder(protocol_list.count);
3032}
3033
3034inline void swapStruct(struct objc_protocol_t &protocol) {
3035  sys::swapByteOrder(protocol.isa);
3036  sys::swapByteOrder(protocol.protocol_name);
3037  sys::swapByteOrder(protocol.protocol_list);
3038  sys::swapByteOrder(protocol.instance_methods);
3039  sys::swapByteOrder(protocol.class_methods);
3040}
3041
3042inline void swapStruct(struct objc_method_description_list_t &mdl) {
3043  sys::swapByteOrder(mdl.count);
3044}
3045
3046inline void swapStruct(struct objc_method_description_t &md) {
3047  sys::swapByteOrder(md.name);
3048  sys::swapByteOrder(md.types);
3049}
3050
3051static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
3052                                                 struct DisassembleInfo *info);
3053
3054// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
3055// to an Objective-C class and returns the class name.  It is also passed the
3056// address of the pointer, so when the pointer is zero as it can be in an .o
3057// file, that is used to look for an external relocation entry with a symbol
3058// name.
3059static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
3060                                              uint64_t ReferenceValue,
3061                                              struct DisassembleInfo *info) {
3062  const char *r;
3063  uint32_t offset, left;
3064  SectionRef S;
3065
3066  // The pointer_value can be 0 in an object file and have a relocation
3067  // entry for the class symbol at the ReferenceValue (the address of the
3068  // pointer).
3069  if (pointer_value == 0) {
3070    r = get_pointer_64(ReferenceValue, offset, left, S, info);
3071    if (r == nullptr || left < sizeof(uint64_t))
3072      return nullptr;
3073    uint64_t n_value;
3074    const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3075    if (symbol_name == nullptr)
3076      return nullptr;
3077    const char *class_name = strrchr(symbol_name, '$');
3078    if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
3079      return class_name + 2;
3080    else
3081      return nullptr;
3082  }
3083
3084  // The case were the pointer_value is non-zero and points to a class defined
3085  // in this Mach-O file.
3086  r = get_pointer_64(pointer_value, offset, left, S, info);
3087  if (r == nullptr || left < sizeof(struct class64_t))
3088    return nullptr;
3089  struct class64_t c;
3090  memcpy(&c, r, sizeof(struct class64_t));
3091  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3092    swapStruct(c);
3093  if (c.data == 0)
3094    return nullptr;
3095  r = get_pointer_64(c.data, offset, left, S, info);
3096  if (r == nullptr || left < sizeof(struct class_ro64_t))
3097    return nullptr;
3098  struct class_ro64_t cro;
3099  memcpy(&cro, r, sizeof(struct class_ro64_t));
3100  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3101    swapStruct(cro);
3102  if (cro.name == 0)
3103    return nullptr;
3104  const char *name = get_pointer_64(cro.name, offset, left, S, info);
3105  return name;
3106}
3107
3108// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
3109// pointer to a cfstring and returns its name or nullptr.
3110static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
3111                                                 struct DisassembleInfo *info) {
3112  const char *r, *name;
3113  uint32_t offset, left;
3114  SectionRef S;
3115  struct cfstring64_t cfs;
3116  uint64_t cfs_characters;
3117
3118  r = get_pointer_64(ReferenceValue, offset, left, S, info);
3119  if (r == nullptr || left < sizeof(struct cfstring64_t))
3120    return nullptr;
3121  memcpy(&cfs, r, sizeof(struct cfstring64_t));
3122  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3123    swapStruct(cfs);
3124  if (cfs.characters == 0) {
3125    uint64_t n_value;
3126    const char *symbol_name = get_symbol_64(
3127        offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
3128    if (symbol_name == nullptr)
3129      return nullptr;
3130    cfs_characters = n_value;
3131  } else
3132    cfs_characters = cfs.characters;
3133  name = get_pointer_64(cfs_characters, offset, left, S, info);
3134
3135  return name;
3136}
3137
3138// get_objc2_64bit_selref() is used for disassembly and is passed a the address
3139// of a pointer to an Objective-C selector reference when the pointer value is
3140// zero as in a .o file and is likely to have a external relocation entry with
3141// who's symbol's n_value is the real pointer to the selector name.  If that is
3142// the case the real pointer to the selector name is returned else 0 is
3143// returned
3144static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
3145                                       struct DisassembleInfo *info) {
3146  uint32_t offset, left;
3147  SectionRef S;
3148
3149  const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
3150  if (r == nullptr || left < sizeof(uint64_t))
3151    return 0;
3152  uint64_t n_value;
3153  const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3154  if (symbol_name == nullptr)
3155    return 0;
3156  return n_value;
3157}
3158
3159static const SectionRef get_section(MachOObjectFile *O, const char *segname,
3160                                    const char *sectname) {
3161  for (const SectionRef &Section : O->sections()) {
3162    StringRef SectName;
3163    Section.getName(SectName);
3164    DataRefImpl Ref = Section.getRawDataRefImpl();
3165    StringRef SegName = O->getSectionFinalSegmentName(Ref);
3166    if (SegName == segname && SectName == sectname)
3167      return Section;
3168  }
3169  return SectionRef();
3170}
3171
3172static void
3173walk_pointer_list_64(const char *listname, const SectionRef S,
3174                     MachOObjectFile *O, struct DisassembleInfo *info,
3175                     void (*func)(uint64_t, struct DisassembleInfo *info)) {
3176  if (S == SectionRef())
3177    return;
3178
3179  StringRef SectName;
3180  S.getName(SectName);
3181  DataRefImpl Ref = S.getRawDataRefImpl();
3182  StringRef SegName = O->getSectionFinalSegmentName(Ref);
3183  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3184
3185  StringRef BytesStr;
3186  S.getContents(BytesStr);
3187  const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3188
3189  for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
3190    uint32_t left = S.getSize() - i;
3191    uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
3192    uint64_t p = 0;
3193    memcpy(&p, Contents + i, size);
3194    if (i + sizeof(uint64_t) > S.getSize())
3195      outs() << listname << " list pointer extends past end of (" << SegName
3196             << "," << SectName << ") section\n";
3197    outs() << format("%016" PRIx64, S.getAddress() + i) << " ";
3198
3199    if (O->isLittleEndian() != sys::IsLittleEndianHost)
3200      sys::swapByteOrder(p);
3201
3202    uint64_t n_value = 0;
3203    const char *name = get_symbol_64(i, S, info, n_value, p);
3204    if (name == nullptr)
3205      name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
3206
3207    if (n_value != 0) {
3208      outs() << format("0x%" PRIx64, n_value);
3209      if (p != 0)
3210        outs() << " + " << format("0x%" PRIx64, p);
3211    } else
3212      outs() << format("0x%" PRIx64, p);
3213    if (name != nullptr)
3214      outs() << " " << name;
3215    outs() << "\n";
3216
3217    p += n_value;
3218    if (func)
3219      func(p, info);
3220  }
3221}
3222
3223static void
3224walk_pointer_list_32(const char *listname, const SectionRef S,
3225                     MachOObjectFile *O, struct DisassembleInfo *info,
3226                     void (*func)(uint32_t, struct DisassembleInfo *info)) {
3227  if (S == SectionRef())
3228    return;
3229
3230  StringRef SectName;
3231  S.getName(SectName);
3232  DataRefImpl Ref = S.getRawDataRefImpl();
3233  StringRef SegName = O->getSectionFinalSegmentName(Ref);
3234  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3235
3236  StringRef BytesStr;
3237  S.getContents(BytesStr);
3238  const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3239
3240  for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
3241    uint32_t left = S.getSize() - i;
3242    uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
3243    uint32_t p = 0;
3244    memcpy(&p, Contents + i, size);
3245    if (i + sizeof(uint32_t) > S.getSize())
3246      outs() << listname << " list pointer extends past end of (" << SegName
3247             << "," << SectName << ") section\n";
3248    uint32_t Address = S.getAddress() + i;
3249    outs() << format("%08" PRIx32, Address) << " ";
3250
3251    if (O->isLittleEndian() != sys::IsLittleEndianHost)
3252      sys::swapByteOrder(p);
3253    outs() << format("0x%" PRIx32, p);
3254
3255    const char *name = get_symbol_32(i, S, info, p);
3256    if (name != nullptr)
3257      outs() << " " << name;
3258    outs() << "\n";
3259
3260    if (func)
3261      func(p, info);
3262  }
3263}
3264
3265static void print_layout_map(const char *layout_map, uint32_t left) {
3266  if (layout_map == nullptr)
3267    return;
3268  outs() << "                layout map: ";
3269  do {
3270    outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
3271    left--;
3272    layout_map++;
3273  } while (*layout_map != '\0' && left != 0);
3274  outs() << "\n";
3275}
3276
3277static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
3278  uint32_t offset, left;
3279  SectionRef S;
3280  const char *layout_map;
3281
3282  if (p == 0)
3283    return;
3284  layout_map = get_pointer_64(p, offset, left, S, info);
3285  print_layout_map(layout_map, left);
3286}
3287
3288static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
3289  uint32_t offset, left;
3290  SectionRef S;
3291  const char *layout_map;
3292
3293  if (p == 0)
3294    return;
3295  layout_map = get_pointer_32(p, offset, left, S, info);
3296  print_layout_map(layout_map, left);
3297}
3298
3299static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
3300                                  const char *indent) {
3301  struct method_list64_t ml;
3302  struct method64_t m;
3303  const char *r;
3304  uint32_t offset, xoffset, left, i;
3305  SectionRef S, xS;
3306  const char *name, *sym_name;
3307  uint64_t n_value;
3308
3309  r = get_pointer_64(p, offset, left, S, info);
3310  if (r == nullptr)
3311    return;
3312  memset(&ml, '\0', sizeof(struct method_list64_t));
3313  if (left < sizeof(struct method_list64_t)) {
3314    memcpy(&ml, r, left);
3315    outs() << "   (method_list_t entends past the end of the section)\n";
3316  } else
3317    memcpy(&ml, r, sizeof(struct method_list64_t));
3318  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3319    swapStruct(ml);
3320  outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
3321  outs() << indent << "\t\t     count " << ml.count << "\n";
3322
3323  p += sizeof(struct method_list64_t);
3324  offset += sizeof(struct method_list64_t);
3325  for (i = 0; i < ml.count; i++) {
3326    r = get_pointer_64(p, offset, left, S, info);
3327    if (r == nullptr)
3328      return;
3329    memset(&m, '\0', sizeof(struct method64_t));
3330    if (left < sizeof(struct method64_t)) {
3331      memcpy(&m, r, left);
3332      outs() << indent << "   (method_t extends past the end of the section)\n";
3333    } else
3334      memcpy(&m, r, sizeof(struct method64_t));
3335    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3336      swapStruct(m);
3337
3338    outs() << indent << "\t\t      name ";
3339    sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
3340                             info, n_value, m.name);
3341    if (n_value != 0) {
3342      if (info->verbose && sym_name != nullptr)
3343        outs() << sym_name;
3344      else
3345        outs() << format("0x%" PRIx64, n_value);
3346      if (m.name != 0)
3347        outs() << " + " << format("0x%" PRIx64, m.name);
3348    } else
3349      outs() << format("0x%" PRIx64, m.name);
3350    name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
3351    if (name != nullptr)
3352      outs() << format(" %.*s", left, name);
3353    outs() << "\n";
3354
3355    outs() << indent << "\t\t     types ";
3356    sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
3357                             info, n_value, m.types);
3358    if (n_value != 0) {
3359      if (info->verbose && sym_name != nullptr)
3360        outs() << sym_name;
3361      else
3362        outs() << format("0x%" PRIx64, n_value);
3363      if (m.types != 0)
3364        outs() << " + " << format("0x%" PRIx64, m.types);
3365    } else
3366      outs() << format("0x%" PRIx64, m.types);
3367    name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
3368    if (name != nullptr)
3369      outs() << format(" %.*s", left, name);
3370    outs() << "\n";
3371
3372    outs() << indent << "\t\t       imp ";
3373    name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
3374                         n_value, m.imp);
3375    if (info->verbose && name == nullptr) {
3376      if (n_value != 0) {
3377        outs() << format("0x%" PRIx64, n_value) << " ";
3378        if (m.imp != 0)
3379          outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
3380      } else
3381        outs() << format("0x%" PRIx64, m.imp) << " ";
3382    }
3383    if (name != nullptr)
3384      outs() << name;
3385    outs() << "\n";
3386
3387    p += sizeof(struct method64_t);
3388    offset += sizeof(struct method64_t);
3389  }
3390}
3391
3392static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
3393                                  const char *indent) {
3394  struct method_list32_t ml;
3395  struct method32_t m;
3396  const char *r, *name;
3397  uint32_t offset, xoffset, left, i;
3398  SectionRef S, xS;
3399
3400  r = get_pointer_32(p, offset, left, S, info);
3401  if (r == nullptr)
3402    return;
3403  memset(&ml, '\0', sizeof(struct method_list32_t));
3404  if (left < sizeof(struct method_list32_t)) {
3405    memcpy(&ml, r, left);
3406    outs() << "   (method_list_t entends past the end of the section)\n";
3407  } else
3408    memcpy(&ml, r, sizeof(struct method_list32_t));
3409  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3410    swapStruct(ml);
3411  outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
3412  outs() << indent << "\t\t     count " << ml.count << "\n";
3413
3414  p += sizeof(struct method_list32_t);
3415  offset += sizeof(struct method_list32_t);
3416  for (i = 0; i < ml.count; i++) {
3417    r = get_pointer_32(p, offset, left, S, info);
3418    if (r == nullptr)
3419      return;
3420    memset(&m, '\0', sizeof(struct method32_t));
3421    if (left < sizeof(struct method32_t)) {
3422      memcpy(&ml, r, left);
3423      outs() << indent << "   (method_t entends past the end of the section)\n";
3424    } else
3425      memcpy(&m, r, sizeof(struct method32_t));
3426    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3427      swapStruct(m);
3428
3429    outs() << indent << "\t\t      name " << format("0x%" PRIx32, m.name);
3430    name = get_pointer_32(m.name, xoffset, left, xS, info);
3431    if (name != nullptr)
3432      outs() << format(" %.*s", left, name);
3433    outs() << "\n";
3434
3435    outs() << indent << "\t\t     types " << format("0x%" PRIx32, m.types);
3436    name = get_pointer_32(m.types, xoffset, left, xS, info);
3437    if (name != nullptr)
3438      outs() << format(" %.*s", left, name);
3439    outs() << "\n";
3440
3441    outs() << indent << "\t\t       imp " << format("0x%" PRIx32, m.imp);
3442    name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
3443                         m.imp);
3444    if (name != nullptr)
3445      outs() << " " << name;
3446    outs() << "\n";
3447
3448    p += sizeof(struct method32_t);
3449    offset += sizeof(struct method32_t);
3450  }
3451}
3452
3453static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
3454  uint32_t offset, left, xleft;
3455  SectionRef S;
3456  struct objc_method_list_t method_list;
3457  struct objc_method_t method;
3458  const char *r, *methods, *name, *SymbolName;
3459  int32_t i;
3460
3461  r = get_pointer_32(p, offset, left, S, info, true);
3462  if (r == nullptr)
3463    return true;
3464
3465  outs() << "\n";
3466  if (left > sizeof(struct objc_method_list_t)) {
3467    memcpy(&method_list, r, sizeof(struct objc_method_list_t));
3468  } else {
3469    outs() << "\t\t objc_method_list extends past end of the section\n";
3470    memset(&method_list, '\0', sizeof(struct objc_method_list_t));
3471    memcpy(&method_list, r, left);
3472  }
3473  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3474    swapStruct(method_list);
3475
3476  outs() << "\t\t         obsolete "
3477         << format("0x%08" PRIx32, method_list.obsolete) << "\n";
3478  outs() << "\t\t     method_count " << method_list.method_count << "\n";
3479
3480  methods = r + sizeof(struct objc_method_list_t);
3481  for (i = 0; i < method_list.method_count; i++) {
3482    if ((i + 1) * sizeof(struct objc_method_t) > left) {
3483      outs() << "\t\t remaining method's extend past the of the section\n";
3484      break;
3485    }
3486    memcpy(&method, methods + i * sizeof(struct objc_method_t),
3487           sizeof(struct objc_method_t));
3488    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3489      swapStruct(method);
3490
3491    outs() << "\t\t      method_name "
3492           << format("0x%08" PRIx32, method.method_name);
3493    if (info->verbose) {
3494      name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
3495      if (name != nullptr)
3496        outs() << format(" %.*s", xleft, name);
3497      else
3498        outs() << " (not in an __OBJC section)";
3499    }
3500    outs() << "\n";
3501
3502    outs() << "\t\t     method_types "
3503           << format("0x%08" PRIx32, method.method_types);
3504    if (info->verbose) {
3505      name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
3506      if (name != nullptr)
3507        outs() << format(" %.*s", xleft, name);
3508      else
3509        outs() << " (not in an __OBJC section)";
3510    }
3511    outs() << "\n";
3512
3513    outs() << "\t\t       method_imp "
3514           << format("0x%08" PRIx32, method.method_imp) << " ";
3515    if (info->verbose) {
3516      SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
3517      if (SymbolName != nullptr)
3518        outs() << SymbolName;
3519    }
3520    outs() << "\n";
3521  }
3522  return false;
3523}
3524
3525static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
3526  struct protocol_list64_t pl;
3527  uint64_t q, n_value;
3528  struct protocol64_t pc;
3529  const char *r;
3530  uint32_t offset, xoffset, left, i;
3531  SectionRef S, xS;
3532  const char *name, *sym_name;
3533
3534  r = get_pointer_64(p, offset, left, S, info);
3535  if (r == nullptr)
3536    return;
3537  memset(&pl, '\0', sizeof(struct protocol_list64_t));
3538  if (left < sizeof(struct protocol_list64_t)) {
3539    memcpy(&pl, r, left);
3540    outs() << "   (protocol_list_t entends past the end of the section)\n";
3541  } else
3542    memcpy(&pl, r, sizeof(struct protocol_list64_t));
3543  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3544    swapStruct(pl);
3545  outs() << "                      count " << pl.count << "\n";
3546
3547  p += sizeof(struct protocol_list64_t);
3548  offset += sizeof(struct protocol_list64_t);
3549  for (i = 0; i < pl.count; i++) {
3550    r = get_pointer_64(p, offset, left, S, info);
3551    if (r == nullptr)
3552      return;
3553    q = 0;
3554    if (left < sizeof(uint64_t)) {
3555      memcpy(&q, r, left);
3556      outs() << "   (protocol_t * entends past the end of the section)\n";
3557    } else
3558      memcpy(&q, r, sizeof(uint64_t));
3559    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3560      sys::swapByteOrder(q);
3561
3562    outs() << "\t\t      list[" << i << "] ";
3563    sym_name = get_symbol_64(offset, S, info, n_value, q);
3564    if (n_value != 0) {
3565      if (info->verbose && sym_name != nullptr)
3566        outs() << sym_name;
3567      else
3568        outs() << format("0x%" PRIx64, n_value);
3569      if (q != 0)
3570        outs() << " + " << format("0x%" PRIx64, q);
3571    } else
3572      outs() << format("0x%" PRIx64, q);
3573    outs() << " (struct protocol_t *)\n";
3574
3575    r = get_pointer_64(q + n_value, offset, left, S, info);
3576    if (r == nullptr)
3577      return;
3578    memset(&pc, '\0', sizeof(struct protocol64_t));
3579    if (left < sizeof(struct protocol64_t)) {
3580      memcpy(&pc, r, left);
3581      outs() << "   (protocol_t entends past the end of the section)\n";
3582    } else
3583      memcpy(&pc, r, sizeof(struct protocol64_t));
3584    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3585      swapStruct(pc);
3586
3587    outs() << "\t\t\t      isa " << format("0x%" PRIx64, pc.isa) << "\n";
3588
3589    outs() << "\t\t\t     name ";
3590    sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
3591                             info, n_value, pc.name);
3592    if (n_value != 0) {
3593      if (info->verbose && sym_name != nullptr)
3594        outs() << sym_name;
3595      else
3596        outs() << format("0x%" PRIx64, n_value);
3597      if (pc.name != 0)
3598        outs() << " + " << format("0x%" PRIx64, pc.name);
3599    } else
3600      outs() << format("0x%" PRIx64, pc.name);
3601    name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
3602    if (name != nullptr)
3603      outs() << format(" %.*s", left, name);
3604    outs() << "\n";
3605
3606    outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";
3607
3608    outs() << "\t\t  instanceMethods ";
3609    sym_name =
3610        get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
3611                      S, info, n_value, pc.instanceMethods);
3612    if (n_value != 0) {
3613      if (info->verbose && sym_name != nullptr)
3614        outs() << sym_name;
3615      else
3616        outs() << format("0x%" PRIx64, n_value);
3617      if (pc.instanceMethods != 0)
3618        outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
3619    } else
3620      outs() << format("0x%" PRIx64, pc.instanceMethods);
3621    outs() << " (struct method_list_t *)\n";
3622    if (pc.instanceMethods + n_value != 0)
3623      print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
3624
3625    outs() << "\t\t     classMethods ";
3626    sym_name =
3627        get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
3628                      info, n_value, pc.classMethods);
3629    if (n_value != 0) {
3630      if (info->verbose && sym_name != nullptr)
3631        outs() << sym_name;
3632      else
3633        outs() << format("0x%" PRIx64, n_value);
3634      if (pc.classMethods != 0)
3635        outs() << " + " << format("0x%" PRIx64, pc.classMethods);
3636    } else
3637      outs() << format("0x%" PRIx64, pc.classMethods);
3638    outs() << " (struct method_list_t *)\n";
3639    if (pc.classMethods + n_value != 0)
3640      print_method_list64_t(pc.classMethods + n_value, info, "\t");
3641
3642    outs() << "\t  optionalInstanceMethods "
3643           << format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
3644    outs() << "\t     optionalClassMethods "
3645           << format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
3646    outs() << "\t       instanceProperties "
3647           << format("0x%" PRIx64, pc.instanceProperties) << "\n";
3648
3649    p += sizeof(uint64_t);
3650    offset += sizeof(uint64_t);
3651  }
3652}
3653
3654static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
3655  struct protocol_list32_t pl;
3656  uint32_t q;
3657  struct protocol32_t pc;
3658  const char *r;
3659  uint32_t offset, xoffset, left, i;
3660  SectionRef S, xS;
3661  const char *name;
3662
3663  r = get_pointer_32(p, offset, left, S, info);
3664  if (r == nullptr)
3665    return;
3666  memset(&pl, '\0', sizeof(struct protocol_list32_t));
3667  if (left < sizeof(struct protocol_list32_t)) {
3668    memcpy(&pl, r, left);
3669    outs() << "   (protocol_list_t entends past the end of the section)\n";
3670  } else
3671    memcpy(&pl, r, sizeof(struct protocol_list32_t));
3672  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3673    swapStruct(pl);
3674  outs() << "                      count " << pl.count << "\n";
3675
3676  p += sizeof(struct protocol_list32_t);
3677  offset += sizeof(struct protocol_list32_t);
3678  for (i = 0; i < pl.count; i++) {
3679    r = get_pointer_32(p, offset, left, S, info);
3680    if (r == nullptr)
3681      return;
3682    q = 0;
3683    if (left < sizeof(uint32_t)) {
3684      memcpy(&q, r, left);
3685      outs() << "   (protocol_t * entends past the end of the section)\n";
3686    } else
3687      memcpy(&q, r, sizeof(uint32_t));
3688    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3689      sys::swapByteOrder(q);
3690    outs() << "\t\t      list[" << i << "] " << format("0x%" PRIx32, q)
3691           << " (struct protocol_t *)\n";
3692    r = get_pointer_32(q, offset, left, S, info);
3693    if (r == nullptr)
3694      return;
3695    memset(&pc, '\0', sizeof(struct protocol32_t));
3696    if (left < sizeof(struct protocol32_t)) {
3697      memcpy(&pc, r, left);
3698      outs() << "   (protocol_t entends past the end of the section)\n";
3699    } else
3700      memcpy(&pc, r, sizeof(struct protocol32_t));
3701    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3702      swapStruct(pc);
3703    outs() << "\t\t\t      isa " << format("0x%" PRIx32, pc.isa) << "\n";
3704    outs() << "\t\t\t     name " << format("0x%" PRIx32, pc.name);
3705    name = get_pointer_32(pc.name, xoffset, left, xS, info);
3706    if (name != nullptr)
3707      outs() << format(" %.*s", left, name);
3708    outs() << "\n";
3709    outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
3710    outs() << "\t\t  instanceMethods "
3711           << format("0x%" PRIx32, pc.instanceMethods)
3712           << " (struct method_list_t *)\n";
3713    if (pc.instanceMethods != 0)
3714      print_method_list32_t(pc.instanceMethods, info, "\t");
3715    outs() << "\t\t     classMethods " << format("0x%" PRIx32, pc.classMethods)
3716           << " (struct method_list_t *)\n";
3717    if (pc.classMethods != 0)
3718      print_method_list32_t(pc.classMethods, info, "\t");
3719    outs() << "\t  optionalInstanceMethods "
3720           << format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
3721    outs() << "\t     optionalClassMethods "
3722           << format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
3723    outs() << "\t       instanceProperties "
3724           << format("0x%" PRIx32, pc.instanceProperties) << "\n";
3725    p += sizeof(uint32_t);
3726    offset += sizeof(uint32_t);
3727  }
3728}
3729
3730static void print_indent(uint32_t indent) {
3731  for (uint32_t i = 0; i < indent;) {
3732    if (indent - i >= 8) {
3733      outs() << "\t";
3734      i += 8;
3735    } else {
3736      for (uint32_t j = i; j < indent; j++)
3737        outs() << " ";
3738      return;
3739    }
3740  }
3741}
3742
3743static bool print_method_description_list(uint32_t p, uint32_t indent,
3744                                          struct DisassembleInfo *info) {
3745  uint32_t offset, left, xleft;
3746  SectionRef S;
3747  struct objc_method_description_list_t mdl;
3748  struct objc_method_description_t md;
3749  const char *r, *list, *name;
3750  int32_t i;
3751
3752  r = get_pointer_32(p, offset, left, S, info, true);
3753  if (r == nullptr)
3754    return true;
3755
3756  outs() << "\n";
3757  if (left > sizeof(struct objc_method_description_list_t)) {
3758    memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
3759  } else {
3760    print_indent(indent);
3761    outs() << " objc_method_description_list extends past end of the section\n";
3762    memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
3763    memcpy(&mdl, r, left);
3764  }
3765  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3766    swapStruct(mdl);
3767
3768  print_indent(indent);
3769  outs() << "        count " << mdl.count << "\n";
3770
3771  list = r + sizeof(struct objc_method_description_list_t);
3772  for (i = 0; i < mdl.count; i++) {
3773    if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
3774      print_indent(indent);
3775      outs() << " remaining list entries extend past the of the section\n";
3776      break;
3777    }
3778    print_indent(indent);
3779    outs() << "        list[" << i << "]\n";
3780    memcpy(&md, list + i * sizeof(struct objc_method_description_t),
3781           sizeof(struct objc_method_description_t));
3782    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3783      swapStruct(md);
3784
3785    print_indent(indent);
3786    outs() << "             name " << format("0x%08" PRIx32, md.name);
3787    if (info->verbose) {
3788      name = get_pointer_32(md.name, offset, xleft, S, info, true);
3789      if (name != nullptr)
3790        outs() << format(" %.*s", xleft, name);
3791      else
3792        outs() << " (not in an __OBJC section)";
3793    }
3794    outs() << "\n";
3795
3796    print_indent(indent);
3797    outs() << "            types " << format("0x%08" PRIx32, md.types);
3798    if (info->verbose) {
3799      name = get_pointer_32(md.types, offset, xleft, S, info, true);
3800      if (name != nullptr)
3801        outs() << format(" %.*s", xleft, name);
3802      else
3803        outs() << " (not in an __OBJC section)";
3804    }
3805    outs() << "\n";
3806  }
3807  return false;
3808}
3809
3810static bool print_protocol_list(uint32_t p, uint32_t indent,
3811                                struct DisassembleInfo *info);
3812
3813static bool print_protocol(uint32_t p, uint32_t indent,
3814                           struct DisassembleInfo *info) {
3815  uint32_t offset, left;
3816  SectionRef S;
3817  struct objc_protocol_t protocol;
3818  const char *r, *name;
3819
3820  r = get_pointer_32(p, offset, left, S, info, true);
3821  if (r == nullptr)
3822    return true;
3823
3824  outs() << "\n";
3825  if (left >= sizeof(struct objc_protocol_t)) {
3826    memcpy(&protocol, r, sizeof(struct objc_protocol_t));
3827  } else {
3828    print_indent(indent);
3829    outs() << "            Protocol extends past end of the section\n";
3830    memset(&protocol, '\0', sizeof(struct objc_protocol_t));
3831    memcpy(&protocol, r, left);
3832  }
3833  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3834    swapStruct(protocol);
3835
3836  print_indent(indent);
3837  outs() << "              isa " << format("0x%08" PRIx32, protocol.isa)
3838         << "\n";
3839
3840  print_indent(indent);
3841  outs() << "    protocol_name "
3842         << format("0x%08" PRIx32, protocol.protocol_name);
3843  if (info->verbose) {
3844    name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
3845    if (name != nullptr)
3846      outs() << format(" %.*s", left, name);
3847    else
3848      outs() << " (not in an __OBJC section)";
3849  }
3850  outs() << "\n";
3851
3852  print_indent(indent);
3853  outs() << "    protocol_list "
3854         << format("0x%08" PRIx32, protocol.protocol_list);
3855  if (print_protocol_list(protocol.protocol_list, indent + 4, info))
3856    outs() << " (not in an __OBJC section)\n";
3857
3858  print_indent(indent);
3859  outs() << " instance_methods "
3860         << format("0x%08" PRIx32, protocol.instance_methods);
3861  if (print_method_description_list(protocol.instance_methods, indent, info))
3862    outs() << " (not in an __OBJC section)\n";
3863
3864  print_indent(indent);
3865  outs() << "    class_methods "
3866         << format("0x%08" PRIx32, protocol.class_methods);
3867  if (print_method_description_list(protocol.class_methods, indent, info))
3868    outs() << " (not in an __OBJC section)\n";
3869
3870  return false;
3871}
3872
3873static bool print_protocol_list(uint32_t p, uint32_t indent,
3874                                struct DisassembleInfo *info) {
3875  uint32_t offset, left, l;
3876  SectionRef S;
3877  struct objc_protocol_list_t protocol_list;
3878  const char *r, *list;
3879  int32_t i;
3880
3881  r = get_pointer_32(p, offset, left, S, info, true);
3882  if (r == nullptr)
3883    return true;
3884
3885  outs() << "\n";
3886  if (left > sizeof(struct objc_protocol_list_t)) {
3887    memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
3888  } else {
3889    outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
3890    memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
3891    memcpy(&protocol_list, r, left);
3892  }
3893  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3894    swapStruct(protocol_list);
3895
3896  print_indent(indent);
3897  outs() << "         next " << format("0x%08" PRIx32, protocol_list.next)
3898         << "\n";
3899  print_indent(indent);
3900  outs() << "        count " << protocol_list.count << "\n";
3901
3902  list = r + sizeof(struct objc_protocol_list_t);
3903  for (i = 0; i < protocol_list.count; i++) {
3904    if ((i + 1) * sizeof(uint32_t) > left) {
3905      outs() << "\t\t remaining list entries extend past the of the section\n";
3906      break;
3907    }
3908    memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
3909    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3910      sys::swapByteOrder(l);
3911
3912    print_indent(indent);
3913    outs() << "      list[" << i << "] " << format("0x%08" PRIx32, l);
3914    if (print_protocol(l, indent, info))
3915      outs() << "(not in an __OBJC section)\n";
3916  }
3917  return false;
3918}
3919
3920static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
3921  struct ivar_list64_t il;
3922  struct ivar64_t i;
3923  const char *r;
3924  uint32_t offset, xoffset, left, j;
3925  SectionRef S, xS;
3926  const char *name, *sym_name, *ivar_offset_p;
3927  uint64_t ivar_offset, n_value;
3928
3929  r = get_pointer_64(p, offset, left, S, info);
3930  if (r == nullptr)
3931    return;
3932  memset(&il, '\0', sizeof(struct ivar_list64_t));
3933  if (left < sizeof(struct ivar_list64_t)) {
3934    memcpy(&il, r, left);
3935    outs() << "   (ivar_list_t entends past the end of the section)\n";
3936  } else
3937    memcpy(&il, r, sizeof(struct ivar_list64_t));
3938  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3939    swapStruct(il);
3940  outs() << "                    entsize " << il.entsize << "\n";
3941  outs() << "                      count " << il.count << "\n";
3942
3943  p += sizeof(struct ivar_list64_t);
3944  offset += sizeof(struct ivar_list64_t);
3945  for (j = 0; j < il.count; j++) {
3946    r = get_pointer_64(p, offset, left, S, info);
3947    if (r == nullptr)
3948      return;
3949    memset(&i, '\0', sizeof(struct ivar64_t));
3950    if (left < sizeof(struct ivar64_t)) {
3951      memcpy(&i, r, left);
3952      outs() << "   (ivar_t entends past the end of the section)\n";
3953    } else
3954      memcpy(&i, r, sizeof(struct ivar64_t));
3955    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3956      swapStruct(i);
3957
3958    outs() << "\t\t\t   offset ";
3959    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
3960                             info, n_value, i.offset);
3961    if (n_value != 0) {
3962      if (info->verbose && sym_name != nullptr)
3963        outs() << sym_name;
3964      else
3965        outs() << format("0x%" PRIx64, n_value);
3966      if (i.offset != 0)
3967        outs() << " + " << format("0x%" PRIx64, i.offset);
3968    } else
3969      outs() << format("0x%" PRIx64, i.offset);
3970    ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
3971    if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
3972      memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
3973      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3974        sys::swapByteOrder(ivar_offset);
3975      outs() << " " << ivar_offset << "\n";
3976    } else
3977      outs() << "\n";
3978
3979    outs() << "\t\t\t     name ";
3980    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
3981                             n_value, i.name);
3982    if (n_value != 0) {
3983      if (info->verbose && sym_name != nullptr)
3984        outs() << sym_name;
3985      else
3986        outs() << format("0x%" PRIx64, n_value);
3987      if (i.name != 0)
3988        outs() << " + " << format("0x%" PRIx64, i.name);
3989    } else
3990      outs() << format("0x%" PRIx64, i.name);
3991    name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
3992    if (name != nullptr)
3993      outs() << format(" %.*s", left, name);
3994    outs() << "\n";
3995
3996    outs() << "\t\t\t     type ";
3997    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
3998                             n_value, i.name);
3999    name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
4000    if (n_value != 0) {
4001      if (info->verbose && sym_name != nullptr)
4002        outs() << sym_name;
4003      else
4004        outs() << format("0x%" PRIx64, n_value);
4005      if (i.type != 0)
4006        outs() << " + " << format("0x%" PRIx64, i.type);
4007    } else
4008      outs() << format("0x%" PRIx64, i.type);
4009    if (name != nullptr)
4010      outs() << format(" %.*s", left, name);
4011    outs() << "\n";
4012
4013    outs() << "\t\t\talignment " << i.alignment << "\n";
4014    outs() << "\t\t\t     size " << i.size << "\n";
4015
4016    p += sizeof(struct ivar64_t);
4017    offset += sizeof(struct ivar64_t);
4018  }
4019}
4020
4021static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
4022  struct ivar_list32_t il;
4023  struct ivar32_t i;
4024  const char *r;
4025  uint32_t offset, xoffset, left, j;
4026  SectionRef S, xS;
4027  const char *name, *ivar_offset_p;
4028  uint32_t ivar_offset;
4029
4030  r = get_pointer_32(p, offset, left, S, info);
4031  if (r == nullptr)
4032    return;
4033  memset(&il, '\0', sizeof(struct ivar_list32_t));
4034  if (left < sizeof(struct ivar_list32_t)) {
4035    memcpy(&il, r, left);
4036    outs() << "   (ivar_list_t entends past the end of the section)\n";
4037  } else
4038    memcpy(&il, r, sizeof(struct ivar_list32_t));
4039  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4040    swapStruct(il);
4041  outs() << "                    entsize " << il.entsize << "\n";
4042  outs() << "                      count " << il.count << "\n";
4043
4044  p += sizeof(struct ivar_list32_t);
4045  offset += sizeof(struct ivar_list32_t);
4046  for (j = 0; j < il.count; j++) {
4047    r = get_pointer_32(p, offset, left, S, info);
4048    if (r == nullptr)
4049      return;
4050    memset(&i, '\0', sizeof(struct ivar32_t));
4051    if (left < sizeof(struct ivar32_t)) {
4052      memcpy(&i, r, left);
4053      outs() << "   (ivar_t entends past the end of the section)\n";
4054    } else
4055      memcpy(&i, r, sizeof(struct ivar32_t));
4056    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4057      swapStruct(i);
4058
4059    outs() << "\t\t\t   offset " << format("0x%" PRIx32, i.offset);
4060    ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
4061    if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4062      memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4063      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4064        sys::swapByteOrder(ivar_offset);
4065      outs() << " " << ivar_offset << "\n";
4066    } else
4067      outs() << "\n";
4068
4069    outs() << "\t\t\t     name " << format("0x%" PRIx32, i.name);
4070    name = get_pointer_32(i.name, xoffset, left, xS, info);
4071    if (name != nullptr)
4072      outs() << format(" %.*s", left, name);
4073    outs() << "\n";
4074
4075    outs() << "\t\t\t     type " << format("0x%" PRIx32, i.type);
4076    name = get_pointer_32(i.type, xoffset, left, xS, info);
4077    if (name != nullptr)
4078      outs() << format(" %.*s", left, name);
4079    outs() << "\n";
4080
4081    outs() << "\t\t\talignment " << i.alignment << "\n";
4082    outs() << "\t\t\t     size " << i.size << "\n";
4083
4084    p += sizeof(struct ivar32_t);
4085    offset += sizeof(struct ivar32_t);
4086  }
4087}
4088
4089static void print_objc_property_list64(uint64_t p,
4090                                       struct DisassembleInfo *info) {
4091  struct objc_property_list64 opl;
4092  struct objc_property64 op;
4093  const char *r;
4094  uint32_t offset, xoffset, left, j;
4095  SectionRef S, xS;
4096  const char *name, *sym_name;
4097  uint64_t n_value;
4098
4099  r = get_pointer_64(p, offset, left, S, info);
4100  if (r == nullptr)
4101    return;
4102  memset(&opl, '\0', sizeof(struct objc_property_list64));
4103  if (left < sizeof(struct objc_property_list64)) {
4104    memcpy(&opl, r, left);
4105    outs() << "   (objc_property_list entends past the end of the section)\n";
4106  } else
4107    memcpy(&opl, r, sizeof(struct objc_property_list64));
4108  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4109    swapStruct(opl);
4110  outs() << "                    entsize " << opl.entsize << "\n";
4111  outs() << "                      count " << opl.count << "\n";
4112
4113  p += sizeof(struct objc_property_list64);
4114  offset += sizeof(struct objc_property_list64);
4115  for (j = 0; j < opl.count; j++) {
4116    r = get_pointer_64(p, offset, left, S, info);
4117    if (r == nullptr)
4118      return;
4119    memset(&op, '\0', sizeof(struct objc_property64));
4120    if (left < sizeof(struct objc_property64)) {
4121      memcpy(&op, r, left);
4122      outs() << "   (objc_property entends past the end of the section)\n";
4123    } else
4124      memcpy(&op, r, sizeof(struct objc_property64));
4125    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4126      swapStruct(op);
4127
4128    outs() << "\t\t\t     name ";
4129    sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
4130                             info, n_value, op.name);
4131    if (n_value != 0) {
4132      if (info->verbose && sym_name != nullptr)
4133        outs() << sym_name;
4134      else
4135        outs() << format("0x%" PRIx64, n_value);
4136      if (op.name != 0)
4137        outs() << " + " << format("0x%" PRIx64, op.name);
4138    } else
4139      outs() << format("0x%" PRIx64, op.name);
4140    name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
4141    if (name != nullptr)
4142      outs() << format(" %.*s", left, name);
4143    outs() << "\n";
4144
4145    outs() << "\t\t\tattributes ";
4146    sym_name =
4147        get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
4148                      info, n_value, op.attributes);
4149    if (n_value != 0) {
4150      if (info->verbose && sym_name != nullptr)
4151        outs() << sym_name;
4152      else
4153        outs() << format("0x%" PRIx64, n_value);
4154      if (op.attributes != 0)
4155        outs() << " + " << format("0x%" PRIx64, op.attributes);
4156    } else
4157      outs() << format("0x%" PRIx64, op.attributes);
4158    name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
4159    if (name != nullptr)
4160      outs() << format(" %.*s", left, name);
4161    outs() << "\n";
4162
4163    p += sizeof(struct objc_property64);
4164    offset += sizeof(struct objc_property64);
4165  }
4166}
4167
4168static void print_objc_property_list32(uint32_t p,
4169                                       struct DisassembleInfo *info) {
4170  struct objc_property_list32 opl;
4171  struct objc_property32 op;
4172  const char *r;
4173  uint32_t offset, xoffset, left, j;
4174  SectionRef S, xS;
4175  const char *name;
4176
4177  r = get_pointer_32(p, offset, left, S, info);
4178  if (r == nullptr)
4179    return;
4180  memset(&opl, '\0', sizeof(struct objc_property_list32));
4181  if (left < sizeof(struct objc_property_list32)) {
4182    memcpy(&opl, r, left);
4183    outs() << "   (objc_property_list entends past the end of the section)\n";
4184  } else
4185    memcpy(&opl, r, sizeof(struct objc_property_list32));
4186  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4187    swapStruct(opl);
4188  outs() << "                    entsize " << opl.entsize << "\n";
4189  outs() << "                      count " << opl.count << "\n";
4190
4191  p += sizeof(struct objc_property_list32);
4192  offset += sizeof(struct objc_property_list32);
4193  for (j = 0; j < opl.count; j++) {
4194    r = get_pointer_32(p, offset, left, S, info);
4195    if (r == nullptr)
4196      return;
4197    memset(&op, '\0', sizeof(struct objc_property32));
4198    if (left < sizeof(struct objc_property32)) {
4199      memcpy(&op, r, left);
4200      outs() << "   (objc_property entends past the end of the section)\n";
4201    } else
4202      memcpy(&op, r, sizeof(struct objc_property32));
4203    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4204      swapStruct(op);
4205
4206    outs() << "\t\t\t     name " << format("0x%" PRIx32, op.name);
4207    name = get_pointer_32(op.name, xoffset, left, xS, info);
4208    if (name != nullptr)
4209      outs() << format(" %.*s", left, name);
4210    outs() << "\n";
4211
4212    outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
4213    name = get_pointer_32(op.attributes, xoffset, left, xS, info);
4214    if (name != nullptr)
4215      outs() << format(" %.*s", left, name);
4216    outs() << "\n";
4217
4218    p += sizeof(struct objc_property32);
4219    offset += sizeof(struct objc_property32);
4220  }
4221}
4222
4223static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
4224                               bool &is_meta_class) {
4225  struct class_ro64_t cro;
4226  const char *r;
4227  uint32_t offset, xoffset, left;
4228  SectionRef S, xS;
4229  const char *name, *sym_name;
4230  uint64_t n_value;
4231
4232  r = get_pointer_64(p, offset, left, S, info);
4233  if (r == nullptr || left < sizeof(struct class_ro64_t))
4234    return false;
4235  memset(&cro, '\0', sizeof(struct class_ro64_t));
4236  if (left < sizeof(struct class_ro64_t)) {
4237    memcpy(&cro, r, left);
4238    outs() << "   (class_ro_t entends past the end of the section)\n";
4239  } else
4240    memcpy(&cro, r, sizeof(struct class_ro64_t));
4241  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4242    swapStruct(cro);
4243  outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
4244  if (cro.flags & RO_META)
4245    outs() << " RO_META";
4246  if (cro.flags & RO_ROOT)
4247    outs() << " RO_ROOT";
4248  if (cro.flags & RO_HAS_CXX_STRUCTORS)
4249    outs() << " RO_HAS_CXX_STRUCTORS";
4250  outs() << "\n";
4251  outs() << "            instanceStart " << cro.instanceStart << "\n";
4252  outs() << "             instanceSize " << cro.instanceSize << "\n";
4253  outs() << "                 reserved " << format("0x%" PRIx32, cro.reserved)
4254         << "\n";
4255  outs() << "               ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
4256         << "\n";
4257  print_layout_map64(cro.ivarLayout, info);
4258
4259  outs() << "                     name ";
4260  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
4261                           info, n_value, cro.name);
4262  if (n_value != 0) {
4263    if (info->verbose && sym_name != nullptr)
4264      outs() << sym_name;
4265    else
4266      outs() << format("0x%" PRIx64, n_value);
4267    if (cro.name != 0)
4268      outs() << " + " << format("0x%" PRIx64, cro.name);
4269  } else
4270    outs() << format("0x%" PRIx64, cro.name);
4271  name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
4272  if (name != nullptr)
4273    outs() << format(" %.*s", left, name);
4274  outs() << "\n";
4275
4276  outs() << "              baseMethods ";
4277  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
4278                           S, info, n_value, cro.baseMethods);
4279  if (n_value != 0) {
4280    if (info->verbose && sym_name != nullptr)
4281      outs() << sym_name;
4282    else
4283      outs() << format("0x%" PRIx64, n_value);
4284    if (cro.baseMethods != 0)
4285      outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
4286  } else
4287    outs() << format("0x%" PRIx64, cro.baseMethods);
4288  outs() << " (struct method_list_t *)\n";
4289  if (cro.baseMethods + n_value != 0)
4290    print_method_list64_t(cro.baseMethods + n_value, info, "");
4291
4292  outs() << "            baseProtocols ";
4293  sym_name =
4294      get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
4295                    info, n_value, cro.baseProtocols);
4296  if (n_value != 0) {
4297    if (info->verbose && sym_name != nullptr)
4298      outs() << sym_name;
4299    else
4300      outs() << format("0x%" PRIx64, n_value);
4301    if (cro.baseProtocols != 0)
4302      outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
4303  } else
4304    outs() << format("0x%" PRIx64, cro.baseProtocols);
4305  outs() << "\n";
4306  if (cro.baseProtocols + n_value != 0)
4307    print_protocol_list64_t(cro.baseProtocols + n_value, info);
4308
4309  outs() << "                    ivars ";
4310  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
4311                           info, n_value, cro.ivars);
4312  if (n_value != 0) {
4313    if (info->verbose && sym_name != nullptr)
4314      outs() << sym_name;
4315    else
4316      outs() << format("0x%" PRIx64, n_value);
4317    if (cro.ivars != 0)
4318      outs() << " + " << format("0x%" PRIx64, cro.ivars);
4319  } else
4320    outs() << format("0x%" PRIx64, cro.ivars);
4321  outs() << "\n";
4322  if (cro.ivars + n_value != 0)
4323    print_ivar_list64_t(cro.ivars + n_value, info);
4324
4325  outs() << "           weakIvarLayout ";
4326  sym_name =
4327      get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
4328                    info, n_value, cro.weakIvarLayout);
4329  if (n_value != 0) {
4330    if (info->verbose && sym_name != nullptr)
4331      outs() << sym_name;
4332    else
4333      outs() << format("0x%" PRIx64, n_value);
4334    if (cro.weakIvarLayout != 0)
4335      outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
4336  } else
4337    outs() << format("0x%" PRIx64, cro.weakIvarLayout);
4338  outs() << "\n";
4339  print_layout_map64(cro.weakIvarLayout + n_value, info);
4340
4341  outs() << "           baseProperties ";
4342  sym_name =
4343      get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
4344                    info, n_value, cro.baseProperties);
4345  if (n_value != 0) {
4346    if (info->verbose && sym_name != nullptr)
4347      outs() << sym_name;
4348    else
4349      outs() << format("0x%" PRIx64, n_value);
4350    if (cro.baseProperties != 0)
4351      outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
4352  } else
4353    outs() << format("0x%" PRIx64, cro.baseProperties);
4354  outs() << "\n";
4355  if (cro.baseProperties + n_value != 0)
4356    print_objc_property_list64(cro.baseProperties + n_value, info);
4357
4358  is_meta_class = (cro.flags & RO_META) != 0;
4359  return true;
4360}
4361
4362static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
4363                               bool &is_meta_class) {
4364  struct class_ro32_t cro;
4365  const char *r;
4366  uint32_t offset, xoffset, left;
4367  SectionRef S, xS;
4368  const char *name;
4369
4370  r = get_pointer_32(p, offset, left, S, info);
4371  if (r == nullptr)
4372    return false;
4373  memset(&cro, '\0', sizeof(struct class_ro32_t));
4374  if (left < sizeof(struct class_ro32_t)) {
4375    memcpy(&cro, r, left);
4376    outs() << "   (class_ro_t entends past the end of the section)\n";
4377  } else
4378    memcpy(&cro, r, sizeof(struct class_ro32_t));
4379  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4380    swapStruct(cro);
4381  outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
4382  if (cro.flags & RO_META)
4383    outs() << " RO_META";
4384  if (cro.flags & RO_ROOT)
4385    outs() << " RO_ROOT";
4386  if (cro.flags & RO_HAS_CXX_STRUCTORS)
4387    outs() << " RO_HAS_CXX_STRUCTORS";
4388  outs() << "\n";
4389  outs() << "            instanceStart " << cro.instanceStart << "\n";
4390  outs() << "             instanceSize " << cro.instanceSize << "\n";
4391  outs() << "               ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
4392         << "\n";
4393  print_layout_map32(cro.ivarLayout, info);
4394
4395  outs() << "                     name " << format("0x%" PRIx32, cro.name);
4396  name = get_pointer_32(cro.name, xoffset, left, xS, info);
4397  if (name != nullptr)
4398    outs() << format(" %.*s", left, name);
4399  outs() << "\n";
4400
4401  outs() << "              baseMethods "
4402         << format("0x%" PRIx32, cro.baseMethods)
4403         << " (struct method_list_t *)\n";
4404  if (cro.baseMethods != 0)
4405    print_method_list32_t(cro.baseMethods, info, "");
4406
4407  outs() << "            baseProtocols "
4408         << format("0x%" PRIx32, cro.baseProtocols) << "\n";
4409  if (cro.baseProtocols != 0)
4410    print_protocol_list32_t(cro.baseProtocols, info);
4411  outs() << "                    ivars " << format("0x%" PRIx32, cro.ivars)
4412         << "\n";
4413  if (cro.ivars != 0)
4414    print_ivar_list32_t(cro.ivars, info);
4415  outs() << "           weakIvarLayout "
4416         << format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
4417  print_layout_map32(cro.weakIvarLayout, info);
4418  outs() << "           baseProperties "
4419         << format("0x%" PRIx32, cro.baseProperties) << "\n";
4420  if (cro.baseProperties != 0)
4421    print_objc_property_list32(cro.baseProperties, info);
4422  is_meta_class = (cro.flags & RO_META) != 0;
4423  return true;
4424}
4425
4426static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
4427  struct class64_t c;
4428  const char *r;
4429  uint32_t offset, left;
4430  SectionRef S;
4431  const char *name;
4432  uint64_t isa_n_value, n_value;
4433
4434  r = get_pointer_64(p, offset, left, S, info);
4435  if (r == nullptr || left < sizeof(struct class64_t))
4436    return;
4437  memset(&c, '\0', sizeof(struct class64_t));
4438  if (left < sizeof(struct class64_t)) {
4439    memcpy(&c, r, left);
4440    outs() << "   (class_t entends past the end of the section)\n";
4441  } else
4442    memcpy(&c, r, sizeof(struct class64_t));
4443  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4444    swapStruct(c);
4445
4446  outs() << "           isa " << format("0x%" PRIx64, c.isa);
4447  name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
4448                       isa_n_value, c.isa);
4449  if (name != nullptr)
4450    outs() << " " << name;
4451  outs() << "\n";
4452
4453  outs() << "    superclass " << format("0x%" PRIx64, c.superclass);
4454  name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
4455                       n_value, c.superclass);
4456  if (name != nullptr)
4457    outs() << " " << name;
4458  outs() << "\n";
4459
4460  outs() << "         cache " << format("0x%" PRIx64, c.cache);
4461  name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
4462                       n_value, c.cache);
4463  if (name != nullptr)
4464    outs() << " " << name;
4465  outs() << "\n";
4466
4467  outs() << "        vtable " << format("0x%" PRIx64, c.vtable);
4468  name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
4469                       n_value, c.vtable);
4470  if (name != nullptr)
4471    outs() << " " << name;
4472  outs() << "\n";
4473
4474  name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
4475                       n_value, c.data);
4476  outs() << "          data ";
4477  if (n_value != 0) {
4478    if (info->verbose && name != nullptr)
4479      outs() << name;
4480    else
4481      outs() << format("0x%" PRIx64, n_value);
4482    if (c.data != 0)
4483      outs() << " + " << format("0x%" PRIx64, c.data);
4484  } else
4485    outs() << format("0x%" PRIx64, c.data);
4486  outs() << " (struct class_ro_t *)";
4487
4488  // This is a Swift class if some of the low bits of the pointer are set.
4489  if ((c.data + n_value) & 0x7)
4490    outs() << " Swift class";
4491  outs() << "\n";
4492  bool is_meta_class;
4493  if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
4494    return;
4495
4496  if (!is_meta_class &&
4497      c.isa + isa_n_value != p &&
4498      c.isa + isa_n_value != 0 &&
4499      info->depth < 100) {
4500      info->depth++;
4501      outs() << "Meta Class\n";
4502      print_class64_t(c.isa + isa_n_value, info);
4503  }
4504}
4505
4506static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
4507  struct class32_t c;
4508  const char *r;
4509  uint32_t offset, left;
4510  SectionRef S;
4511  const char *name;
4512
4513  r = get_pointer_32(p, offset, left, S, info);
4514  if (r == nullptr)
4515    return;
4516  memset(&c, '\0', sizeof(struct class32_t));
4517  if (left < sizeof(struct class32_t)) {
4518    memcpy(&c, r, left);
4519    outs() << "   (class_t entends past the end of the section)\n";
4520  } else
4521    memcpy(&c, r, sizeof(struct class32_t));
4522  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4523    swapStruct(c);
4524
4525  outs() << "           isa " << format("0x%" PRIx32, c.isa);
4526  name =
4527      get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
4528  if (name != nullptr)
4529    outs() << " " << name;
4530  outs() << "\n";
4531
4532  outs() << "    superclass " << format("0x%" PRIx32, c.superclass);
4533  name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
4534                       c.superclass);
4535  if (name != nullptr)
4536    outs() << " " << name;
4537  outs() << "\n";
4538
4539  outs() << "         cache " << format("0x%" PRIx32, c.cache);
4540  name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
4541                       c.cache);
4542  if (name != nullptr)
4543    outs() << " " << name;
4544  outs() << "\n";
4545
4546  outs() << "        vtable " << format("0x%" PRIx32, c.vtable);
4547  name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
4548                       c.vtable);
4549  if (name != nullptr)
4550    outs() << " " << name;
4551  outs() << "\n";
4552
4553  name =
4554      get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
4555  outs() << "          data " << format("0x%" PRIx32, c.data)
4556         << " (struct class_ro_t *)";
4557
4558  // This is a Swift class if some of the low bits of the pointer are set.
4559  if (c.data & 0x3)
4560    outs() << " Swift class";
4561  outs() << "\n";
4562  bool is_meta_class;
4563  if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
4564    return;
4565
4566  if (!is_meta_class) {
4567    outs() << "Meta Class\n";
4568    print_class32_t(c.isa, info);
4569  }
4570}
4571
4572static void print_objc_class_t(struct objc_class_t *objc_class,
4573                               struct DisassembleInfo *info) {
4574  uint32_t offset, left, xleft;
4575  const char *name, *p, *ivar_list;
4576  SectionRef S;
4577  int32_t i;
4578  struct objc_ivar_list_t objc_ivar_list;
4579  struct objc_ivar_t ivar;
4580
4581  outs() << "\t\t      isa " << format("0x%08" PRIx32, objc_class->isa);
4582  if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
4583    name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
4584    if (name != nullptr)
4585      outs() << format(" %.*s", left, name);
4586    else
4587      outs() << " (not in an __OBJC section)";
4588  }
4589  outs() << "\n";
4590
4591  outs() << "\t      super_class "
4592         << format("0x%08" PRIx32, objc_class->super_class);
4593  if (info->verbose) {
4594    name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
4595    if (name != nullptr)
4596      outs() << format(" %.*s", left, name);
4597    else
4598      outs() << " (not in an __OBJC section)";
4599  }
4600  outs() << "\n";
4601
4602  outs() << "\t\t     name " << format("0x%08" PRIx32, objc_class->name);
4603  if (info->verbose) {
4604    name = get_pointer_32(objc_class->name, offset, left, S, info, true);
4605    if (name != nullptr)
4606      outs() << format(" %.*s", left, name);
4607    else
4608      outs() << " (not in an __OBJC section)";
4609  }
4610  outs() << "\n";
4611
4612  outs() << "\t\t  version " << format("0x%08" PRIx32, objc_class->version)
4613         << "\n";
4614
4615  outs() << "\t\t     info " << format("0x%08" PRIx32, objc_class->info);
4616  if (info->verbose) {
4617    if (CLS_GETINFO(objc_class, CLS_CLASS))
4618      outs() << " CLS_CLASS";
4619    else if (CLS_GETINFO(objc_class, CLS_META))
4620      outs() << " CLS_META";
4621  }
4622  outs() << "\n";
4623
4624  outs() << "\t    instance_size "
4625         << format("0x%08" PRIx32, objc_class->instance_size) << "\n";
4626
4627  p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
4628  outs() << "\t\t    ivars " << format("0x%08" PRIx32, objc_class->ivars);
4629  if (p != nullptr) {
4630    if (left > sizeof(struct objc_ivar_list_t)) {
4631      outs() << "\n";
4632      memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
4633    } else {
4634      outs() << " (entends past the end of the section)\n";
4635      memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
4636      memcpy(&objc_ivar_list, p, left);
4637    }
4638    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4639      swapStruct(objc_ivar_list);
4640    outs() << "\t\t       ivar_count " << objc_ivar_list.ivar_count << "\n";
4641    ivar_list = p + sizeof(struct objc_ivar_list_t);
4642    for (i = 0; i < objc_ivar_list.ivar_count; i++) {
4643      if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
4644        outs() << "\t\t remaining ivar's extend past the of the section\n";
4645        break;
4646      }
4647      memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
4648             sizeof(struct objc_ivar_t));
4649      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4650        swapStruct(ivar);
4651
4652      outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
4653      if (info->verbose) {
4654        name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
4655        if (name != nullptr)
4656          outs() << format(" %.*s", xleft, name);
4657        else
4658          outs() << " (not in an __OBJC section)";
4659      }
4660      outs() << "\n";
4661
4662      outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
4663      if (info->verbose) {
4664        name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
4665        if (name != nullptr)
4666          outs() << format(" %.*s", xleft, name);
4667        else
4668          outs() << " (not in an __OBJC section)";
4669      }
4670      outs() << "\n";
4671
4672      outs() << "\t\t      ivar_offset "
4673             << format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
4674    }
4675  } else {
4676    outs() << " (not in an __OBJC section)\n";
4677  }
4678
4679  outs() << "\t\t  methods " << format("0x%08" PRIx32, objc_class->methodLists);
4680  if (print_method_list(objc_class->methodLists, info))
4681    outs() << " (not in an __OBJC section)\n";
4682
4683  outs() << "\t\t    cache " << format("0x%08" PRIx32, objc_class->cache)
4684         << "\n";
4685
4686  outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
4687  if (print_protocol_list(objc_class->protocols, 16, info))
4688    outs() << " (not in an __OBJC section)\n";
4689}
4690
4691static void print_objc_objc_category_t(struct objc_category_t *objc_category,
4692                                       struct DisassembleInfo *info) {
4693  uint32_t offset, left;
4694  const char *name;
4695  SectionRef S;
4696
4697  outs() << "\t       category name "
4698         << format("0x%08" PRIx32, objc_category->category_name);
4699  if (info->verbose) {
4700    name = get_pointer_32(objc_category->category_name, offset, left, S, info,
4701                          true);
4702    if (name != nullptr)
4703      outs() << format(" %.*s", left, name);
4704    else
4705      outs() << " (not in an __OBJC section)";
4706  }
4707  outs() << "\n";
4708
4709  outs() << "\t\t  class name "
4710         << format("0x%08" PRIx32, objc_category->class_name);
4711  if (info->verbose) {
4712    name =
4713        get_pointer_32(objc_category->class_name, offset, left, S, info, true);
4714    if (name != nullptr)
4715      outs() << format(" %.*s", left, name);
4716    else
4717      outs() << " (not in an __OBJC section)";
4718  }
4719  outs() << "\n";
4720
4721  outs() << "\t    instance methods "
4722         << format("0x%08" PRIx32, objc_category->instance_methods);
4723  if (print_method_list(objc_category->instance_methods, info))
4724    outs() << " (not in an __OBJC section)\n";
4725
4726  outs() << "\t       class methods "
4727         << format("0x%08" PRIx32, objc_category->class_methods);
4728  if (print_method_list(objc_category->class_methods, info))
4729    outs() << " (not in an __OBJC section)\n";
4730}
4731
4732static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
4733  struct category64_t c;
4734  const char *r;
4735  uint32_t offset, xoffset, left;
4736  SectionRef S, xS;
4737  const char *name, *sym_name;
4738  uint64_t n_value;
4739
4740  r = get_pointer_64(p, offset, left, S, info);
4741  if (r == nullptr)
4742    return;
4743  memset(&c, '\0', sizeof(struct category64_t));
4744  if (left < sizeof(struct category64_t)) {
4745    memcpy(&c, r, left);
4746    outs() << "   (category_t entends past the end of the section)\n";
4747  } else
4748    memcpy(&c, r, sizeof(struct category64_t));
4749  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4750    swapStruct(c);
4751
4752  outs() << "              name ";
4753  sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
4754                           info, n_value, c.name);
4755  if (n_value != 0) {
4756    if (info->verbose && sym_name != nullptr)
4757      outs() << sym_name;
4758    else
4759      outs() << format("0x%" PRIx64, n_value);
4760    if (c.name != 0)
4761      outs() << " + " << format("0x%" PRIx64, c.name);
4762  } else
4763    outs() << format("0x%" PRIx64, c.name);
4764  name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
4765  if (name != nullptr)
4766    outs() << format(" %.*s", left, name);
4767  outs() << "\n";
4768
4769  outs() << "               cls ";
4770  sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
4771                           n_value, c.cls);
4772  if (n_value != 0) {
4773    if (info->verbose && sym_name != nullptr)
4774      outs() << sym_name;
4775    else
4776      outs() << format("0x%" PRIx64, n_value);
4777    if (c.cls != 0)
4778      outs() << " + " << format("0x%" PRIx64, c.cls);
4779  } else
4780    outs() << format("0x%" PRIx64, c.cls);
4781  outs() << "\n";
4782  if (c.cls + n_value != 0)
4783    print_class64_t(c.cls + n_value, info);
4784
4785  outs() << "   instanceMethods ";
4786  sym_name =
4787      get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
4788                    info, n_value, c.instanceMethods);
4789  if (n_value != 0) {
4790    if (info->verbose && sym_name != nullptr)
4791      outs() << sym_name;
4792    else
4793      outs() << format("0x%" PRIx64, n_value);
4794    if (c.instanceMethods != 0)
4795      outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
4796  } else
4797    outs() << format("0x%" PRIx64, c.instanceMethods);
4798  outs() << "\n";
4799  if (c.instanceMethods + n_value != 0)
4800    print_method_list64_t(c.instanceMethods + n_value, info, "");
4801
4802  outs() << "      classMethods ";
4803  sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
4804                           S, info, n_value, c.classMethods);
4805  if (n_value != 0) {
4806    if (info->verbose && sym_name != nullptr)
4807      outs() << sym_name;
4808    else
4809      outs() << format("0x%" PRIx64, n_value);
4810    if (c.classMethods != 0)
4811      outs() << " + " << format("0x%" PRIx64, c.classMethods);
4812  } else
4813    outs() << format("0x%" PRIx64, c.classMethods);
4814  outs() << "\n";
4815  if (c.classMethods + n_value != 0)
4816    print_method_list64_t(c.classMethods + n_value, info, "");
4817
4818  outs() << "         protocols ";
4819  sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
4820                           info, n_value, c.protocols);
4821  if (n_value != 0) {
4822    if (info->verbose && sym_name != nullptr)
4823      outs() << sym_name;
4824    else
4825      outs() << format("0x%" PRIx64, n_value);
4826    if (c.protocols != 0)
4827      outs() << " + " << format("0x%" PRIx64, c.protocols);
4828  } else
4829    outs() << format("0x%" PRIx64, c.protocols);
4830  outs() << "\n";
4831  if (c.protocols + n_value != 0)
4832    print_protocol_list64_t(c.protocols + n_value, info);
4833
4834  outs() << "instanceProperties ";
4835  sym_name =
4836      get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
4837                    S, info, n_value, c.instanceProperties);
4838  if (n_value != 0) {
4839    if (info->verbose && sym_name != nullptr)
4840      outs() << sym_name;
4841    else
4842      outs() << format("0x%" PRIx64, n_value);
4843    if (c.instanceProperties != 0)
4844      outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
4845  } else
4846    outs() << format("0x%" PRIx64, c.instanceProperties);
4847  outs() << "\n";
4848  if (c.instanceProperties + n_value != 0)
4849    print_objc_property_list64(c.instanceProperties + n_value, info);
4850}
4851
4852static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
4853  struct category32_t c;
4854  const char *r;
4855  uint32_t offset, left;
4856  SectionRef S, xS;
4857  const char *name;
4858
4859  r = get_pointer_32(p, offset, left, S, info);
4860  if (r == nullptr)
4861    return;
4862  memset(&c, '\0', sizeof(struct category32_t));
4863  if (left < sizeof(struct category32_t)) {
4864    memcpy(&c, r, left);
4865    outs() << "   (category_t entends past the end of the section)\n";
4866  } else
4867    memcpy(&c, r, sizeof(struct category32_t));
4868  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4869    swapStruct(c);
4870
4871  outs() << "              name " << format("0x%" PRIx32, c.name);
4872  name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
4873                       c.name);
4874  if (name)
4875    outs() << " " << name;
4876  outs() << "\n";
4877
4878  outs() << "               cls " << format("0x%" PRIx32, c.cls) << "\n";
4879  if (c.cls != 0)
4880    print_class32_t(c.cls, info);
4881  outs() << "   instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
4882         << "\n";
4883  if (c.instanceMethods != 0)
4884    print_method_list32_t(c.instanceMethods, info, "");
4885  outs() << "      classMethods " << format("0x%" PRIx32, c.classMethods)
4886         << "\n";
4887  if (c.classMethods != 0)
4888    print_method_list32_t(c.classMethods, info, "");
4889  outs() << "         protocols " << format("0x%" PRIx32, c.protocols) << "\n";
4890  if (c.protocols != 0)
4891    print_protocol_list32_t(c.protocols, info);
4892  outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
4893         << "\n";
4894  if (c.instanceProperties != 0)
4895    print_objc_property_list32(c.instanceProperties, info);
4896}
4897
4898static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
4899  uint32_t i, left, offset, xoffset;
4900  uint64_t p, n_value;
4901  struct message_ref64 mr;
4902  const char *name, *sym_name;
4903  const char *r;
4904  SectionRef xS;
4905
4906  if (S == SectionRef())
4907    return;
4908
4909  StringRef SectName;
4910  S.getName(SectName);
4911  DataRefImpl Ref = S.getRawDataRefImpl();
4912  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
4913  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
4914  offset = 0;
4915  for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
4916    p = S.getAddress() + i;
4917    r = get_pointer_64(p, offset, left, S, info);
4918    if (r == nullptr)
4919      return;
4920    memset(&mr, '\0', sizeof(struct message_ref64));
4921    if (left < sizeof(struct message_ref64)) {
4922      memcpy(&mr, r, left);
4923      outs() << "   (message_ref entends past the end of the section)\n";
4924    } else
4925      memcpy(&mr, r, sizeof(struct message_ref64));
4926    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4927      swapStruct(mr);
4928
4929    outs() << "  imp ";
4930    name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
4931                         n_value, mr.imp);
4932    if (n_value != 0) {
4933      outs() << format("0x%" PRIx64, n_value) << " ";
4934      if (mr.imp != 0)
4935        outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
4936    } else
4937      outs() << format("0x%" PRIx64, mr.imp) << " ";
4938    if (name != nullptr)
4939      outs() << " " << name;
4940    outs() << "\n";
4941
4942    outs() << "  sel ";
4943    sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
4944                             info, n_value, mr.sel);
4945    if (n_value != 0) {
4946      if (info->verbose && sym_name != nullptr)
4947        outs() << sym_name;
4948      else
4949        outs() << format("0x%" PRIx64, n_value);
4950      if (mr.sel != 0)
4951        outs() << " + " << format("0x%" PRIx64, mr.sel);
4952    } else
4953      outs() << format("0x%" PRIx64, mr.sel);
4954    name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
4955    if (name != nullptr)
4956      outs() << format(" %.*s", left, name);
4957    outs() << "\n";
4958
4959    offset += sizeof(struct message_ref64);
4960  }
4961}
4962
4963static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
4964  uint32_t i, left, offset, xoffset, p;
4965  struct message_ref32 mr;
4966  const char *name, *r;
4967  SectionRef xS;
4968
4969  if (S == SectionRef())
4970    return;
4971
4972  StringRef SectName;
4973  S.getName(SectName);
4974  DataRefImpl Ref = S.getRawDataRefImpl();
4975  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
4976  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
4977  offset = 0;
4978  for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
4979    p = S.getAddress() + i;
4980    r = get_pointer_32(p, offset, left, S, info);
4981    if (r == nullptr)
4982      return;
4983    memset(&mr, '\0', sizeof(struct message_ref32));
4984    if (left < sizeof(struct message_ref32)) {
4985      memcpy(&mr, r, left);
4986      outs() << "   (message_ref entends past the end of the section)\n";
4987    } else
4988      memcpy(&mr, r, sizeof(struct message_ref32));
4989    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4990      swapStruct(mr);
4991
4992    outs() << "  imp " << format("0x%" PRIx32, mr.imp);
4993    name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
4994                         mr.imp);
4995    if (name != nullptr)
4996      outs() << " " << name;
4997    outs() << "\n";
4998
4999    outs() << "  sel " << format("0x%" PRIx32, mr.sel);
5000    name = get_pointer_32(mr.sel, xoffset, left, xS, info);
5001    if (name != nullptr)
5002      outs() << " " << name;
5003    outs() << "\n";
5004
5005    offset += sizeof(struct message_ref32);
5006  }
5007}
5008
5009static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
5010  uint32_t left, offset, swift_version;
5011  uint64_t p;
5012  struct objc_image_info64 o;
5013  const char *r;
5014
5015  if (S == SectionRef())
5016    return;
5017
5018  StringRef SectName;
5019  S.getName(SectName);
5020  DataRefImpl Ref = S.getRawDataRefImpl();
5021  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5022  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5023  p = S.getAddress();
5024  r = get_pointer_64(p, offset, left, S, info);
5025  if (r == nullptr)
5026    return;
5027  memset(&o, '\0', sizeof(struct objc_image_info64));
5028  if (left < sizeof(struct objc_image_info64)) {
5029    memcpy(&o, r, left);
5030    outs() << "   (objc_image_info entends past the end of the section)\n";
5031  } else
5032    memcpy(&o, r, sizeof(struct objc_image_info64));
5033  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5034    swapStruct(o);
5035  outs() << "  version " << o.version << "\n";
5036  outs() << "    flags " << format("0x%" PRIx32, o.flags);
5037  if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5038    outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5039  if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5040    outs() << " OBJC_IMAGE_SUPPORTS_GC";
5041  swift_version = (o.flags >> 8) & 0xff;
5042  if (swift_version != 0) {
5043    if (swift_version == 1)
5044      outs() << " Swift 1.0";
5045    else if (swift_version == 2)
5046      outs() << " Swift 1.1";
5047    else
5048      outs() << " unknown future Swift version (" << swift_version << ")";
5049  }
5050  outs() << "\n";
5051}
5052
5053static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
5054  uint32_t left, offset, swift_version, p;
5055  struct objc_image_info32 o;
5056  const char *r;
5057
5058  StringRef SectName;
5059  S.getName(SectName);
5060  DataRefImpl Ref = S.getRawDataRefImpl();
5061  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5062  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5063  p = S.getAddress();
5064  r = get_pointer_32(p, offset, left, S, info);
5065  if (r == nullptr)
5066    return;
5067  memset(&o, '\0', sizeof(struct objc_image_info32));
5068  if (left < sizeof(struct objc_image_info32)) {
5069    memcpy(&o, r, left);
5070    outs() << "   (objc_image_info entends past the end of the section)\n";
5071  } else
5072    memcpy(&o, r, sizeof(struct objc_image_info32));
5073  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5074    swapStruct(o);
5075  outs() << "  version " << o.version << "\n";
5076  outs() << "    flags " << format("0x%" PRIx32, o.flags);
5077  if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5078    outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5079  if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5080    outs() << " OBJC_IMAGE_SUPPORTS_GC";
5081  swift_version = (o.flags >> 8) & 0xff;
5082  if (swift_version != 0) {
5083    if (swift_version == 1)
5084      outs() << " Swift 1.0";
5085    else if (swift_version == 2)
5086      outs() << " Swift 1.1";
5087    else
5088      outs() << " unknown future Swift version (" << swift_version << ")";
5089  }
5090  outs() << "\n";
5091}
5092
5093static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
5094  uint32_t left, offset, p;
5095  struct imageInfo_t o;
5096  const char *r;
5097
5098  StringRef SectName;
5099  S.getName(SectName);
5100  DataRefImpl Ref = S.getRawDataRefImpl();
5101  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5102  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5103  p = S.getAddress();
5104  r = get_pointer_32(p, offset, left, S, info);
5105  if (r == nullptr)
5106    return;
5107  memset(&o, '\0', sizeof(struct imageInfo_t));
5108  if (left < sizeof(struct imageInfo_t)) {
5109    memcpy(&o, r, left);
5110    outs() << " (imageInfo entends past the end of the section)\n";
5111  } else
5112    memcpy(&o, r, sizeof(struct imageInfo_t));
5113  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5114    swapStruct(o);
5115  outs() << "  version " << o.version << "\n";
5116  outs() << "    flags " << format("0x%" PRIx32, o.flags);
5117  if (o.flags & 0x1)
5118    outs() << "  F&C";
5119  if (o.flags & 0x2)
5120    outs() << " GC";
5121  if (o.flags & 0x4)
5122    outs() << " GC-only";
5123  else
5124    outs() << " RR";
5125  outs() << "\n";
5126}
5127
5128static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
5129  SymbolAddressMap AddrMap;
5130  if (verbose)
5131    CreateSymbolAddressMap(O, &AddrMap);
5132
5133  std::vector<SectionRef> Sections;
5134  for (const SectionRef &Section : O->sections()) {
5135    StringRef SectName;
5136    Section.getName(SectName);
5137    Sections.push_back(Section);
5138  }
5139
5140  struct DisassembleInfo info;
5141  // Set up the block of info used by the Symbolizer call backs.
5142  info.verbose = verbose;
5143  info.O = O;
5144  info.AddrMap = &AddrMap;
5145  info.Sections = &Sections;
5146  info.class_name = nullptr;
5147  info.selector_name = nullptr;
5148  info.method = nullptr;
5149  info.demangled_name = nullptr;
5150  info.bindtable = nullptr;
5151  info.adrp_addr = 0;
5152  info.adrp_inst = 0;
5153
5154  info.depth = 0;
5155  SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5156  if (CL == SectionRef())
5157    CL = get_section(O, "__DATA", "__objc_classlist");
5158  info.S = CL;
5159  walk_pointer_list_64("class", CL, O, &info, print_class64_t);
5160
5161  SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5162  if (CR == SectionRef())
5163    CR = get_section(O, "__DATA", "__objc_classrefs");
5164  info.S = CR;
5165  walk_pointer_list_64("class refs", CR, O, &info, nullptr);
5166
5167  SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5168  if (SR == SectionRef())
5169    SR = get_section(O, "__DATA", "__objc_superrefs");
5170  info.S = SR;
5171  walk_pointer_list_64("super refs", SR, O, &info, nullptr);
5172
5173  SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5174  if (CA == SectionRef())
5175    CA = get_section(O, "__DATA", "__objc_catlist");
5176  info.S = CA;
5177  walk_pointer_list_64("category", CA, O, &info, print_category64_t);
5178
5179  SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5180  if (PL == SectionRef())
5181    PL = get_section(O, "__DATA", "__objc_protolist");
5182  info.S = PL;
5183  walk_pointer_list_64("protocol", PL, O, &info, nullptr);
5184
5185  SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5186  if (MR == SectionRef())
5187    MR = get_section(O, "__DATA", "__objc_msgrefs");
5188  info.S = MR;
5189  print_message_refs64(MR, &info);
5190
5191  SectionRef II = get_section(O, "__OBJC2", "__image_info");
5192  if (II == SectionRef())
5193    II = get_section(O, "__DATA", "__objc_imageinfo");
5194  info.S = II;
5195  print_image_info64(II, &info);
5196
5197  if (info.bindtable != nullptr)
5198    delete info.bindtable;
5199}
5200
5201static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5202  SymbolAddressMap AddrMap;
5203  if (verbose)
5204    CreateSymbolAddressMap(O, &AddrMap);
5205
5206  std::vector<SectionRef> Sections;
5207  for (const SectionRef &Section : O->sections()) {
5208    StringRef SectName;
5209    Section.getName(SectName);
5210    Sections.push_back(Section);
5211  }
5212
5213  struct DisassembleInfo info;
5214  // Set up the block of info used by the Symbolizer call backs.
5215  info.verbose = verbose;
5216  info.O = O;
5217  info.AddrMap = &AddrMap;
5218  info.Sections = &Sections;
5219  info.class_name = nullptr;
5220  info.selector_name = nullptr;
5221  info.method = nullptr;
5222  info.demangled_name = nullptr;
5223  info.bindtable = nullptr;
5224  info.adrp_addr = 0;
5225  info.adrp_inst = 0;
5226
5227  const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5228  if (CL != SectionRef()) {
5229    info.S = CL;
5230    walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5231  } else {
5232    const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
5233    info.S = CL;
5234    walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5235  }
5236
5237  const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5238  if (CR != SectionRef()) {
5239    info.S = CR;
5240    walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5241  } else {
5242    const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
5243    info.S = CR;
5244    walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5245  }
5246
5247  const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5248  if (SR != SectionRef()) {
5249    info.S = SR;
5250    walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5251  } else {
5252    const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
5253    info.S = SR;
5254    walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5255  }
5256
5257  const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5258  if (CA != SectionRef()) {
5259    info.S = CA;
5260    walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5261  } else {
5262    const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
5263    info.S = CA;
5264    walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5265  }
5266
5267  const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5268  if (PL != SectionRef()) {
5269    info.S = PL;
5270    walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5271  } else {
5272    const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
5273    info.S = PL;
5274    walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5275  }
5276
5277  const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5278  if (MR != SectionRef()) {
5279    info.S = MR;
5280    print_message_refs32(MR, &info);
5281  } else {
5282    const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
5283    info.S = MR;
5284    print_message_refs32(MR, &info);
5285  }
5286
5287  const SectionRef II = get_section(O, "__OBJC2", "__image_info");
5288  if (II != SectionRef()) {
5289    info.S = II;
5290    print_image_info32(II, &info);
5291  } else {
5292    const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
5293    info.S = II;
5294    print_image_info32(II, &info);
5295  }
5296}
5297
5298static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5299  uint32_t i, j, p, offset, xoffset, left, defs_left, def;
5300  const char *r, *name, *defs;
5301  struct objc_module_t module;
5302  SectionRef S, xS;
5303  struct objc_symtab_t symtab;
5304  struct objc_class_t objc_class;
5305  struct objc_category_t objc_category;
5306
5307  outs() << "Objective-C segment\n";
5308  S = get_section(O, "__OBJC", "__module_info");
5309  if (S == SectionRef())
5310    return false;
5311
5312  SymbolAddressMap AddrMap;
5313  if (verbose)
5314    CreateSymbolAddressMap(O, &AddrMap);
5315
5316  std::vector<SectionRef> Sections;
5317  for (const SectionRef &Section : O->sections()) {
5318    StringRef SectName;
5319    Section.getName(SectName);
5320    Sections.push_back(Section);
5321  }
5322
5323  struct DisassembleInfo info;
5324  // Set up the block of info used by the Symbolizer call backs.
5325  info.verbose = verbose;
5326  info.O = O;
5327  info.AddrMap = &AddrMap;
5328  info.Sections = &Sections;
5329  info.class_name = nullptr;
5330  info.selector_name = nullptr;
5331  info.method = nullptr;
5332  info.demangled_name = nullptr;
5333  info.bindtable = nullptr;
5334  info.adrp_addr = 0;
5335  info.adrp_inst = 0;
5336
5337  for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
5338    p = S.getAddress() + i;
5339    r = get_pointer_32(p, offset, left, S, &info, true);
5340    if (r == nullptr)
5341      return true;
5342    memset(&module, '\0', sizeof(struct objc_module_t));
5343    if (left < sizeof(struct objc_module_t)) {
5344      memcpy(&module, r, left);
5345      outs() << "   (module extends past end of __module_info section)\n";
5346    } else
5347      memcpy(&module, r, sizeof(struct objc_module_t));
5348    if (O->isLittleEndian() != sys::IsLittleEndianHost)
5349      swapStruct(module);
5350
5351    outs() << "Module " << format("0x%" PRIx32, p) << "\n";
5352    outs() << "    version " << module.version << "\n";
5353    outs() << "       size " << module.size << "\n";
5354    outs() << "       name ";
5355    name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
5356    if (name != nullptr)
5357      outs() << format("%.*s", left, name);
5358    else
5359      outs() << format("0x%08" PRIx32, module.name)
5360             << "(not in an __OBJC section)";
5361    outs() << "\n";
5362
5363    r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
5364    if (module.symtab == 0 || r == nullptr) {
5365      outs() << "     symtab " << format("0x%08" PRIx32, module.symtab)
5366             << " (not in an __OBJC section)\n";
5367      continue;
5368    }
5369    outs() << "     symtab " << format("0x%08" PRIx32, module.symtab) << "\n";
5370    memset(&symtab, '\0', sizeof(struct objc_symtab_t));
5371    defs_left = 0;
5372    defs = nullptr;
5373    if (left < sizeof(struct objc_symtab_t)) {
5374      memcpy(&symtab, r, left);
5375      outs() << "\tsymtab extends past end of an __OBJC section)\n";
5376    } else {
5377      memcpy(&symtab, r, sizeof(struct objc_symtab_t));
5378      if (left > sizeof(struct objc_symtab_t)) {
5379        defs_left = left - sizeof(struct objc_symtab_t);
5380        defs = r + sizeof(struct objc_symtab_t);
5381      }
5382    }
5383    if (O->isLittleEndian() != sys::IsLittleEndianHost)
5384      swapStruct(symtab);
5385
5386    outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
5387    r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
5388    outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
5389    if (r == nullptr)
5390      outs() << " (not in an __OBJC section)";
5391    outs() << "\n";
5392    outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
5393    outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
5394    if (symtab.cls_def_cnt > 0)
5395      outs() << "\tClass Definitions\n";
5396    for (j = 0; j < symtab.cls_def_cnt; j++) {
5397      if ((j + 1) * sizeof(uint32_t) > defs_left) {
5398        outs() << "\t(remaining class defs entries entends past the end of the "
5399               << "section)\n";
5400        break;
5401      }
5402      memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
5403      if (O->isLittleEndian() != sys::IsLittleEndianHost)
5404        sys::swapByteOrder(def);
5405
5406      r = get_pointer_32(def, xoffset, left, xS, &info, true);
5407      outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
5408      if (r != nullptr) {
5409        if (left > sizeof(struct objc_class_t)) {
5410          outs() << "\n";
5411          memcpy(&objc_class, r, sizeof(struct objc_class_t));
5412        } else {
5413          outs() << " (entends past the end of the section)\n";
5414          memset(&objc_class, '\0', sizeof(struct objc_class_t));
5415          memcpy(&objc_class, r, left);
5416        }
5417        if (O->isLittleEndian() != sys::IsLittleEndianHost)
5418          swapStruct(objc_class);
5419        print_objc_class_t(&objc_class, &info);
5420      } else {
5421        outs() << "(not in an __OBJC section)\n";
5422      }
5423
5424      if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
5425        outs() << "\tMeta Class";
5426        r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
5427        if (r != nullptr) {
5428          if (left > sizeof(struct objc_class_t)) {
5429            outs() << "\n";
5430            memcpy(&objc_class, r, sizeof(struct objc_class_t));
5431          } else {
5432            outs() << " (entends past the end of the section)\n";
5433            memset(&objc_class, '\0', sizeof(struct objc_class_t));
5434            memcpy(&objc_class, r, left);
5435          }
5436          if (O->isLittleEndian() != sys::IsLittleEndianHost)
5437            swapStruct(objc_class);
5438          print_objc_class_t(&objc_class, &info);
5439        } else {
5440          outs() << "(not in an __OBJC section)\n";
5441        }
5442      }
5443    }
5444    if (symtab.cat_def_cnt > 0)
5445      outs() << "\tCategory Definitions\n";
5446    for (j = 0; j < symtab.cat_def_cnt; j++) {
5447      if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
5448        outs() << "\t(remaining category defs entries entends past the end of "
5449               << "the section)\n";
5450        break;
5451      }
5452      memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
5453             sizeof(uint32_t));
5454      if (O->isLittleEndian() != sys::IsLittleEndianHost)
5455        sys::swapByteOrder(def);
5456
5457      r = get_pointer_32(def, xoffset, left, xS, &info, true);
5458      outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
5459             << format("0x%08" PRIx32, def);
5460      if (r != nullptr) {
5461        if (left > sizeof(struct objc_category_t)) {
5462          outs() << "\n";
5463          memcpy(&objc_category, r, sizeof(struct objc_category_t));
5464        } else {
5465          outs() << " (entends past the end of the section)\n";
5466          memset(&objc_category, '\0', sizeof(struct objc_category_t));
5467          memcpy(&objc_category, r, left);
5468        }
5469        if (O->isLittleEndian() != sys::IsLittleEndianHost)
5470          swapStruct(objc_category);
5471        print_objc_objc_category_t(&objc_category, &info);
5472      } else {
5473        outs() << "(not in an __OBJC section)\n";
5474      }
5475    }
5476  }
5477  const SectionRef II = get_section(O, "__OBJC", "__image_info");
5478  if (II != SectionRef())
5479    print_image_info(II, &info);
5480
5481  return true;
5482}
5483
5484static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
5485                                uint32_t size, uint32_t addr) {
5486  SymbolAddressMap AddrMap;
5487  CreateSymbolAddressMap(O, &AddrMap);
5488
5489  std::vector<SectionRef> Sections;
5490  for (const SectionRef &Section : O->sections()) {
5491    StringRef SectName;
5492    Section.getName(SectName);
5493    Sections.push_back(Section);
5494  }
5495
5496  struct DisassembleInfo info;
5497  // Set up the block of info used by the Symbolizer call backs.
5498  info.verbose = true;
5499  info.O = O;
5500  info.AddrMap = &AddrMap;
5501  info.Sections = &Sections;
5502  info.class_name = nullptr;
5503  info.selector_name = nullptr;
5504  info.method = nullptr;
5505  info.demangled_name = nullptr;
5506  info.bindtable = nullptr;
5507  info.adrp_addr = 0;
5508  info.adrp_inst = 0;
5509
5510  const char *p;
5511  struct objc_protocol_t protocol;
5512  uint32_t left, paddr;
5513  for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
5514    memset(&protocol, '\0', sizeof(struct objc_protocol_t));
5515    left = size - (p - sect);
5516    if (left < sizeof(struct objc_protocol_t)) {
5517      outs() << "Protocol extends past end of __protocol section\n";
5518      memcpy(&protocol, p, left);
5519    } else
5520      memcpy(&protocol, p, sizeof(struct objc_protocol_t));
5521    if (O->isLittleEndian() != sys::IsLittleEndianHost)
5522      swapStruct(protocol);
5523    paddr = addr + (p - sect);
5524    outs() << "Protocol " << format("0x%" PRIx32, paddr);
5525    if (print_protocol(paddr, 0, &info))
5526      outs() << "(not in an __OBJC section)\n";
5527  }
5528}
5529
5530static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
5531  if (O->is64Bit())
5532    printObjc2_64bit_MetaData(O, verbose);
5533  else {
5534    MachO::mach_header H;
5535    H = O->getHeader();
5536    if (H.cputype == MachO::CPU_TYPE_ARM)
5537      printObjc2_32bit_MetaData(O, verbose);
5538    else {
5539      // This is the 32-bit non-arm cputype case.  Which is normally
5540      // the first Objective-C ABI.  But it may be the case of a
5541      // binary for the iOS simulator which is the second Objective-C
5542      // ABI.  In that case printObjc1_32bit_MetaData() will determine that
5543      // and return false.
5544      if (!printObjc1_32bit_MetaData(O, verbose))
5545        printObjc2_32bit_MetaData(O, verbose);
5546    }
5547  }
5548}
5549
5550// GuessLiteralPointer returns a string which for the item in the Mach-O file
5551// for the address passed in as ReferenceValue for printing as a comment with
5552// the instruction and also returns the corresponding type of that item
5553// indirectly through ReferenceType.
5554//
5555// If ReferenceValue is an address of literal cstring then a pointer to the
5556// cstring is returned and ReferenceType is set to
5557// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
5558//
5559// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
5560// Class ref that name is returned and the ReferenceType is set accordingly.
5561//
5562// Lastly, literals which are Symbol address in a literal pool are looked for
5563// and if found the symbol name is returned and ReferenceType is set to
5564// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
5565//
5566// If there is no item in the Mach-O file for the address passed in as
5567// ReferenceValue nullptr is returned and ReferenceType is unchanged.
5568static const char *GuessLiteralPointer(uint64_t ReferenceValue,
5569                                       uint64_t ReferencePC,
5570                                       uint64_t *ReferenceType,
5571                                       struct DisassembleInfo *info) {
5572  // First see if there is an external relocation entry at the ReferencePC.
5573  if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
5574    uint64_t sect_addr = info->S.getAddress();
5575    uint64_t sect_offset = ReferencePC - sect_addr;
5576    bool reloc_found = false;
5577    DataRefImpl Rel;
5578    MachO::any_relocation_info RE;
5579    bool isExtern = false;
5580    SymbolRef Symbol;
5581    for (const RelocationRef &Reloc : info->S.relocations()) {
5582      uint64_t RelocOffset = Reloc.getOffset();
5583      if (RelocOffset == sect_offset) {
5584        Rel = Reloc.getRawDataRefImpl();
5585        RE = info->O->getRelocation(Rel);
5586        if (info->O->isRelocationScattered(RE))
5587          continue;
5588        isExtern = info->O->getPlainRelocationExternal(RE);
5589        if (isExtern) {
5590          symbol_iterator RelocSym = Reloc.getSymbol();
5591          Symbol = *RelocSym;
5592        }
5593        reloc_found = true;
5594        break;
5595      }
5596    }
5597    // If there is an external relocation entry for a symbol in a section
5598    // then used that symbol's value for the value of the reference.
5599    if (reloc_found && isExtern) {
5600      if (info->O->getAnyRelocationPCRel(RE)) {
5601        unsigned Type = info->O->getAnyRelocationType(RE);
5602        if (Type == MachO::X86_64_RELOC_SIGNED) {
5603          ReferenceValue = Symbol.getValue();
5604        }
5605      }
5606    }
5607  }
5608
5609  // Look for literals such as Objective-C CFStrings refs, Selector refs,
5610  // Message refs and Class refs.
5611  bool classref, selref, msgref, cfstring;
5612  uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
5613                                               selref, msgref, cfstring);
5614  if (classref && pointer_value == 0) {
5615    // Note the ReferenceValue is a pointer into the __objc_classrefs section.
5616    // And the pointer_value in that section is typically zero as it will be
5617    // set by dyld as part of the "bind information".
5618    const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
5619    if (name != nullptr) {
5620      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
5621      const char *class_name = strrchr(name, '$');
5622      if (class_name != nullptr && class_name[1] == '_' &&
5623          class_name[2] != '\0') {
5624        info->class_name = class_name + 2;
5625        return name;
5626      }
5627    }
5628  }
5629
5630  if (classref) {
5631    *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
5632    const char *name =
5633        get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
5634    if (name != nullptr)
5635      info->class_name = name;
5636    else
5637      name = "bad class ref";
5638    return name;
5639  }
5640
5641  if (cfstring) {
5642    *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
5643    const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
5644    return name;
5645  }
5646
5647  if (selref && pointer_value == 0)
5648    pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
5649
5650  if (pointer_value != 0)
5651    ReferenceValue = pointer_value;
5652
5653  const char *name = GuessCstringPointer(ReferenceValue, info);
5654  if (name) {
5655    if (pointer_value != 0 && selref) {
5656      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
5657      info->selector_name = name;
5658    } else if (pointer_value != 0 && msgref) {
5659      info->class_name = nullptr;
5660      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
5661      info->selector_name = name;
5662    } else
5663      *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
5664    return name;
5665  }
5666
5667  // Lastly look for an indirect symbol with this ReferenceValue which is in
5668  // a literal pool.  If found return that symbol name.
5669  name = GuessIndirectSymbol(ReferenceValue, info);
5670  if (name) {
5671    *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
5672    return name;
5673  }
5674
5675  return nullptr;
5676}
5677
5678// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
5679// the Symbolizer.  It looks up the ReferenceValue using the info passed via the
5680// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
5681// is created and returns the symbol name that matches the ReferenceValue or
5682// nullptr if none.  The ReferenceType is passed in for the IN type of
5683// reference the instruction is making from the values in defined in the header
5684// "llvm-c/Disassembler.h".  On return the ReferenceType can set to a specific
5685// Out type and the ReferenceName will also be set which is added as a comment
5686// to the disassembled instruction.
5687//
5688#if HAVE_CXXABI_H
5689// If the symbol name is a C++ mangled name then the demangled name is
5690// returned through ReferenceName and ReferenceType is set to
5691// LLVMDisassembler_ReferenceType_DeMangled_Name .
5692#endif
5693//
5694// When this is called to get a symbol name for a branch target then the
5695// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
5696// SymbolValue will be looked for in the indirect symbol table to determine if
5697// it is an address for a symbol stub.  If so then the symbol name for that
5698// stub is returned indirectly through ReferenceName and then ReferenceType is
5699// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
5700//
5701// When this is called with an value loaded via a PC relative load then
5702// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
5703// SymbolValue is checked to be an address of literal pointer, symbol pointer,
5704// or an Objective-C meta data reference.  If so the output ReferenceType is
5705// set to correspond to that as well as setting the ReferenceName.
5706static const char *SymbolizerSymbolLookUp(void *DisInfo,
5707                                          uint64_t ReferenceValue,
5708                                          uint64_t *ReferenceType,
5709                                          uint64_t ReferencePC,
5710                                          const char **ReferenceName) {
5711  struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
5712  // If no verbose symbolic information is wanted then just return nullptr.
5713  if (!info->verbose) {
5714    *ReferenceName = nullptr;
5715    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5716    return nullptr;
5717  }
5718
5719  const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
5720
5721  if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
5722    *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
5723    if (*ReferenceName != nullptr) {
5724      method_reference(info, ReferenceType, ReferenceName);
5725      if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
5726        *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
5727    } else
5728#if HAVE_CXXABI_H
5729        if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
5730      if (info->demangled_name != nullptr)
5731        free(info->demangled_name);
5732      int status;
5733      info->demangled_name =
5734          abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
5735      if (info->demangled_name != nullptr) {
5736        *ReferenceName = info->demangled_name;
5737        *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
5738      } else
5739        *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5740    } else
5741#endif
5742      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5743  } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
5744    *ReferenceName =
5745        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5746    if (*ReferenceName)
5747      method_reference(info, ReferenceType, ReferenceName);
5748    else
5749      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5750    // If this is arm64 and the reference is an adrp instruction save the
5751    // instruction, passed in ReferenceValue and the address of the instruction
5752    // for use later if we see and add immediate instruction.
5753  } else if (info->O->getArch() == Triple::aarch64 &&
5754             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
5755    info->adrp_inst = ReferenceValue;
5756    info->adrp_addr = ReferencePC;
5757    SymbolName = nullptr;
5758    *ReferenceName = nullptr;
5759    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5760    // If this is arm64 and reference is an add immediate instruction and we
5761    // have
5762    // seen an adrp instruction just before it and the adrp's Xd register
5763    // matches
5764    // this add's Xn register reconstruct the value being referenced and look to
5765    // see if it is a literal pointer.  Note the add immediate instruction is
5766    // passed in ReferenceValue.
5767  } else if (info->O->getArch() == Triple::aarch64 &&
5768             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
5769             ReferencePC - 4 == info->adrp_addr &&
5770             (info->adrp_inst & 0x9f000000) == 0x90000000 &&
5771             (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
5772    uint32_t addxri_inst;
5773    uint64_t adrp_imm, addxri_imm;
5774
5775    adrp_imm =
5776        ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
5777    if (info->adrp_inst & 0x0200000)
5778      adrp_imm |= 0xfffffffffc000000LL;
5779
5780    addxri_inst = ReferenceValue;
5781    addxri_imm = (addxri_inst >> 10) & 0xfff;
5782    if (((addxri_inst >> 22) & 0x3) == 1)
5783      addxri_imm <<= 12;
5784
5785    ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
5786                     (adrp_imm << 12) + addxri_imm;
5787
5788    *ReferenceName =
5789        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5790    if (*ReferenceName == nullptr)
5791      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5792    // If this is arm64 and the reference is a load register instruction and we
5793    // have seen an adrp instruction just before it and the adrp's Xd register
5794    // matches this add's Xn register reconstruct the value being referenced and
5795    // look to see if it is a literal pointer.  Note the load register
5796    // instruction is passed in ReferenceValue.
5797  } else if (info->O->getArch() == Triple::aarch64 &&
5798             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
5799             ReferencePC - 4 == info->adrp_addr &&
5800             (info->adrp_inst & 0x9f000000) == 0x90000000 &&
5801             (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
5802    uint32_t ldrxui_inst;
5803    uint64_t adrp_imm, ldrxui_imm;
5804
5805    adrp_imm =
5806        ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
5807    if (info->adrp_inst & 0x0200000)
5808      adrp_imm |= 0xfffffffffc000000LL;
5809
5810    ldrxui_inst = ReferenceValue;
5811    ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
5812
5813    ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
5814                     (adrp_imm << 12) + (ldrxui_imm << 3);
5815
5816    *ReferenceName =
5817        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5818    if (*ReferenceName == nullptr)
5819      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5820  }
5821  // If this arm64 and is an load register (PC-relative) instruction the
5822  // ReferenceValue is the PC plus the immediate value.
5823  else if (info->O->getArch() == Triple::aarch64 &&
5824           (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
5825            *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
5826    *ReferenceName =
5827        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5828    if (*ReferenceName == nullptr)
5829      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5830  }
5831#if HAVE_CXXABI_H
5832  else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
5833    if (info->demangled_name != nullptr)
5834      free(info->demangled_name);
5835    int status;
5836    info->demangled_name =
5837        abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
5838    if (info->demangled_name != nullptr) {
5839      *ReferenceName = info->demangled_name;
5840      *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
5841    }
5842  }
5843#endif
5844  else {
5845    *ReferenceName = nullptr;
5846    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5847  }
5848
5849  return SymbolName;
5850}
5851
5852/// \brief Emits the comments that are stored in the CommentStream.
5853/// Each comment in the CommentStream must end with a newline.
5854static void emitComments(raw_svector_ostream &CommentStream,
5855                         SmallString<128> &CommentsToEmit,
5856                         formatted_raw_ostream &FormattedOS,
5857                         const MCAsmInfo &MAI) {
5858  // Flush the stream before taking its content.
5859  StringRef Comments = CommentsToEmit.str();
5860  // Get the default information for printing a comment.
5861  const char *CommentBegin = MAI.getCommentString();
5862  unsigned CommentColumn = MAI.getCommentColumn();
5863  bool IsFirst = true;
5864  while (!Comments.empty()) {
5865    if (!IsFirst)
5866      FormattedOS << '\n';
5867    // Emit a line of comments.
5868    FormattedOS.PadToColumn(CommentColumn);
5869    size_t Position = Comments.find('\n');
5870    FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
5871    // Move after the newline character.
5872    Comments = Comments.substr(Position + 1);
5873    IsFirst = false;
5874  }
5875  FormattedOS.flush();
5876
5877  // Tell the comment stream that the vector changed underneath it.
5878  CommentsToEmit.clear();
5879}
5880
5881static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
5882                             StringRef DisSegName, StringRef DisSectName) {
5883  const char *McpuDefault = nullptr;
5884  const Target *ThumbTarget = nullptr;
5885  const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
5886  if (!TheTarget) {
5887    // GetTarget prints out stuff.
5888    return;
5889  }
5890  if (MCPU.empty() && McpuDefault)
5891    MCPU = McpuDefault;
5892
5893  std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
5894  std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
5895  if (ThumbTarget)
5896    ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
5897
5898  // Package up features to be passed to target/subtarget
5899  std::string FeaturesStr;
5900  if (MAttrs.size()) {
5901    SubtargetFeatures Features;
5902    for (unsigned i = 0; i != MAttrs.size(); ++i)
5903      Features.AddFeature(MAttrs[i]);
5904    FeaturesStr = Features.getString();
5905  }
5906
5907  // Set up disassembler.
5908  std::unique_ptr<const MCRegisterInfo> MRI(
5909      TheTarget->createMCRegInfo(TripleName));
5910  std::unique_ptr<const MCAsmInfo> AsmInfo(
5911      TheTarget->createMCAsmInfo(*MRI, TripleName));
5912  std::unique_ptr<const MCSubtargetInfo> STI(
5913      TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
5914  MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
5915  std::unique_ptr<MCDisassembler> DisAsm(
5916      TheTarget->createMCDisassembler(*STI, Ctx));
5917  std::unique_ptr<MCSymbolizer> Symbolizer;
5918  struct DisassembleInfo SymbolizerInfo;
5919  std::unique_ptr<MCRelocationInfo> RelInfo(
5920      TheTarget->createMCRelocationInfo(TripleName, Ctx));
5921  if (RelInfo) {
5922    Symbolizer.reset(TheTarget->createMCSymbolizer(
5923        TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
5924        &SymbolizerInfo, &Ctx, std::move(RelInfo)));
5925    DisAsm->setSymbolizer(std::move(Symbolizer));
5926  }
5927  int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
5928  std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
5929      Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
5930  // Set the display preference for hex vs. decimal immediates.
5931  IP->setPrintImmHex(PrintImmHex);
5932  // Comment stream and backing vector.
5933  SmallString<128> CommentsToEmit;
5934  raw_svector_ostream CommentStream(CommentsToEmit);
5935  // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
5936  // if it is done then arm64 comments for string literals don't get printed
5937  // and some constant get printed instead and not setting it causes intel
5938  // (32-bit and 64-bit) comments printed with different spacing before the
5939  // comment causing different diffs with the 'C' disassembler library API.
5940  // IP->setCommentStream(CommentStream);
5941
5942  if (!AsmInfo || !STI || !DisAsm || !IP) {
5943    errs() << "error: couldn't initialize disassembler for target "
5944           << TripleName << '\n';
5945    return;
5946  }
5947
5948  // Set up thumb disassembler.
5949  std::unique_ptr<const MCRegisterInfo> ThumbMRI;
5950  std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
5951  std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
5952  std::unique_ptr<MCDisassembler> ThumbDisAsm;
5953  std::unique_ptr<MCInstPrinter> ThumbIP;
5954  std::unique_ptr<MCContext> ThumbCtx;
5955  std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
5956  struct DisassembleInfo ThumbSymbolizerInfo;
5957  std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
5958  if (ThumbTarget) {
5959    ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
5960    ThumbAsmInfo.reset(
5961        ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
5962    ThumbSTI.reset(
5963        ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
5964    ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
5965    ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
5966    MCContext *PtrThumbCtx = ThumbCtx.get();
5967    ThumbRelInfo.reset(
5968        ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
5969    if (ThumbRelInfo) {
5970      ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
5971          ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
5972          &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
5973      ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
5974    }
5975    int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
5976    ThumbIP.reset(ThumbTarget->createMCInstPrinter(
5977        Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
5978        *ThumbInstrInfo, *ThumbMRI));
5979    // Set the display preference for hex vs. decimal immediates.
5980    ThumbIP->setPrintImmHex(PrintImmHex);
5981  }
5982
5983  if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
5984    errs() << "error: couldn't initialize disassembler for target "
5985           << ThumbTripleName << '\n';
5986    return;
5987  }
5988
5989  MachO::mach_header Header = MachOOF->getHeader();
5990
5991  // FIXME: Using the -cfg command line option, this code used to be able to
5992  // annotate relocations with the referenced symbol's name, and if this was
5993  // inside a __[cf]string section, the data it points to. This is now replaced
5994  // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
5995  std::vector<SectionRef> Sections;
5996  std::vector<SymbolRef> Symbols;
5997  SmallVector<uint64_t, 8> FoundFns;
5998  uint64_t BaseSegmentAddress;
5999
6000  getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
6001                        BaseSegmentAddress);
6002
6003  // Sort the symbols by address, just in case they didn't come in that way.
6004  std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
6005
6006  // Build a data in code table that is sorted on by the address of each entry.
6007  uint64_t BaseAddress = 0;
6008  if (Header.filetype == MachO::MH_OBJECT)
6009    BaseAddress = Sections[0].getAddress();
6010  else
6011    BaseAddress = BaseSegmentAddress;
6012  DiceTable Dices;
6013  for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
6014       DI != DE; ++DI) {
6015    uint32_t Offset;
6016    DI->getOffset(Offset);
6017    Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
6018  }
6019  array_pod_sort(Dices.begin(), Dices.end());
6020
6021#ifndef NDEBUG
6022  raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
6023#else
6024  raw_ostream &DebugOut = nulls();
6025#endif
6026
6027  std::unique_ptr<DIContext> diContext;
6028  ObjectFile *DbgObj = MachOOF;
6029  // Try to find debug info and set up the DIContext for it.
6030  if (UseDbg) {
6031    // A separate DSym file path was specified, parse it as a macho file,
6032    // get the sections and supply it to the section name parsing machinery.
6033    if (!DSYMFile.empty()) {
6034      ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
6035          MemoryBuffer::getFileOrSTDIN(DSYMFile);
6036      if (std::error_code EC = BufOrErr.getError()) {
6037        errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
6038        return;
6039      }
6040      DbgObj =
6041          ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
6042              .get()
6043              .release();
6044    }
6045
6046    // Setup the DIContext
6047    diContext.reset(new DWARFContextInMemory(*DbgObj));
6048  }
6049
6050  if (FilterSections.size() == 0)
6051    outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
6052
6053  for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
6054    StringRef SectName;
6055    if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
6056      continue;
6057
6058    DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
6059
6060    StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
6061    if (SegmentName != DisSegName)
6062      continue;
6063
6064    StringRef BytesStr;
6065    Sections[SectIdx].getContents(BytesStr);
6066    ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
6067                            BytesStr.size());
6068    uint64_t SectAddress = Sections[SectIdx].getAddress();
6069
6070    bool symbolTableWorked = false;
6071
6072    // Create a map of symbol addresses to symbol names for use by
6073    // the SymbolizerSymbolLookUp() routine.
6074    SymbolAddressMap AddrMap;
6075    bool DisSymNameFound = false;
6076    for (const SymbolRef &Symbol : MachOOF->symbols()) {
6077      SymbolRef::Type ST = Symbol.getType();
6078      if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
6079          ST == SymbolRef::ST_Other) {
6080        uint64_t Address = Symbol.getValue();
6081        ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
6082        if (std::error_code EC = SymNameOrErr.getError())
6083          report_fatal_error(EC.message());
6084        StringRef SymName = *SymNameOrErr;
6085        AddrMap[Address] = SymName;
6086        if (!DisSymName.empty() && DisSymName == SymName)
6087          DisSymNameFound = true;
6088      }
6089    }
6090    if (!DisSymName.empty() && !DisSymNameFound) {
6091      outs() << "Can't find -dis-symname: " << DisSymName << "\n";
6092      return;
6093    }
6094    // Set up the block of info used by the Symbolizer call backs.
6095    SymbolizerInfo.verbose = !NoSymbolicOperands;
6096    SymbolizerInfo.O = MachOOF;
6097    SymbolizerInfo.S = Sections[SectIdx];
6098    SymbolizerInfo.AddrMap = &AddrMap;
6099    SymbolizerInfo.Sections = &Sections;
6100    SymbolizerInfo.class_name = nullptr;
6101    SymbolizerInfo.selector_name = nullptr;
6102    SymbolizerInfo.method = nullptr;
6103    SymbolizerInfo.demangled_name = nullptr;
6104    SymbolizerInfo.bindtable = nullptr;
6105    SymbolizerInfo.adrp_addr = 0;
6106    SymbolizerInfo.adrp_inst = 0;
6107    // Same for the ThumbSymbolizer
6108    ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
6109    ThumbSymbolizerInfo.O = MachOOF;
6110    ThumbSymbolizerInfo.S = Sections[SectIdx];
6111    ThumbSymbolizerInfo.AddrMap = &AddrMap;
6112    ThumbSymbolizerInfo.Sections = &Sections;
6113    ThumbSymbolizerInfo.class_name = nullptr;
6114    ThumbSymbolizerInfo.selector_name = nullptr;
6115    ThumbSymbolizerInfo.method = nullptr;
6116    ThumbSymbolizerInfo.demangled_name = nullptr;
6117    ThumbSymbolizerInfo.bindtable = nullptr;
6118    ThumbSymbolizerInfo.adrp_addr = 0;
6119    ThumbSymbolizerInfo.adrp_inst = 0;
6120
6121    // Disassemble symbol by symbol.
6122    for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
6123      ErrorOr<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
6124      if (std::error_code EC = SymNameOrErr.getError())
6125        report_fatal_error(EC.message());
6126      StringRef SymName = *SymNameOrErr;
6127
6128      SymbolRef::Type ST = Symbols[SymIdx].getType();
6129      if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
6130        continue;
6131
6132      // Make sure the symbol is defined in this section.
6133      bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
6134      if (!containsSym)
6135        continue;
6136
6137      // If we are only disassembling one symbol see if this is that symbol.
6138      if (!DisSymName.empty() && DisSymName != SymName)
6139        continue;
6140
6141      // Start at the address of the symbol relative to the section's address.
6142      uint64_t Start = Symbols[SymIdx].getValue();
6143      uint64_t SectionAddress = Sections[SectIdx].getAddress();
6144      Start -= SectionAddress;
6145
6146      // Stop disassembling either at the beginning of the next symbol or at
6147      // the end of the section.
6148      bool containsNextSym = false;
6149      uint64_t NextSym = 0;
6150      uint64_t NextSymIdx = SymIdx + 1;
6151      while (Symbols.size() > NextSymIdx) {
6152        SymbolRef::Type NextSymType = Symbols[NextSymIdx].getType();
6153        if (NextSymType == SymbolRef::ST_Function) {
6154          containsNextSym =
6155              Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
6156          NextSym = Symbols[NextSymIdx].getValue();
6157          NextSym -= SectionAddress;
6158          break;
6159        }
6160        ++NextSymIdx;
6161      }
6162
6163      uint64_t SectSize = Sections[SectIdx].getSize();
6164      uint64_t End = containsNextSym ? NextSym : SectSize;
6165      uint64_t Size;
6166
6167      symbolTableWorked = true;
6168
6169      DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
6170      bool isThumb =
6171          (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
6172
6173      outs() << SymName << ":\n";
6174      DILineInfo lastLine;
6175      for (uint64_t Index = Start; Index < End; Index += Size) {
6176        MCInst Inst;
6177
6178        uint64_t PC = SectAddress + Index;
6179        if (!NoLeadingAddr) {
6180          if (FullLeadingAddr) {
6181            if (MachOOF->is64Bit())
6182              outs() << format("%016" PRIx64, PC);
6183            else
6184              outs() << format("%08" PRIx64, PC);
6185          } else {
6186            outs() << format("%8" PRIx64 ":", PC);
6187          }
6188        }
6189        if (!NoShowRawInsn)
6190          outs() << "\t";
6191
6192        // Check the data in code table here to see if this is data not an
6193        // instruction to be disassembled.
6194        DiceTable Dice;
6195        Dice.push_back(std::make_pair(PC, DiceRef()));
6196        dice_table_iterator DTI =
6197            std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
6198                        compareDiceTableEntries);
6199        if (DTI != Dices.end()) {
6200          uint16_t Length;
6201          DTI->second.getLength(Length);
6202          uint16_t Kind;
6203          DTI->second.getKind(Kind);
6204          Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
6205          if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
6206              (PC == (DTI->first + Length - 1)) && (Length & 1))
6207            Size++;
6208          continue;
6209        }
6210
6211        SmallVector<char, 64> AnnotationsBytes;
6212        raw_svector_ostream Annotations(AnnotationsBytes);
6213
6214        bool gotInst;
6215        if (isThumb)
6216          gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
6217                                                PC, DebugOut, Annotations);
6218        else
6219          gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
6220                                           DebugOut, Annotations);
6221        if (gotInst) {
6222          if (!NoShowRawInsn) {
6223            dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
6224          }
6225          formatted_raw_ostream FormattedOS(outs());
6226          StringRef AnnotationsStr = Annotations.str();
6227          if (isThumb)
6228            ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
6229          else
6230            IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
6231          emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
6232
6233          // Print debug info.
6234          if (diContext) {
6235            DILineInfo dli = diContext->getLineInfoForAddress(PC);
6236            // Print valid line info if it changed.
6237            if (dli != lastLine && dli.Line != 0)
6238              outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
6239                     << dli.Column;
6240            lastLine = dli;
6241          }
6242          outs() << "\n";
6243        } else {
6244          unsigned int Arch = MachOOF->getArch();
6245          if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6246            outs() << format("\t.byte 0x%02x #bad opcode\n",
6247                             *(Bytes.data() + Index) & 0xff);
6248            Size = 1; // skip exactly one illegible byte and move on.
6249          } else if (Arch == Triple::aarch64) {
6250            uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6251                              (*(Bytes.data() + Index + 1) & 0xff) << 8 |
6252                              (*(Bytes.data() + Index + 2) & 0xff) << 16 |
6253                              (*(Bytes.data() + Index + 3) & 0xff) << 24;
6254            outs() << format("\t.long\t0x%08x\n", opcode);
6255            Size = 4;
6256          } else {
6257            errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6258            if (Size == 0)
6259              Size = 1; // skip illegible bytes
6260          }
6261        }
6262      }
6263    }
6264    if (!symbolTableWorked) {
6265      // Reading the symbol table didn't work, disassemble the whole section.
6266      uint64_t SectAddress = Sections[SectIdx].getAddress();
6267      uint64_t SectSize = Sections[SectIdx].getSize();
6268      uint64_t InstSize;
6269      for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
6270        MCInst Inst;
6271
6272        uint64_t PC = SectAddress + Index;
6273        if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
6274                                   DebugOut, nulls())) {
6275          if (!NoLeadingAddr) {
6276            if (FullLeadingAddr) {
6277              if (MachOOF->is64Bit())
6278                outs() << format("%016" PRIx64, PC);
6279              else
6280                outs() << format("%08" PRIx64, PC);
6281            } else {
6282              outs() << format("%8" PRIx64 ":", PC);
6283            }
6284          }
6285          if (!NoShowRawInsn) {
6286            outs() << "\t";
6287            dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
6288          }
6289          IP->printInst(&Inst, outs(), "", *STI);
6290          outs() << "\n";
6291        } else {
6292          unsigned int Arch = MachOOF->getArch();
6293          if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6294            outs() << format("\t.byte 0x%02x #bad opcode\n",
6295                             *(Bytes.data() + Index) & 0xff);
6296            InstSize = 1; // skip exactly one illegible byte and move on.
6297          } else {
6298            errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6299            if (InstSize == 0)
6300              InstSize = 1; // skip illegible bytes
6301          }
6302        }
6303      }
6304    }
6305    // The TripleName's need to be reset if we are called again for a different
6306    // archtecture.
6307    TripleName = "";
6308    ThumbTripleName = "";
6309
6310    if (SymbolizerInfo.method != nullptr)
6311      free(SymbolizerInfo.method);
6312    if (SymbolizerInfo.demangled_name != nullptr)
6313      free(SymbolizerInfo.demangled_name);
6314    if (SymbolizerInfo.bindtable != nullptr)
6315      delete SymbolizerInfo.bindtable;
6316    if (ThumbSymbolizerInfo.method != nullptr)
6317      free(ThumbSymbolizerInfo.method);
6318    if (ThumbSymbolizerInfo.demangled_name != nullptr)
6319      free(ThumbSymbolizerInfo.demangled_name);
6320    if (ThumbSymbolizerInfo.bindtable != nullptr)
6321      delete ThumbSymbolizerInfo.bindtable;
6322  }
6323}
6324
6325//===----------------------------------------------------------------------===//
6326// __compact_unwind section dumping
6327//===----------------------------------------------------------------------===//
6328
6329namespace {
6330
6331template <typename T> static uint64_t readNext(const char *&Buf) {
6332  using llvm::support::little;
6333  using llvm::support::unaligned;
6334
6335  uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
6336  Buf += sizeof(T);
6337  return Val;
6338}
6339
6340struct CompactUnwindEntry {
6341  uint32_t OffsetInSection;
6342
6343  uint64_t FunctionAddr;
6344  uint32_t Length;
6345  uint32_t CompactEncoding;
6346  uint64_t PersonalityAddr;
6347  uint64_t LSDAAddr;
6348
6349  RelocationRef FunctionReloc;
6350  RelocationRef PersonalityReloc;
6351  RelocationRef LSDAReloc;
6352
6353  CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
6354      : OffsetInSection(Offset) {
6355    if (Is64)
6356      read<uint64_t>(Contents.data() + Offset);
6357    else
6358      read<uint32_t>(Contents.data() + Offset);
6359  }
6360
6361private:
6362  template <typename UIntPtr> void read(const char *Buf) {
6363    FunctionAddr = readNext<UIntPtr>(Buf);
6364    Length = readNext<uint32_t>(Buf);
6365    CompactEncoding = readNext<uint32_t>(Buf);
6366    PersonalityAddr = readNext<UIntPtr>(Buf);
6367    LSDAAddr = readNext<UIntPtr>(Buf);
6368  }
6369};
6370}
6371
6372/// Given a relocation from __compact_unwind, consisting of the RelocationRef
6373/// and data being relocated, determine the best base Name and Addend to use for
6374/// display purposes.
6375///
6376/// 1. An Extern relocation will directly reference a symbol (and the data is
6377///    then already an addend), so use that.
6378/// 2. Otherwise the data is an offset in the object file's layout; try to find
6379//     a symbol before it in the same section, and use the offset from there.
6380/// 3. Finally, if all that fails, fall back to an offset from the start of the
6381///    referenced section.
6382static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
6383                                      std::map<uint64_t, SymbolRef> &Symbols,
6384                                      const RelocationRef &Reloc, uint64_t Addr,
6385                                      StringRef &Name, uint64_t &Addend) {
6386  if (Reloc.getSymbol() != Obj->symbol_end()) {
6387    ErrorOr<StringRef> NameOrErr = Reloc.getSymbol()->getName();
6388    if (std::error_code EC = NameOrErr.getError())
6389      report_fatal_error(EC.message());
6390    Name = *NameOrErr;
6391    Addend = Addr;
6392    return;
6393  }
6394
6395  auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
6396  SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
6397
6398  uint64_t SectionAddr = RelocSection.getAddress();
6399
6400  auto Sym = Symbols.upper_bound(Addr);
6401  if (Sym == Symbols.begin()) {
6402    // The first symbol in the object is after this reference, the best we can
6403    // do is section-relative notation.
6404    RelocSection.getName(Name);
6405    Addend = Addr - SectionAddr;
6406    return;
6407  }
6408
6409  // Go back one so that SymbolAddress <= Addr.
6410  --Sym;
6411
6412  section_iterator SymSection = *Sym->second.getSection();
6413  if (RelocSection == *SymSection) {
6414    // There's a valid symbol in the same section before this reference.
6415    ErrorOr<StringRef> NameOrErr = Sym->second.getName();
6416    if (std::error_code EC = NameOrErr.getError())
6417      report_fatal_error(EC.message());
6418    Name = *NameOrErr;
6419    Addend = Addr - Sym->first;
6420    return;
6421  }
6422
6423  // There is a symbol before this reference, but it's in a different
6424  // section. Probably not helpful to mention it, so use the section name.
6425  RelocSection.getName(Name);
6426  Addend = Addr - SectionAddr;
6427}
6428
6429static void printUnwindRelocDest(const MachOObjectFile *Obj,
6430                                 std::map<uint64_t, SymbolRef> &Symbols,
6431                                 const RelocationRef &Reloc, uint64_t Addr) {
6432  StringRef Name;
6433  uint64_t Addend;
6434
6435  if (!Reloc.getObject())
6436    return;
6437
6438  findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
6439
6440  outs() << Name;
6441  if (Addend)
6442    outs() << " + " << format("0x%" PRIx64, Addend);
6443}
6444
6445static void
6446printMachOCompactUnwindSection(const MachOObjectFile *Obj,
6447                               std::map<uint64_t, SymbolRef> &Symbols,
6448                               const SectionRef &CompactUnwind) {
6449
6450  assert(Obj->isLittleEndian() &&
6451         "There should not be a big-endian .o with __compact_unwind");
6452
6453  bool Is64 = Obj->is64Bit();
6454  uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
6455  uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
6456
6457  StringRef Contents;
6458  CompactUnwind.getContents(Contents);
6459
6460  SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
6461
6462  // First populate the initial raw offsets, encodings and so on from the entry.
6463  for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
6464    CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
6465    CompactUnwinds.push_back(Entry);
6466  }
6467
6468  // Next we need to look at the relocations to find out what objects are
6469  // actually being referred to.
6470  for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
6471    uint64_t RelocAddress = Reloc.getOffset();
6472
6473    uint32_t EntryIdx = RelocAddress / EntrySize;
6474    uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
6475    CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
6476
6477    if (OffsetInEntry == 0)
6478      Entry.FunctionReloc = Reloc;
6479    else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
6480      Entry.PersonalityReloc = Reloc;
6481    else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
6482      Entry.LSDAReloc = Reloc;
6483    else
6484      llvm_unreachable("Unexpected relocation in __compact_unwind section");
6485  }
6486
6487  // Finally, we're ready to print the data we've gathered.
6488  outs() << "Contents of __compact_unwind section:\n";
6489  for (auto &Entry : CompactUnwinds) {
6490    outs() << "  Entry at offset "
6491           << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
6492
6493    // 1. Start of the region this entry applies to.
6494    outs() << "    start:                " << format("0x%" PRIx64,
6495                                                     Entry.FunctionAddr) << ' ';
6496    printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
6497    outs() << '\n';
6498
6499    // 2. Length of the region this entry applies to.
6500    outs() << "    length:               " << format("0x%" PRIx32, Entry.Length)
6501           << '\n';
6502    // 3. The 32-bit compact encoding.
6503    outs() << "    compact encoding:     "
6504           << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
6505
6506    // 4. The personality function, if present.
6507    if (Entry.PersonalityReloc.getObject()) {
6508      outs() << "    personality function: "
6509             << format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
6510      printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
6511                           Entry.PersonalityAddr);
6512      outs() << '\n';
6513    }
6514
6515    // 5. This entry's language-specific data area.
6516    if (Entry.LSDAReloc.getObject()) {
6517      outs() << "    LSDA:                 " << format("0x%" PRIx64,
6518                                                       Entry.LSDAAddr) << ' ';
6519      printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
6520      outs() << '\n';
6521    }
6522  }
6523}
6524
6525//===----------------------------------------------------------------------===//
6526// __unwind_info section dumping
6527//===----------------------------------------------------------------------===//
6528
6529static void printRegularSecondLevelUnwindPage(const char *PageStart) {
6530  const char *Pos = PageStart;
6531  uint32_t Kind = readNext<uint32_t>(Pos);
6532  (void)Kind;
6533  assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
6534
6535  uint16_t EntriesStart = readNext<uint16_t>(Pos);
6536  uint16_t NumEntries = readNext<uint16_t>(Pos);
6537
6538  Pos = PageStart + EntriesStart;
6539  for (unsigned i = 0; i < NumEntries; ++i) {
6540    uint32_t FunctionOffset = readNext<uint32_t>(Pos);
6541    uint32_t Encoding = readNext<uint32_t>(Pos);
6542
6543    outs() << "      [" << i << "]: "
6544           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6545           << ", "
6546           << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
6547  }
6548}
6549
6550static void printCompressedSecondLevelUnwindPage(
6551    const char *PageStart, uint32_t FunctionBase,
6552    const SmallVectorImpl<uint32_t> &CommonEncodings) {
6553  const char *Pos = PageStart;
6554  uint32_t Kind = readNext<uint32_t>(Pos);
6555  (void)Kind;
6556  assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
6557
6558  uint16_t EntriesStart = readNext<uint16_t>(Pos);
6559  uint16_t NumEntries = readNext<uint16_t>(Pos);
6560
6561  uint16_t EncodingsStart = readNext<uint16_t>(Pos);
6562  readNext<uint16_t>(Pos);
6563  const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
6564      PageStart + EncodingsStart);
6565
6566  Pos = PageStart + EntriesStart;
6567  for (unsigned i = 0; i < NumEntries; ++i) {
6568    uint32_t Entry = readNext<uint32_t>(Pos);
6569    uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
6570    uint32_t EncodingIdx = Entry >> 24;
6571
6572    uint32_t Encoding;
6573    if (EncodingIdx < CommonEncodings.size())
6574      Encoding = CommonEncodings[EncodingIdx];
6575    else
6576      Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
6577
6578    outs() << "      [" << i << "]: "
6579           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6580           << ", "
6581           << "encoding[" << EncodingIdx
6582           << "]=" << format("0x%08" PRIx32, Encoding) << '\n';
6583  }
6584}
6585
6586static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
6587                                        std::map<uint64_t, SymbolRef> &Symbols,
6588                                        const SectionRef &UnwindInfo) {
6589
6590  assert(Obj->isLittleEndian() &&
6591         "There should not be a big-endian .o with __unwind_info");
6592
6593  outs() << "Contents of __unwind_info section:\n";
6594
6595  StringRef Contents;
6596  UnwindInfo.getContents(Contents);
6597  const char *Pos = Contents.data();
6598
6599  //===----------------------------------
6600  // Section header
6601  //===----------------------------------
6602
6603  uint32_t Version = readNext<uint32_t>(Pos);
6604  outs() << "  Version:                                   "
6605         << format("0x%" PRIx32, Version) << '\n';
6606  assert(Version == 1 && "only understand version 1");
6607
6608  uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
6609  outs() << "  Common encodings array section offset:     "
6610         << format("0x%" PRIx32, CommonEncodingsStart) << '\n';
6611  uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
6612  outs() << "  Number of common encodings in array:       "
6613         << format("0x%" PRIx32, NumCommonEncodings) << '\n';
6614
6615  uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
6616  outs() << "  Personality function array section offset: "
6617         << format("0x%" PRIx32, PersonalitiesStart) << '\n';
6618  uint32_t NumPersonalities = readNext<uint32_t>(Pos);
6619  outs() << "  Number of personality functions in array:  "
6620         << format("0x%" PRIx32, NumPersonalities) << '\n';
6621
6622  uint32_t IndicesStart = readNext<uint32_t>(Pos);
6623  outs() << "  Index array section offset:                "
6624         << format("0x%" PRIx32, IndicesStart) << '\n';
6625  uint32_t NumIndices = readNext<uint32_t>(Pos);
6626  outs() << "  Number of indices in array:                "
6627         << format("0x%" PRIx32, NumIndices) << '\n';
6628
6629  //===----------------------------------
6630  // A shared list of common encodings
6631  //===----------------------------------
6632
6633  // These occupy indices in the range [0, N] whenever an encoding is referenced
6634  // from a compressed 2nd level index table. In practice the linker only
6635  // creates ~128 of these, so that indices are available to embed encodings in
6636  // the 2nd level index.
6637
6638  SmallVector<uint32_t, 64> CommonEncodings;
6639  outs() << "  Common encodings: (count = " << NumCommonEncodings << ")\n";
6640  Pos = Contents.data() + CommonEncodingsStart;
6641  for (unsigned i = 0; i < NumCommonEncodings; ++i) {
6642    uint32_t Encoding = readNext<uint32_t>(Pos);
6643    CommonEncodings.push_back(Encoding);
6644
6645    outs() << "    encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
6646           << '\n';
6647  }
6648
6649  //===----------------------------------
6650  // Personality functions used in this executable
6651  //===----------------------------------
6652
6653  // There should be only a handful of these (one per source language,
6654  // roughly). Particularly since they only get 2 bits in the compact encoding.
6655
6656  outs() << "  Personality functions: (count = " << NumPersonalities << ")\n";
6657  Pos = Contents.data() + PersonalitiesStart;
6658  for (unsigned i = 0; i < NumPersonalities; ++i) {
6659    uint32_t PersonalityFn = readNext<uint32_t>(Pos);
6660    outs() << "    personality[" << i + 1
6661           << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
6662  }
6663
6664  //===----------------------------------
6665  // The level 1 index entries
6666  //===----------------------------------
6667
6668  // These specify an approximate place to start searching for the more detailed
6669  // information, sorted by PC.
6670
6671  struct IndexEntry {
6672    uint32_t FunctionOffset;
6673    uint32_t SecondLevelPageStart;
6674    uint32_t LSDAStart;
6675  };
6676
6677  SmallVector<IndexEntry, 4> IndexEntries;
6678
6679  outs() << "  Top level indices: (count = " << NumIndices << ")\n";
6680  Pos = Contents.data() + IndicesStart;
6681  for (unsigned i = 0; i < NumIndices; ++i) {
6682    IndexEntry Entry;
6683
6684    Entry.FunctionOffset = readNext<uint32_t>(Pos);
6685    Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
6686    Entry.LSDAStart = readNext<uint32_t>(Pos);
6687    IndexEntries.push_back(Entry);
6688
6689    outs() << "    [" << i << "]: "
6690           << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
6691           << ", "
6692           << "2nd level page offset="
6693           << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
6694           << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
6695  }
6696
6697  //===----------------------------------
6698  // Next come the LSDA tables
6699  //===----------------------------------
6700
6701  // The LSDA layout is rather implicit: it's a contiguous array of entries from
6702  // the first top-level index's LSDAOffset to the last (sentinel).
6703
6704  outs() << "  LSDA descriptors:\n";
6705  Pos = Contents.data() + IndexEntries[0].LSDAStart;
6706  int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
6707                 (2 * sizeof(uint32_t));
6708  for (int i = 0; i < NumLSDAs; ++i) {
6709    uint32_t FunctionOffset = readNext<uint32_t>(Pos);
6710    uint32_t LSDAOffset = readNext<uint32_t>(Pos);
6711    outs() << "    [" << i << "]: "
6712           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6713           << ", "
6714           << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
6715  }
6716
6717  //===----------------------------------
6718  // Finally, the 2nd level indices
6719  //===----------------------------------
6720
6721  // Generally these are 4K in size, and have 2 possible forms:
6722  //   + Regular stores up to 511 entries with disparate encodings
6723  //   + Compressed stores up to 1021 entries if few enough compact encoding
6724  //     values are used.
6725  outs() << "  Second level indices:\n";
6726  for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
6727    // The final sentinel top-level index has no associated 2nd level page
6728    if (IndexEntries[i].SecondLevelPageStart == 0)
6729      break;
6730
6731    outs() << "    Second level index[" << i << "]: "
6732           << "offset in section="
6733           << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
6734           << ", "
6735           << "base function offset="
6736           << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
6737
6738    Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
6739    uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
6740    if (Kind == 2)
6741      printRegularSecondLevelUnwindPage(Pos);
6742    else if (Kind == 3)
6743      printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
6744                                           CommonEncodings);
6745    else
6746      llvm_unreachable("Do not know how to print this kind of 2nd level page");
6747  }
6748}
6749
6750static unsigned getSizeForEncoding(bool is64Bit,
6751                                   unsigned symbolEncoding) {
6752  unsigned format = symbolEncoding & 0x0f;
6753  switch (format) {
6754    default: llvm_unreachable("Unknown Encoding");
6755    case dwarf::DW_EH_PE_absptr:
6756    case dwarf::DW_EH_PE_signed:
6757      return is64Bit ? 8 : 4;
6758    case dwarf::DW_EH_PE_udata2:
6759    case dwarf::DW_EH_PE_sdata2:
6760      return 2;
6761    case dwarf::DW_EH_PE_udata4:
6762    case dwarf::DW_EH_PE_sdata4:
6763      return 4;
6764    case dwarf::DW_EH_PE_udata8:
6765    case dwarf::DW_EH_PE_sdata8:
6766      return 8;
6767  }
6768}
6769
6770static uint64_t readPointer(const char *&Pos, bool is64Bit, unsigned Encoding) {
6771  switch (getSizeForEncoding(is64Bit, Encoding)) {
6772    case 2:
6773      return readNext<uint16_t>(Pos);
6774      break;
6775    case 4:
6776      return readNext<uint32_t>(Pos);
6777      break;
6778    case 8:
6779      return readNext<uint64_t>(Pos);
6780      break;
6781    default:
6782      llvm_unreachable("Illegal data size");
6783  }
6784}
6785
6786static void printMachOEHFrameSection(const MachOObjectFile *Obj,
6787                                     std::map<uint64_t, SymbolRef> &Symbols,
6788                                     const SectionRef &EHFrame) {
6789  if (!Obj->isLittleEndian()) {
6790    outs() << "warning: cannot handle big endian __eh_frame section\n";
6791    return;
6792  }
6793
6794  bool is64Bit = Obj->is64Bit();
6795
6796  outs() << "Contents of __eh_frame section:\n";
6797
6798  StringRef Contents;
6799  EHFrame.getContents(Contents);
6800
6801  /// A few fields of the CIE are used when decoding the FDE's.  This struct
6802  /// will cache those fields we need so that we don't have to decode it
6803  /// repeatedly for each FDE that references it.
6804  struct DecodedCIE {
6805    Optional<uint32_t> FDEPointerEncoding;
6806    Optional<uint32_t> LSDAPointerEncoding;
6807    bool hasAugmentationLength;
6808  };
6809
6810  // Map from the start offset of the CIE to the cached data for that CIE.
6811  DenseMap<uint64_t, DecodedCIE> CachedCIEs;
6812
6813  for (const char *Pos = Contents.data(), *End = Contents.end(); Pos != End; ) {
6814
6815    const char *EntryStartPos = Pos;
6816
6817    uint64_t Length = readNext<uint32_t>(Pos);
6818    if (Length == 0xffffffff)
6819      Length = readNext<uint64_t>(Pos);
6820
6821    // Save the Pos so that we can check the length we encoded against what we
6822    // end up decoding.
6823    const char *PosAfterLength = Pos;
6824    const char *EntryEndPos = PosAfterLength + Length;
6825
6826    assert(EntryEndPos <= End &&
6827           "__eh_frame entry length exceeds section size");
6828
6829    uint32_t ID = readNext<uint32_t>(Pos);
6830    if (ID == 0) {
6831      // This is a CIE.
6832
6833      uint32_t Version = readNext<uint8_t>(Pos);
6834
6835      // Parse a null terminated augmentation string
6836      SmallString<8> AugmentationString;
6837      for (uint8_t Char = readNext<uint8_t>(Pos); Char;
6838           Char = readNext<uint8_t>(Pos))
6839        AugmentationString.push_back(Char);
6840
6841      // Optionally parse the EH data if the augmentation string says it's there.
6842      Optional<uint64_t> EHData;
6843      if (StringRef(AugmentationString).count("eh"))
6844        EHData = is64Bit ? readNext<uint64_t>(Pos) : readNext<uint32_t>(Pos);
6845
6846      unsigned ULEBByteCount;
6847      uint64_t CodeAlignmentFactor = decodeULEB128((const uint8_t *)Pos,
6848                                                   &ULEBByteCount);
6849      Pos += ULEBByteCount;
6850
6851      int64_t DataAlignmentFactor = decodeSLEB128((const uint8_t *)Pos,
6852                                                   &ULEBByteCount);
6853      Pos += ULEBByteCount;
6854
6855      uint32_t ReturnAddressRegister = readNext<uint8_t>(Pos);
6856
6857      Optional<uint64_t> AugmentationLength;
6858      Optional<uint32_t> LSDAPointerEncoding;
6859      Optional<uint32_t> PersonalityEncoding;
6860      Optional<uint64_t> Personality;
6861      Optional<uint32_t> FDEPointerEncoding;
6862      if (!AugmentationString.empty() && AugmentationString.front() == 'z') {
6863        AugmentationLength = decodeULEB128((const uint8_t *)Pos,
6864                                           &ULEBByteCount);
6865        Pos += ULEBByteCount;
6866
6867        // Walk the augmentation string to get all the augmentation data.
6868        for (unsigned i = 1, e = AugmentationString.size(); i != e; ++i) {
6869          char Char = AugmentationString[i];
6870          switch (Char) {
6871            case 'e':
6872              assert((i + 1) != e && AugmentationString[i + 1] == 'h' &&
6873                     "Expected 'eh' in augmentation string");
6874              break;
6875            case 'L':
6876              assert(!LSDAPointerEncoding && "Duplicate LSDA encoding");
6877              LSDAPointerEncoding = readNext<uint8_t>(Pos);
6878              break;
6879            case 'P': {
6880              assert(!Personality && "Duplicate personality");
6881              PersonalityEncoding = readNext<uint8_t>(Pos);
6882              Personality = readPointer(Pos, is64Bit, *PersonalityEncoding);
6883              break;
6884            }
6885            case 'R':
6886              assert(!FDEPointerEncoding && "Duplicate FDE encoding");
6887              FDEPointerEncoding = readNext<uint8_t>(Pos);
6888              break;
6889            case 'z':
6890              llvm_unreachable("'z' must be first in the augmentation string");
6891          }
6892        }
6893      }
6894
6895      outs() << "CIE:\n";
6896      outs() << "  Length: " << Length << "\n";
6897      outs() << "  CIE ID: " << ID << "\n";
6898      outs() << "  Version: " << Version << "\n";
6899      outs() << "  Augmentation String: " << AugmentationString << "\n";
6900      if (EHData)
6901        outs() << "  EHData: " << *EHData << "\n";
6902      outs() << "  Code Alignment Factor: " << CodeAlignmentFactor << "\n";
6903      outs() << "  Data Alignment Factor: " << DataAlignmentFactor << "\n";
6904      outs() << "  Return Address Register: " << ReturnAddressRegister << "\n";
6905      if (AugmentationLength) {
6906        outs() << "  Augmentation Data Length: " << *AugmentationLength << "\n";
6907        if (LSDAPointerEncoding) {
6908          outs() << "  FDE LSDA Pointer Encoding: "
6909                 << *LSDAPointerEncoding << "\n";
6910        }
6911        if (Personality) {
6912          outs() << "  Personality Encoding: " << *PersonalityEncoding << "\n";
6913          outs() << "  Personality: " << *Personality << "\n";
6914        }
6915        if (FDEPointerEncoding) {
6916          outs() << "  FDE Address Pointer Encoding: "
6917                 << *FDEPointerEncoding << "\n";
6918        }
6919      }
6920      // FIXME: Handle instructions.
6921      // For now just emit some bytes
6922      outs() << "  Instructions:\n  ";
6923      dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
6924                outs());
6925      outs() << "\n";
6926      Pos = EntryEndPos;
6927
6928      // Cache this entry.
6929      uint64_t Offset = EntryStartPos - Contents.data();
6930      CachedCIEs[Offset] = { FDEPointerEncoding, LSDAPointerEncoding,
6931                             AugmentationLength.hasValue() };
6932      continue;
6933    }
6934
6935    // This is an FDE.
6936    // The CIE pointer for an FDE is the same location as the ID which we
6937    // already read.
6938    uint32_t CIEPointer = ID;
6939
6940    const char *CIEStart = PosAfterLength - CIEPointer;
6941    assert(CIEStart >= Contents.data() &&
6942           "FDE points to CIE before the __eh_frame start");
6943
6944    uint64_t CIEOffset = CIEStart - Contents.data();
6945    auto CIEIt = CachedCIEs.find(CIEOffset);
6946    if (CIEIt == CachedCIEs.end())
6947      llvm_unreachable("Couldn't find CIE at offset in to __eh_frame section");
6948
6949    const DecodedCIE &CIE = CIEIt->getSecond();
6950    assert(CIE.FDEPointerEncoding &&
6951           "FDE references CIE which did not set pointer encoding");
6952
6953    uint64_t PCPointerSize = getSizeForEncoding(is64Bit,
6954                                                *CIE.FDEPointerEncoding);
6955
6956    uint64_t PCBegin = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);
6957    uint64_t PCRange = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);
6958
6959    Optional<uint64_t> AugmentationLength;
6960    uint32_t LSDAPointerSize;
6961    Optional<uint64_t> LSDAPointer;
6962    if (CIE.hasAugmentationLength) {
6963      unsigned ULEBByteCount;
6964      AugmentationLength = decodeULEB128((const uint8_t *)Pos,
6965                                         &ULEBByteCount);
6966      Pos += ULEBByteCount;
6967
6968      // Decode the LSDA if the CIE augmentation string said we should.
6969      if (CIE.LSDAPointerEncoding) {
6970        LSDAPointerSize = getSizeForEncoding(is64Bit, *CIE.LSDAPointerEncoding);
6971        LSDAPointer = readPointer(Pos, is64Bit, *CIE.LSDAPointerEncoding);
6972      }
6973    }
6974
6975    outs() << "FDE:\n";
6976    outs() << "  Length: " << Length << "\n";
6977    outs() << "  CIE Offset: " << CIEOffset << "\n";
6978
6979    if (PCPointerSize == 8) {
6980      outs() << format("  PC Begin: %016" PRIx64, PCBegin) << "\n";
6981      outs() << format("  PC Range: %016" PRIx64, PCRange) << "\n";
6982    } else {
6983      outs() << format("  PC Begin: %08" PRIx64, PCBegin) << "\n";
6984      outs() << format("  PC Range: %08" PRIx64, PCRange) << "\n";
6985    }
6986    if (AugmentationLength) {
6987      outs() << "  Augmentation Data Length: " << *AugmentationLength << "\n";
6988      if (LSDAPointer) {
6989        if (LSDAPointerSize == 8)
6990          outs() << format("  LSDA Pointer: %016\n" PRIx64, *LSDAPointer);
6991        else
6992          outs() << format("  LSDA Pointer: %08\n" PRIx64, *LSDAPointer);
6993      }
6994    }
6995
6996    // FIXME: Handle instructions.
6997    // For now just emit some bytes
6998    outs() << "  Instructions:\n  ";
6999    dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
7000              outs());
7001    outs() << "\n";
7002    Pos = EntryEndPos;
7003  }
7004}
7005
7006void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
7007  std::map<uint64_t, SymbolRef> Symbols;
7008  for (const SymbolRef &SymRef : Obj->symbols()) {
7009    // Discard any undefined or absolute symbols. They're not going to take part
7010    // in the convenience lookup for unwind info and just take up resources.
7011    section_iterator Section = *SymRef.getSection();
7012    if (Section == Obj->section_end())
7013      continue;
7014
7015    uint64_t Addr = SymRef.getValue();
7016    Symbols.insert(std::make_pair(Addr, SymRef));
7017  }
7018
7019  for (const SectionRef &Section : Obj->sections()) {
7020    StringRef SectName;
7021    Section.getName(SectName);
7022    if (SectName == "__compact_unwind")
7023      printMachOCompactUnwindSection(Obj, Symbols, Section);
7024    else if (SectName == "__unwind_info")
7025      printMachOUnwindInfoSection(Obj, Symbols, Section);
7026    else if (SectName == "__eh_frame")
7027      printMachOEHFrameSection(Obj, Symbols, Section);
7028  }
7029}
7030
7031static void PrintMachHeader(uint32_t magic, uint32_t cputype,
7032                            uint32_t cpusubtype, uint32_t filetype,
7033                            uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
7034                            bool verbose) {
7035  outs() << "Mach header\n";
7036  outs() << "      magic cputype cpusubtype  caps    filetype ncmds "
7037            "sizeofcmds      flags\n";
7038  if (verbose) {
7039    if (magic == MachO::MH_MAGIC)
7040      outs() << "   MH_MAGIC";
7041    else if (magic == MachO::MH_MAGIC_64)
7042      outs() << "MH_MAGIC_64";
7043    else
7044      outs() << format(" 0x%08" PRIx32, magic);
7045    switch (cputype) {
7046    case MachO::CPU_TYPE_I386:
7047      outs() << "    I386";
7048      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7049      case MachO::CPU_SUBTYPE_I386_ALL:
7050        outs() << "        ALL";
7051        break;
7052      default:
7053        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7054        break;
7055      }
7056      break;
7057    case MachO::CPU_TYPE_X86_64:
7058      outs() << "  X86_64";
7059      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7060      case MachO::CPU_SUBTYPE_X86_64_ALL:
7061        outs() << "        ALL";
7062        break;
7063      case MachO::CPU_SUBTYPE_X86_64_H:
7064        outs() << "    Haswell";
7065        break;
7066      default:
7067        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7068        break;
7069      }
7070      break;
7071    case MachO::CPU_TYPE_ARM:
7072      outs() << "     ARM";
7073      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7074      case MachO::CPU_SUBTYPE_ARM_ALL:
7075        outs() << "        ALL";
7076        break;
7077      case MachO::CPU_SUBTYPE_ARM_V4T:
7078        outs() << "        V4T";
7079        break;
7080      case MachO::CPU_SUBTYPE_ARM_V5TEJ:
7081        outs() << "      V5TEJ";
7082        break;
7083      case MachO::CPU_SUBTYPE_ARM_XSCALE:
7084        outs() << "     XSCALE";
7085        break;
7086      case MachO::CPU_SUBTYPE_ARM_V6:
7087        outs() << "         V6";
7088        break;
7089      case MachO::CPU_SUBTYPE_ARM_V6M:
7090        outs() << "        V6M";
7091        break;
7092      case MachO::CPU_SUBTYPE_ARM_V7:
7093        outs() << "         V7";
7094        break;
7095      case MachO::CPU_SUBTYPE_ARM_V7EM:
7096        outs() << "       V7EM";
7097        break;
7098      case MachO::CPU_SUBTYPE_ARM_V7K:
7099        outs() << "        V7K";
7100        break;
7101      case MachO::CPU_SUBTYPE_ARM_V7M:
7102        outs() << "        V7M";
7103        break;
7104      case MachO::CPU_SUBTYPE_ARM_V7S:
7105        outs() << "        V7S";
7106        break;
7107      default:
7108        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7109        break;
7110      }
7111      break;
7112    case MachO::CPU_TYPE_ARM64:
7113      outs() << "   ARM64";
7114      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7115      case MachO::CPU_SUBTYPE_ARM64_ALL:
7116        outs() << "        ALL";
7117        break;
7118      default:
7119        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7120        break;
7121      }
7122      break;
7123    case MachO::CPU_TYPE_POWERPC:
7124      outs() << "     PPC";
7125      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7126      case MachO::CPU_SUBTYPE_POWERPC_ALL:
7127        outs() << "        ALL";
7128        break;
7129      default:
7130        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7131        break;
7132      }
7133      break;
7134    case MachO::CPU_TYPE_POWERPC64:
7135      outs() << "   PPC64";
7136      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7137      case MachO::CPU_SUBTYPE_POWERPC_ALL:
7138        outs() << "        ALL";
7139        break;
7140      default:
7141        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7142        break;
7143      }
7144      break;
7145    }
7146    if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
7147      outs() << " LIB64";
7148    } else {
7149      outs() << format("  0x%02" PRIx32,
7150                       (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7151    }
7152    switch (filetype) {
7153    case MachO::MH_OBJECT:
7154      outs() << "      OBJECT";
7155      break;
7156    case MachO::MH_EXECUTE:
7157      outs() << "     EXECUTE";
7158      break;
7159    case MachO::MH_FVMLIB:
7160      outs() << "      FVMLIB";
7161      break;
7162    case MachO::MH_CORE:
7163      outs() << "        CORE";
7164      break;
7165    case MachO::MH_PRELOAD:
7166      outs() << "     PRELOAD";
7167      break;
7168    case MachO::MH_DYLIB:
7169      outs() << "       DYLIB";
7170      break;
7171    case MachO::MH_DYLIB_STUB:
7172      outs() << "  DYLIB_STUB";
7173      break;
7174    case MachO::MH_DYLINKER:
7175      outs() << "    DYLINKER";
7176      break;
7177    case MachO::MH_BUNDLE:
7178      outs() << "      BUNDLE";
7179      break;
7180    case MachO::MH_DSYM:
7181      outs() << "        DSYM";
7182      break;
7183    case MachO::MH_KEXT_BUNDLE:
7184      outs() << "  KEXTBUNDLE";
7185      break;
7186    default:
7187      outs() << format("  %10u", filetype);
7188      break;
7189    }
7190    outs() << format(" %5u", ncmds);
7191    outs() << format(" %10u", sizeofcmds);
7192    uint32_t f = flags;
7193    if (f & MachO::MH_NOUNDEFS) {
7194      outs() << "   NOUNDEFS";
7195      f &= ~MachO::MH_NOUNDEFS;
7196    }
7197    if (f & MachO::MH_INCRLINK) {
7198      outs() << " INCRLINK";
7199      f &= ~MachO::MH_INCRLINK;
7200    }
7201    if (f & MachO::MH_DYLDLINK) {
7202      outs() << " DYLDLINK";
7203      f &= ~MachO::MH_DYLDLINK;
7204    }
7205    if (f & MachO::MH_BINDATLOAD) {
7206      outs() << " BINDATLOAD";
7207      f &= ~MachO::MH_BINDATLOAD;
7208    }
7209    if (f & MachO::MH_PREBOUND) {
7210      outs() << " PREBOUND";
7211      f &= ~MachO::MH_PREBOUND;
7212    }
7213    if (f & MachO::MH_SPLIT_SEGS) {
7214      outs() << " SPLIT_SEGS";
7215      f &= ~MachO::MH_SPLIT_SEGS;
7216    }
7217    if (f & MachO::MH_LAZY_INIT) {
7218      outs() << " LAZY_INIT";
7219      f &= ~MachO::MH_LAZY_INIT;
7220    }
7221    if (f & MachO::MH_TWOLEVEL) {
7222      outs() << " TWOLEVEL";
7223      f &= ~MachO::MH_TWOLEVEL;
7224    }
7225    if (f & MachO::MH_FORCE_FLAT) {
7226      outs() << " FORCE_FLAT";
7227      f &= ~MachO::MH_FORCE_FLAT;
7228    }
7229    if (f & MachO::MH_NOMULTIDEFS) {
7230      outs() << " NOMULTIDEFS";
7231      f &= ~MachO::MH_NOMULTIDEFS;
7232    }
7233    if (f & MachO::MH_NOFIXPREBINDING) {
7234      outs() << " NOFIXPREBINDING";
7235      f &= ~MachO::MH_NOFIXPREBINDING;
7236    }
7237    if (f & MachO::MH_PREBINDABLE) {
7238      outs() << " PREBINDABLE";
7239      f &= ~MachO::MH_PREBINDABLE;
7240    }
7241    if (f & MachO::MH_ALLMODSBOUND) {
7242      outs() << " ALLMODSBOUND";
7243      f &= ~MachO::MH_ALLMODSBOUND;
7244    }
7245    if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
7246      outs() << " SUBSECTIONS_VIA_SYMBOLS";
7247      f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
7248    }
7249    if (f & MachO::MH_CANONICAL) {
7250      outs() << " CANONICAL";
7251      f &= ~MachO::MH_CANONICAL;
7252    }
7253    if (f & MachO::MH_WEAK_DEFINES) {
7254      outs() << " WEAK_DEFINES";
7255      f &= ~MachO::MH_WEAK_DEFINES;
7256    }
7257    if (f & MachO::MH_BINDS_TO_WEAK) {
7258      outs() << " BINDS_TO_WEAK";
7259      f &= ~MachO::MH_BINDS_TO_WEAK;
7260    }
7261    if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
7262      outs() << " ALLOW_STACK_EXECUTION";
7263      f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
7264    }
7265    if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
7266      outs() << " DEAD_STRIPPABLE_DYLIB";
7267      f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
7268    }
7269    if (f & MachO::MH_PIE) {
7270      outs() << " PIE";
7271      f &= ~MachO::MH_PIE;
7272    }
7273    if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
7274      outs() << " NO_REEXPORTED_DYLIBS";
7275      f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
7276    }
7277    if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
7278      outs() << " MH_HAS_TLV_DESCRIPTORS";
7279      f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
7280    }
7281    if (f & MachO::MH_NO_HEAP_EXECUTION) {
7282      outs() << " MH_NO_HEAP_EXECUTION";
7283      f &= ~MachO::MH_NO_HEAP_EXECUTION;
7284    }
7285    if (f & MachO::MH_APP_EXTENSION_SAFE) {
7286      outs() << " APP_EXTENSION_SAFE";
7287      f &= ~MachO::MH_APP_EXTENSION_SAFE;
7288    }
7289    if (f != 0 || flags == 0)
7290      outs() << format(" 0x%08" PRIx32, f);
7291  } else {
7292    outs() << format(" 0x%08" PRIx32, magic);
7293    outs() << format(" %7d", cputype);
7294    outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7295    outs() << format("  0x%02" PRIx32,
7296                     (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7297    outs() << format("  %10u", filetype);
7298    outs() << format(" %5u", ncmds);
7299    outs() << format(" %10u", sizeofcmds);
7300    outs() << format(" 0x%08" PRIx32, flags);
7301  }
7302  outs() << "\n";
7303}
7304
7305static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
7306                                StringRef SegName, uint64_t vmaddr,
7307                                uint64_t vmsize, uint64_t fileoff,
7308                                uint64_t filesize, uint32_t maxprot,
7309                                uint32_t initprot, uint32_t nsects,
7310                                uint32_t flags, uint32_t object_size,
7311                                bool verbose) {
7312  uint64_t expected_cmdsize;
7313  if (cmd == MachO::LC_SEGMENT) {
7314    outs() << "      cmd LC_SEGMENT\n";
7315    expected_cmdsize = nsects;
7316    expected_cmdsize *= sizeof(struct MachO::section);
7317    expected_cmdsize += sizeof(struct MachO::segment_command);
7318  } else {
7319    outs() << "      cmd LC_SEGMENT_64\n";
7320    expected_cmdsize = nsects;
7321    expected_cmdsize *= sizeof(struct MachO::section_64);
7322    expected_cmdsize += sizeof(struct MachO::segment_command_64);
7323  }
7324  outs() << "  cmdsize " << cmdsize;
7325  if (cmdsize != expected_cmdsize)
7326    outs() << " Inconsistent size\n";
7327  else
7328    outs() << "\n";
7329  outs() << "  segname " << SegName << "\n";
7330  if (cmd == MachO::LC_SEGMENT_64) {
7331    outs() << "   vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
7332    outs() << "   vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
7333  } else {
7334    outs() << "   vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
7335    outs() << "   vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
7336  }
7337  outs() << "  fileoff " << fileoff;
7338  if (fileoff > object_size)
7339    outs() << " (past end of file)\n";
7340  else
7341    outs() << "\n";
7342  outs() << " filesize " << filesize;
7343  if (fileoff + filesize > object_size)
7344    outs() << " (past end of file)\n";
7345  else
7346    outs() << "\n";
7347  if (verbose) {
7348    if ((maxprot &
7349         ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7350           MachO::VM_PROT_EXECUTE)) != 0)
7351      outs() << "  maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
7352    else {
7353      outs() << "  maxprot ";
7354      outs() << ((maxprot & MachO::VM_PROT_READ) ? "r" : "-");
7355      outs() << ((maxprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7356      outs() << ((maxprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7357    }
7358    if ((initprot &
7359         ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7360           MachO::VM_PROT_EXECUTE)) != 0)
7361      outs() << "  initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
7362    else {
7363      outs() << "  initprot ";
7364      outs() << ((initprot & MachO::VM_PROT_READ) ? "r" : "-");
7365      outs() << ((initprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7366      outs() << ((initprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7367    }
7368  } else {
7369    outs() << "  maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
7370    outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
7371  }
7372  outs() << "   nsects " << nsects << "\n";
7373  if (verbose) {
7374    outs() << "    flags";
7375    if (flags == 0)
7376      outs() << " (none)\n";
7377    else {
7378      if (flags & MachO::SG_HIGHVM) {
7379        outs() << " HIGHVM";
7380        flags &= ~MachO::SG_HIGHVM;
7381      }
7382      if (flags & MachO::SG_FVMLIB) {
7383        outs() << " FVMLIB";
7384        flags &= ~MachO::SG_FVMLIB;
7385      }
7386      if (flags & MachO::SG_NORELOC) {
7387        outs() << " NORELOC";
7388        flags &= ~MachO::SG_NORELOC;
7389      }
7390      if (flags & MachO::SG_PROTECTED_VERSION_1) {
7391        outs() << " PROTECTED_VERSION_1";
7392        flags &= ~MachO::SG_PROTECTED_VERSION_1;
7393      }
7394      if (flags)
7395        outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
7396      else
7397        outs() << "\n";
7398    }
7399  } else {
7400    outs() << "    flags " << format("0x%" PRIx32, flags) << "\n";
7401  }
7402}
7403
7404static void PrintSection(const char *sectname, const char *segname,
7405                         uint64_t addr, uint64_t size, uint32_t offset,
7406                         uint32_t align, uint32_t reloff, uint32_t nreloc,
7407                         uint32_t flags, uint32_t reserved1, uint32_t reserved2,
7408                         uint32_t cmd, const char *sg_segname,
7409                         uint32_t filetype, uint32_t object_size,
7410                         bool verbose) {
7411  outs() << "Section\n";
7412  outs() << "  sectname " << format("%.16s\n", sectname);
7413  outs() << "   segname " << format("%.16s", segname);
7414  if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
7415    outs() << " (does not match segment)\n";
7416  else
7417    outs() << "\n";
7418  if (cmd == MachO::LC_SEGMENT_64) {
7419    outs() << "      addr " << format("0x%016" PRIx64, addr) << "\n";
7420    outs() << "      size " << format("0x%016" PRIx64, size);
7421  } else {
7422    outs() << "      addr " << format("0x%08" PRIx64, addr) << "\n";
7423    outs() << "      size " << format("0x%08" PRIx64, size);
7424  }
7425  if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
7426    outs() << " (past end of file)\n";
7427  else
7428    outs() << "\n";
7429  outs() << "    offset " << offset;
7430  if (offset > object_size)
7431    outs() << " (past end of file)\n";
7432  else
7433    outs() << "\n";
7434  uint32_t align_shifted = 1 << align;
7435  outs() << "     align 2^" << align << " (" << align_shifted << ")\n";
7436  outs() << "    reloff " << reloff;
7437  if (reloff > object_size)
7438    outs() << " (past end of file)\n";
7439  else
7440    outs() << "\n";
7441  outs() << "    nreloc " << nreloc;
7442  if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
7443    outs() << " (past end of file)\n";
7444  else
7445    outs() << "\n";
7446  uint32_t section_type = flags & MachO::SECTION_TYPE;
7447  if (verbose) {
7448    outs() << "      type";
7449    if (section_type == MachO::S_REGULAR)
7450      outs() << " S_REGULAR\n";
7451    else if (section_type == MachO::S_ZEROFILL)
7452      outs() << " S_ZEROFILL\n";
7453    else if (section_type == MachO::S_CSTRING_LITERALS)
7454      outs() << " S_CSTRING_LITERALS\n";
7455    else if (section_type == MachO::S_4BYTE_LITERALS)
7456      outs() << " S_4BYTE_LITERALS\n";
7457    else if (section_type == MachO::S_8BYTE_LITERALS)
7458      outs() << " S_8BYTE_LITERALS\n";
7459    else if (section_type == MachO::S_16BYTE_LITERALS)
7460      outs() << " S_16BYTE_LITERALS\n";
7461    else if (section_type == MachO::S_LITERAL_POINTERS)
7462      outs() << " S_LITERAL_POINTERS\n";
7463    else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
7464      outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
7465    else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
7466      outs() << " S_LAZY_SYMBOL_POINTERS\n";
7467    else if (section_type == MachO::S_SYMBOL_STUBS)
7468      outs() << " S_SYMBOL_STUBS\n";
7469    else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
7470      outs() << " S_MOD_INIT_FUNC_POINTERS\n";
7471    else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
7472      outs() << " S_MOD_TERM_FUNC_POINTERS\n";
7473    else if (section_type == MachO::S_COALESCED)
7474      outs() << " S_COALESCED\n";
7475    else if (section_type == MachO::S_INTERPOSING)
7476      outs() << " S_INTERPOSING\n";
7477    else if (section_type == MachO::S_DTRACE_DOF)
7478      outs() << " S_DTRACE_DOF\n";
7479    else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
7480      outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
7481    else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
7482      outs() << " S_THREAD_LOCAL_REGULAR\n";
7483    else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
7484      outs() << " S_THREAD_LOCAL_ZEROFILL\n";
7485    else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
7486      outs() << " S_THREAD_LOCAL_VARIABLES\n";
7487    else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7488      outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
7489    else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
7490      outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
7491    else
7492      outs() << format("0x%08" PRIx32, section_type) << "\n";
7493    outs() << "attributes";
7494    uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
7495    if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
7496      outs() << " PURE_INSTRUCTIONS";
7497    if (section_attributes & MachO::S_ATTR_NO_TOC)
7498      outs() << " NO_TOC";
7499    if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
7500      outs() << " STRIP_STATIC_SYMS";
7501    if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
7502      outs() << " NO_DEAD_STRIP";
7503    if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
7504      outs() << " LIVE_SUPPORT";
7505    if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
7506      outs() << " SELF_MODIFYING_CODE";
7507    if (section_attributes & MachO::S_ATTR_DEBUG)
7508      outs() << " DEBUG";
7509    if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
7510      outs() << " SOME_INSTRUCTIONS";
7511    if (section_attributes & MachO::S_ATTR_EXT_RELOC)
7512      outs() << " EXT_RELOC";
7513    if (section_attributes & MachO::S_ATTR_LOC_RELOC)
7514      outs() << " LOC_RELOC";
7515    if (section_attributes == 0)
7516      outs() << " (none)";
7517    outs() << "\n";
7518  } else
7519    outs() << "     flags " << format("0x%08" PRIx32, flags) << "\n";
7520  outs() << " reserved1 " << reserved1;
7521  if (section_type == MachO::S_SYMBOL_STUBS ||
7522      section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
7523      section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
7524      section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
7525      section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7526    outs() << " (index into indirect symbol table)\n";
7527  else
7528    outs() << "\n";
7529  outs() << " reserved2 " << reserved2;
7530  if (section_type == MachO::S_SYMBOL_STUBS)
7531    outs() << " (size of stubs)\n";
7532  else
7533    outs() << "\n";
7534}
7535
7536static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
7537                                   uint32_t object_size) {
7538  outs() << "     cmd LC_SYMTAB\n";
7539  outs() << " cmdsize " << st.cmdsize;
7540  if (st.cmdsize != sizeof(struct MachO::symtab_command))
7541    outs() << " Incorrect size\n";
7542  else
7543    outs() << "\n";
7544  outs() << "  symoff " << st.symoff;
7545  if (st.symoff > object_size)
7546    outs() << " (past end of file)\n";
7547  else
7548    outs() << "\n";
7549  outs() << "   nsyms " << st.nsyms;
7550  uint64_t big_size;
7551  if (Is64Bit) {
7552    big_size = st.nsyms;
7553    big_size *= sizeof(struct MachO::nlist_64);
7554    big_size += st.symoff;
7555    if (big_size > object_size)
7556      outs() << " (past end of file)\n";
7557    else
7558      outs() << "\n";
7559  } else {
7560    big_size = st.nsyms;
7561    big_size *= sizeof(struct MachO::nlist);
7562    big_size += st.symoff;
7563    if (big_size > object_size)
7564      outs() << " (past end of file)\n";
7565    else
7566      outs() << "\n";
7567  }
7568  outs() << "  stroff " << st.stroff;
7569  if (st.stroff > object_size)
7570    outs() << " (past end of file)\n";
7571  else
7572    outs() << "\n";
7573  outs() << " strsize " << st.strsize;
7574  big_size = st.stroff;
7575  big_size += st.strsize;
7576  if (big_size > object_size)
7577    outs() << " (past end of file)\n";
7578  else
7579    outs() << "\n";
7580}
7581
7582static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
7583                                     uint32_t nsyms, uint32_t object_size,
7584                                     bool Is64Bit) {
7585  outs() << "            cmd LC_DYSYMTAB\n";
7586  outs() << "        cmdsize " << dyst.cmdsize;
7587  if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
7588    outs() << " Incorrect size\n";
7589  else
7590    outs() << "\n";
7591  outs() << "      ilocalsym " << dyst.ilocalsym;
7592  if (dyst.ilocalsym > nsyms)
7593    outs() << " (greater than the number of symbols)\n";
7594  else
7595    outs() << "\n";
7596  outs() << "      nlocalsym " << dyst.nlocalsym;
7597  uint64_t big_size;
7598  big_size = dyst.ilocalsym;
7599  big_size += dyst.nlocalsym;
7600  if (big_size > nsyms)
7601    outs() << " (past the end of the symbol table)\n";
7602  else
7603    outs() << "\n";
7604  outs() << "     iextdefsym " << dyst.iextdefsym;
7605  if (dyst.iextdefsym > nsyms)
7606    outs() << " (greater than the number of symbols)\n";
7607  else
7608    outs() << "\n";
7609  outs() << "     nextdefsym " << dyst.nextdefsym;
7610  big_size = dyst.iextdefsym;
7611  big_size += dyst.nextdefsym;
7612  if (big_size > nsyms)
7613    outs() << " (past the end of the symbol table)\n";
7614  else
7615    outs() << "\n";
7616  outs() << "      iundefsym " << dyst.iundefsym;
7617  if (dyst.iundefsym > nsyms)
7618    outs() << " (greater than the number of symbols)\n";
7619  else
7620    outs() << "\n";
7621  outs() << "      nundefsym " << dyst.nundefsym;
7622  big_size = dyst.iundefsym;
7623  big_size += dyst.nundefsym;
7624  if (big_size > nsyms)
7625    outs() << " (past the end of the symbol table)\n";
7626  else
7627    outs() << "\n";
7628  outs() << "         tocoff " << dyst.tocoff;
7629  if (dyst.tocoff > object_size)
7630    outs() << " (past end of file)\n";
7631  else
7632    outs() << "\n";
7633  outs() << "           ntoc " << dyst.ntoc;
7634  big_size = dyst.ntoc;
7635  big_size *= sizeof(struct MachO::dylib_table_of_contents);
7636  big_size += dyst.tocoff;
7637  if (big_size > object_size)
7638    outs() << " (past end of file)\n";
7639  else
7640    outs() << "\n";
7641  outs() << "      modtaboff " << dyst.modtaboff;
7642  if (dyst.modtaboff > object_size)
7643    outs() << " (past end of file)\n";
7644  else
7645    outs() << "\n";
7646  outs() << "        nmodtab " << dyst.nmodtab;
7647  uint64_t modtabend;
7648  if (Is64Bit) {
7649    modtabend = dyst.nmodtab;
7650    modtabend *= sizeof(struct MachO::dylib_module_64);
7651    modtabend += dyst.modtaboff;
7652  } else {
7653    modtabend = dyst.nmodtab;
7654    modtabend *= sizeof(struct MachO::dylib_module);
7655    modtabend += dyst.modtaboff;
7656  }
7657  if (modtabend > object_size)
7658    outs() << " (past end of file)\n";
7659  else
7660    outs() << "\n";
7661  outs() << "   extrefsymoff " << dyst.extrefsymoff;
7662  if (dyst.extrefsymoff > object_size)
7663    outs() << " (past end of file)\n";
7664  else
7665    outs() << "\n";
7666  outs() << "    nextrefsyms " << dyst.nextrefsyms;
7667  big_size = dyst.nextrefsyms;
7668  big_size *= sizeof(struct MachO::dylib_reference);
7669  big_size += dyst.extrefsymoff;
7670  if (big_size > object_size)
7671    outs() << " (past end of file)\n";
7672  else
7673    outs() << "\n";
7674  outs() << " indirectsymoff " << dyst.indirectsymoff;
7675  if (dyst.indirectsymoff > object_size)
7676    outs() << " (past end of file)\n";
7677  else
7678    outs() << "\n";
7679  outs() << "  nindirectsyms " << dyst.nindirectsyms;
7680  big_size = dyst.nindirectsyms;
7681  big_size *= sizeof(uint32_t);
7682  big_size += dyst.indirectsymoff;
7683  if (big_size > object_size)
7684    outs() << " (past end of file)\n";
7685  else
7686    outs() << "\n";
7687  outs() << "      extreloff " << dyst.extreloff;
7688  if (dyst.extreloff > object_size)
7689    outs() << " (past end of file)\n";
7690  else
7691    outs() << "\n";
7692  outs() << "        nextrel " << dyst.nextrel;
7693  big_size = dyst.nextrel;
7694  big_size *= sizeof(struct MachO::relocation_info);
7695  big_size += dyst.extreloff;
7696  if (big_size > object_size)
7697    outs() << " (past end of file)\n";
7698  else
7699    outs() << "\n";
7700  outs() << "      locreloff " << dyst.locreloff;
7701  if (dyst.locreloff > object_size)
7702    outs() << " (past end of file)\n";
7703  else
7704    outs() << "\n";
7705  outs() << "        nlocrel " << dyst.nlocrel;
7706  big_size = dyst.nlocrel;
7707  big_size *= sizeof(struct MachO::relocation_info);
7708  big_size += dyst.locreloff;
7709  if (big_size > object_size)
7710    outs() << " (past end of file)\n";
7711  else
7712    outs() << "\n";
7713}
7714
7715static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
7716                                     uint32_t object_size) {
7717  if (dc.cmd == MachO::LC_DYLD_INFO)
7718    outs() << "            cmd LC_DYLD_INFO\n";
7719  else
7720    outs() << "            cmd LC_DYLD_INFO_ONLY\n";
7721  outs() << "        cmdsize " << dc.cmdsize;
7722  if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
7723    outs() << " Incorrect size\n";
7724  else
7725    outs() << "\n";
7726  outs() << "     rebase_off " << dc.rebase_off;
7727  if (dc.rebase_off > object_size)
7728    outs() << " (past end of file)\n";
7729  else
7730    outs() << "\n";
7731  outs() << "    rebase_size " << dc.rebase_size;
7732  uint64_t big_size;
7733  big_size = dc.rebase_off;
7734  big_size += dc.rebase_size;
7735  if (big_size > object_size)
7736    outs() << " (past end of file)\n";
7737  else
7738    outs() << "\n";
7739  outs() << "       bind_off " << dc.bind_off;
7740  if (dc.bind_off > object_size)
7741    outs() << " (past end of file)\n";
7742  else
7743    outs() << "\n";
7744  outs() << "      bind_size " << dc.bind_size;
7745  big_size = dc.bind_off;
7746  big_size += dc.bind_size;
7747  if (big_size > object_size)
7748    outs() << " (past end of file)\n";
7749  else
7750    outs() << "\n";
7751  outs() << "  weak_bind_off " << dc.weak_bind_off;
7752  if (dc.weak_bind_off > object_size)
7753    outs() << " (past end of file)\n";
7754  else
7755    outs() << "\n";
7756  outs() << " weak_bind_size " << dc.weak_bind_size;
7757  big_size = dc.weak_bind_off;
7758  big_size += dc.weak_bind_size;
7759  if (big_size > object_size)
7760    outs() << " (past end of file)\n";
7761  else
7762    outs() << "\n";
7763  outs() << "  lazy_bind_off " << dc.lazy_bind_off;
7764  if (dc.lazy_bind_off > object_size)
7765    outs() << " (past end of file)\n";
7766  else
7767    outs() << "\n";
7768  outs() << " lazy_bind_size " << dc.lazy_bind_size;
7769  big_size = dc.lazy_bind_off;
7770  big_size += dc.lazy_bind_size;
7771  if (big_size > object_size)
7772    outs() << " (past end of file)\n";
7773  else
7774    outs() << "\n";
7775  outs() << "     export_off " << dc.export_off;
7776  if (dc.export_off > object_size)
7777    outs() << " (past end of file)\n";
7778  else
7779    outs() << "\n";
7780  outs() << "    export_size " << dc.export_size;
7781  big_size = dc.export_off;
7782  big_size += dc.export_size;
7783  if (big_size > object_size)
7784    outs() << " (past end of file)\n";
7785  else
7786    outs() << "\n";
7787}
7788
7789static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
7790                                 const char *Ptr) {
7791  if (dyld.cmd == MachO::LC_ID_DYLINKER)
7792    outs() << "          cmd LC_ID_DYLINKER\n";
7793  else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
7794    outs() << "          cmd LC_LOAD_DYLINKER\n";
7795  else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
7796    outs() << "          cmd LC_DYLD_ENVIRONMENT\n";
7797  else
7798    outs() << "          cmd ?(" << dyld.cmd << ")\n";
7799  outs() << "      cmdsize " << dyld.cmdsize;
7800  if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
7801    outs() << " Incorrect size\n";
7802  else
7803    outs() << "\n";
7804  if (dyld.name >= dyld.cmdsize)
7805    outs() << "         name ?(bad offset " << dyld.name << ")\n";
7806  else {
7807    const char *P = (const char *)(Ptr) + dyld.name;
7808    outs() << "         name " << P << " (offset " << dyld.name << ")\n";
7809  }
7810}
7811
7812static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
7813  outs() << "     cmd LC_UUID\n";
7814  outs() << " cmdsize " << uuid.cmdsize;
7815  if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
7816    outs() << " Incorrect size\n";
7817  else
7818    outs() << "\n";
7819  outs() << "    uuid ";
7820  for (int i = 0; i < 16; ++i) {
7821    outs() << format("%02" PRIX32, uuid.uuid[i]);
7822    if (i == 3 || i == 5 || i == 7 || i == 9)
7823      outs() << "-";
7824  }
7825  outs() << "\n";
7826}
7827
7828static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
7829  outs() << "          cmd LC_RPATH\n";
7830  outs() << "      cmdsize " << rpath.cmdsize;
7831  if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
7832    outs() << " Incorrect size\n";
7833  else
7834    outs() << "\n";
7835  if (rpath.path >= rpath.cmdsize)
7836    outs() << "         path ?(bad offset " << rpath.path << ")\n";
7837  else {
7838    const char *P = (const char *)(Ptr) + rpath.path;
7839    outs() << "         path " << P << " (offset " << rpath.path << ")\n";
7840  }
7841}
7842
7843static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
7844  StringRef LoadCmdName;
7845  switch (vd.cmd) {
7846  case MachO::LC_VERSION_MIN_MACOSX:
7847    LoadCmdName = "LC_VERSION_MIN_MACOSX";
7848    break;
7849  case MachO::LC_VERSION_MIN_IPHONEOS:
7850    LoadCmdName = "LC_VERSION_MIN_IPHONEOS";
7851    break;
7852  case MachO::LC_VERSION_MIN_TVOS:
7853    LoadCmdName = "LC_VERSION_MIN_TVOS";
7854    break;
7855  case MachO::LC_VERSION_MIN_WATCHOS:
7856    LoadCmdName = "LC_VERSION_MIN_WATCHOS";
7857    break;
7858  default:
7859    llvm_unreachable("Unknown version min load command");
7860  }
7861
7862  outs() << "      cmd " << LoadCmdName << '\n';
7863  outs() << "  cmdsize " << vd.cmdsize;
7864  if (vd.cmdsize != sizeof(struct MachO::version_min_command))
7865    outs() << " Incorrect size\n";
7866  else
7867    outs() << "\n";
7868  outs() << "  version "
7869         << MachOObjectFile::getVersionMinMajor(vd, false) << "."
7870         << MachOObjectFile::getVersionMinMinor(vd, false);
7871  uint32_t Update = MachOObjectFile::getVersionMinUpdate(vd, false);
7872  if (Update != 0)
7873    outs() << "." << Update;
7874  outs() << "\n";
7875  if (vd.sdk == 0)
7876    outs() << "      sdk n/a";
7877  else {
7878    outs() << "      sdk "
7879           << MachOObjectFile::getVersionMinMajor(vd, true) << "."
7880           << MachOObjectFile::getVersionMinMinor(vd, true);
7881  }
7882  Update = MachOObjectFile::getVersionMinUpdate(vd, true);
7883  if (Update != 0)
7884    outs() << "." << Update;
7885  outs() << "\n";
7886}
7887
7888static void PrintSourceVersionCommand(MachO::source_version_command sd) {
7889  outs() << "      cmd LC_SOURCE_VERSION\n";
7890  outs() << "  cmdsize " << sd.cmdsize;
7891  if (sd.cmdsize != sizeof(struct MachO::source_version_command))
7892    outs() << " Incorrect size\n";
7893  else
7894    outs() << "\n";
7895  uint64_t a = (sd.version >> 40) & 0xffffff;
7896  uint64_t b = (sd.version >> 30) & 0x3ff;
7897  uint64_t c = (sd.version >> 20) & 0x3ff;
7898  uint64_t d = (sd.version >> 10) & 0x3ff;
7899  uint64_t e = sd.version & 0x3ff;
7900  outs() << "  version " << a << "." << b;
7901  if (e != 0)
7902    outs() << "." << c << "." << d << "." << e;
7903  else if (d != 0)
7904    outs() << "." << c << "." << d;
7905  else if (c != 0)
7906    outs() << "." << c;
7907  outs() << "\n";
7908}
7909
7910static void PrintEntryPointCommand(MachO::entry_point_command ep) {
7911  outs() << "       cmd LC_MAIN\n";
7912  outs() << "   cmdsize " << ep.cmdsize;
7913  if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
7914    outs() << " Incorrect size\n";
7915  else
7916    outs() << "\n";
7917  outs() << "  entryoff " << ep.entryoff << "\n";
7918  outs() << " stacksize " << ep.stacksize << "\n";
7919}
7920
7921static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
7922                                       uint32_t object_size) {
7923  outs() << "          cmd LC_ENCRYPTION_INFO\n";
7924  outs() << "      cmdsize " << ec.cmdsize;
7925  if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
7926    outs() << " Incorrect size\n";
7927  else
7928    outs() << "\n";
7929  outs() << "     cryptoff " << ec.cryptoff;
7930  if (ec.cryptoff > object_size)
7931    outs() << " (past end of file)\n";
7932  else
7933    outs() << "\n";
7934  outs() << "    cryptsize " << ec.cryptsize;
7935  if (ec.cryptsize > object_size)
7936    outs() << " (past end of file)\n";
7937  else
7938    outs() << "\n";
7939  outs() << "      cryptid " << ec.cryptid << "\n";
7940}
7941
7942static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
7943                                         uint32_t object_size) {
7944  outs() << "          cmd LC_ENCRYPTION_INFO_64\n";
7945  outs() << "      cmdsize " << ec.cmdsize;
7946  if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
7947    outs() << " Incorrect size\n";
7948  else
7949    outs() << "\n";
7950  outs() << "     cryptoff " << ec.cryptoff;
7951  if (ec.cryptoff > object_size)
7952    outs() << " (past end of file)\n";
7953  else
7954    outs() << "\n";
7955  outs() << "    cryptsize " << ec.cryptsize;
7956  if (ec.cryptsize > object_size)
7957    outs() << " (past end of file)\n";
7958  else
7959    outs() << "\n";
7960  outs() << "      cryptid " << ec.cryptid << "\n";
7961  outs() << "          pad " << ec.pad << "\n";
7962}
7963
7964static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
7965                                     const char *Ptr) {
7966  outs() << "     cmd LC_LINKER_OPTION\n";
7967  outs() << " cmdsize " << lo.cmdsize;
7968  if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
7969    outs() << " Incorrect size\n";
7970  else
7971    outs() << "\n";
7972  outs() << "   count " << lo.count << "\n";
7973  const char *string = Ptr + sizeof(struct MachO::linker_option_command);
7974  uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
7975  uint32_t i = 0;
7976  while (left > 0) {
7977    while (*string == '\0' && left > 0) {
7978      string++;
7979      left--;
7980    }
7981    if (left > 0) {
7982      i++;
7983      outs() << "  string #" << i << " " << format("%.*s\n", left, string);
7984      uint32_t NullPos = StringRef(string, left).find('\0');
7985      uint32_t len = std::min(NullPos, left) + 1;
7986      string += len;
7987      left -= len;
7988    }
7989  }
7990  if (lo.count != i)
7991    outs() << "   count " << lo.count << " does not match number of strings "
7992           << i << "\n";
7993}
7994
7995static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
7996                                     const char *Ptr) {
7997  outs() << "          cmd LC_SUB_FRAMEWORK\n";
7998  outs() << "      cmdsize " << sub.cmdsize;
7999  if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
8000    outs() << " Incorrect size\n";
8001  else
8002    outs() << "\n";
8003  if (sub.umbrella < sub.cmdsize) {
8004    const char *P = Ptr + sub.umbrella;
8005    outs() << "     umbrella " << P << " (offset " << sub.umbrella << ")\n";
8006  } else {
8007    outs() << "     umbrella ?(bad offset " << sub.umbrella << ")\n";
8008  }
8009}
8010
8011static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
8012                                    const char *Ptr) {
8013  outs() << "          cmd LC_SUB_UMBRELLA\n";
8014  outs() << "      cmdsize " << sub.cmdsize;
8015  if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
8016    outs() << " Incorrect size\n";
8017  else
8018    outs() << "\n";
8019  if (sub.sub_umbrella < sub.cmdsize) {
8020    const char *P = Ptr + sub.sub_umbrella;
8021    outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
8022  } else {
8023    outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
8024  }
8025}
8026
8027static void PrintSubLibraryCommand(MachO::sub_library_command sub,
8028                                   const char *Ptr) {
8029  outs() << "          cmd LC_SUB_LIBRARY\n";
8030  outs() << "      cmdsize " << sub.cmdsize;
8031  if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
8032    outs() << " Incorrect size\n";
8033  else
8034    outs() << "\n";
8035  if (sub.sub_library < sub.cmdsize) {
8036    const char *P = Ptr + sub.sub_library;
8037    outs() << "  sub_library " << P << " (offset " << sub.sub_library << ")\n";
8038  } else {
8039    outs() << "  sub_library ?(bad offset " << sub.sub_library << ")\n";
8040  }
8041}
8042
8043static void PrintSubClientCommand(MachO::sub_client_command sub,
8044                                  const char *Ptr) {
8045  outs() << "          cmd LC_SUB_CLIENT\n";
8046  outs() << "      cmdsize " << sub.cmdsize;
8047  if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
8048    outs() << " Incorrect size\n";
8049  else
8050    outs() << "\n";
8051  if (sub.client < sub.cmdsize) {
8052    const char *P = Ptr + sub.client;
8053    outs() << "       client " << P << " (offset " << sub.client << ")\n";
8054  } else {
8055    outs() << "       client ?(bad offset " << sub.client << ")\n";
8056  }
8057}
8058
8059static void PrintRoutinesCommand(MachO::routines_command r) {
8060  outs() << "          cmd LC_ROUTINES\n";
8061  outs() << "      cmdsize " << r.cmdsize;
8062  if (r.cmdsize != sizeof(struct MachO::routines_command))
8063    outs() << " Incorrect size\n";
8064  else
8065    outs() << "\n";
8066  outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
8067  outs() << "  init_module " << r.init_module << "\n";
8068  outs() << "    reserved1 " << r.reserved1 << "\n";
8069  outs() << "    reserved2 " << r.reserved2 << "\n";
8070  outs() << "    reserved3 " << r.reserved3 << "\n";
8071  outs() << "    reserved4 " << r.reserved4 << "\n";
8072  outs() << "    reserved5 " << r.reserved5 << "\n";
8073  outs() << "    reserved6 " << r.reserved6 << "\n";
8074}
8075
8076static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
8077  outs() << "          cmd LC_ROUTINES_64\n";
8078  outs() << "      cmdsize " << r.cmdsize;
8079  if (r.cmdsize != sizeof(struct MachO::routines_command_64))
8080    outs() << " Incorrect size\n";
8081  else
8082    outs() << "\n";
8083  outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
8084  outs() << "  init_module " << r.init_module << "\n";
8085  outs() << "    reserved1 " << r.reserved1 << "\n";
8086  outs() << "    reserved2 " << r.reserved2 << "\n";
8087  outs() << "    reserved3 " << r.reserved3 << "\n";
8088  outs() << "    reserved4 " << r.reserved4 << "\n";
8089  outs() << "    reserved5 " << r.reserved5 << "\n";
8090  outs() << "    reserved6 " << r.reserved6 << "\n";
8091}
8092
8093static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
8094  outs() << "   rax  " << format("0x%016" PRIx64, cpu64.rax);
8095  outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
8096  outs() << " rcx  " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
8097  outs() << "   rdx  " << format("0x%016" PRIx64, cpu64.rdx);
8098  outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
8099  outs() << " rsi  " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
8100  outs() << "   rbp  " << format("0x%016" PRIx64, cpu64.rbp);
8101  outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
8102  outs() << " r8   " << format("0x%016" PRIx64, cpu64.r8) << "\n";
8103  outs() << "    r9  " << format("0x%016" PRIx64, cpu64.r9);
8104  outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
8105  outs() << " r11  " << format("0x%016" PRIx64, cpu64.r11) << "\n";
8106  outs() << "   r12  " << format("0x%016" PRIx64, cpu64.r12);
8107  outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
8108  outs() << " r14  " << format("0x%016" PRIx64, cpu64.r14) << "\n";
8109  outs() << "   r15  " << format("0x%016" PRIx64, cpu64.r15);
8110  outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
8111  outs() << "rflags  " << format("0x%016" PRIx64, cpu64.rflags);
8112  outs() << " cs  " << format("0x%016" PRIx64, cpu64.cs);
8113  outs() << " fs   " << format("0x%016" PRIx64, cpu64.fs) << "\n";
8114  outs() << "    gs  " << format("0x%016" PRIx64, cpu64.gs) << "\n";
8115}
8116
8117static void Print_mmst_reg(MachO::mmst_reg_t &r) {
8118  uint32_t f;
8119  outs() << "\t      mmst_reg  ";
8120  for (f = 0; f < 10; f++)
8121    outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
8122  outs() << "\n";
8123  outs() << "\t      mmst_rsrv ";
8124  for (f = 0; f < 6; f++)
8125    outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
8126  outs() << "\n";
8127}
8128
8129static void Print_xmm_reg(MachO::xmm_reg_t &r) {
8130  uint32_t f;
8131  outs() << "\t      xmm_reg ";
8132  for (f = 0; f < 16; f++)
8133    outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
8134  outs() << "\n";
8135}
8136
8137static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
8138  outs() << "\t    fpu_reserved[0] " << fpu.fpu_reserved[0];
8139  outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
8140  outs() << "\t    control: invalid " << fpu.fpu_fcw.invalid;
8141  outs() << " denorm " << fpu.fpu_fcw.denorm;
8142  outs() << " zdiv " << fpu.fpu_fcw.zdiv;
8143  outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
8144  outs() << " undfl " << fpu.fpu_fcw.undfl;
8145  outs() << " precis " << fpu.fpu_fcw.precis << "\n";
8146  outs() << "\t\t     pc ";
8147  if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
8148    outs() << "FP_PREC_24B ";
8149  else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
8150    outs() << "FP_PREC_53B ";
8151  else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
8152    outs() << "FP_PREC_64B ";
8153  else
8154    outs() << fpu.fpu_fcw.pc << " ";
8155  outs() << "rc ";
8156  if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
8157    outs() << "FP_RND_NEAR ";
8158  else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
8159    outs() << "FP_RND_DOWN ";
8160  else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
8161    outs() << "FP_RND_UP ";
8162  else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
8163    outs() << "FP_CHOP ";
8164  outs() << "\n";
8165  outs() << "\t    status: invalid " << fpu.fpu_fsw.invalid;
8166  outs() << " denorm " << fpu.fpu_fsw.denorm;
8167  outs() << " zdiv " << fpu.fpu_fsw.zdiv;
8168  outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
8169  outs() << " undfl " << fpu.fpu_fsw.undfl;
8170  outs() << " precis " << fpu.fpu_fsw.precis;
8171  outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
8172  outs() << "\t            errsumm " << fpu.fpu_fsw.errsumm;
8173  outs() << " c0 " << fpu.fpu_fsw.c0;
8174  outs() << " c1 " << fpu.fpu_fsw.c1;
8175  outs() << " c2 " << fpu.fpu_fsw.c2;
8176  outs() << " tos " << fpu.fpu_fsw.tos;
8177  outs() << " c3 " << fpu.fpu_fsw.c3;
8178  outs() << " busy " << fpu.fpu_fsw.busy << "\n";
8179  outs() << "\t    fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
8180  outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
8181  outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
8182  outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
8183  outs() << "\t    fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
8184  outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
8185  outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
8186  outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
8187  outs() << "\t    fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
8188  outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
8189  outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
8190  outs() << "\n";
8191  outs() << "\t    fpu_stmm0:\n";
8192  Print_mmst_reg(fpu.fpu_stmm0);
8193  outs() << "\t    fpu_stmm1:\n";
8194  Print_mmst_reg(fpu.fpu_stmm1);
8195  outs() << "\t    fpu_stmm2:\n";
8196  Print_mmst_reg(fpu.fpu_stmm2);
8197  outs() << "\t    fpu_stmm3:\n";
8198  Print_mmst_reg(fpu.fpu_stmm3);
8199  outs() << "\t    fpu_stmm4:\n";
8200  Print_mmst_reg(fpu.fpu_stmm4);
8201  outs() << "\t    fpu_stmm5:\n";
8202  Print_mmst_reg(fpu.fpu_stmm5);
8203  outs() << "\t    fpu_stmm6:\n";
8204  Print_mmst_reg(fpu.fpu_stmm6);
8205  outs() << "\t    fpu_stmm7:\n";
8206  Print_mmst_reg(fpu.fpu_stmm7);
8207  outs() << "\t    fpu_xmm0:\n";
8208  Print_xmm_reg(fpu.fpu_xmm0);
8209  outs() << "\t    fpu_xmm1:\n";
8210  Print_xmm_reg(fpu.fpu_xmm1);
8211  outs() << "\t    fpu_xmm2:\n";
8212  Print_xmm_reg(fpu.fpu_xmm2);
8213  outs() << "\t    fpu_xmm3:\n";
8214  Print_xmm_reg(fpu.fpu_xmm3);
8215  outs() << "\t    fpu_xmm4:\n";
8216  Print_xmm_reg(fpu.fpu_xmm4);
8217  outs() << "\t    fpu_xmm5:\n";
8218  Print_xmm_reg(fpu.fpu_xmm5);
8219  outs() << "\t    fpu_xmm6:\n";
8220  Print_xmm_reg(fpu.fpu_xmm6);
8221  outs() << "\t    fpu_xmm7:\n";
8222  Print_xmm_reg(fpu.fpu_xmm7);
8223  outs() << "\t    fpu_xmm8:\n";
8224  Print_xmm_reg(fpu.fpu_xmm8);
8225  outs() << "\t    fpu_xmm9:\n";
8226  Print_xmm_reg(fpu.fpu_xmm9);
8227  outs() << "\t    fpu_xmm10:\n";
8228  Print_xmm_reg(fpu.fpu_xmm10);
8229  outs() << "\t    fpu_xmm11:\n";
8230  Print_xmm_reg(fpu.fpu_xmm11);
8231  outs() << "\t    fpu_xmm12:\n";
8232  Print_xmm_reg(fpu.fpu_xmm12);
8233  outs() << "\t    fpu_xmm13:\n";
8234  Print_xmm_reg(fpu.fpu_xmm13);
8235  outs() << "\t    fpu_xmm14:\n";
8236  Print_xmm_reg(fpu.fpu_xmm14);
8237  outs() << "\t    fpu_xmm15:\n";
8238  Print_xmm_reg(fpu.fpu_xmm15);
8239  outs() << "\t    fpu_rsrv4:\n";
8240  for (uint32_t f = 0; f < 6; f++) {
8241    outs() << "\t            ";
8242    for (uint32_t g = 0; g < 16; g++)
8243      outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
8244    outs() << "\n";
8245  }
8246  outs() << "\t    fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
8247  outs() << "\n";
8248}
8249
8250static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
8251  outs() << "\t    trapno " << format("0x%08" PRIx32, exc64.trapno);
8252  outs() << " err " << format("0x%08" PRIx32, exc64.err);
8253  outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
8254}
8255
8256static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
8257                               bool isLittleEndian, uint32_t cputype) {
8258  if (t.cmd == MachO::LC_THREAD)
8259    outs() << "        cmd LC_THREAD\n";
8260  else if (t.cmd == MachO::LC_UNIXTHREAD)
8261    outs() << "        cmd LC_UNIXTHREAD\n";
8262  else
8263    outs() << "        cmd " << t.cmd << " (unknown)\n";
8264  outs() << "    cmdsize " << t.cmdsize;
8265  if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
8266    outs() << " Incorrect size\n";
8267  else
8268    outs() << "\n";
8269
8270  const char *begin = Ptr + sizeof(struct MachO::thread_command);
8271  const char *end = Ptr + t.cmdsize;
8272  uint32_t flavor, count, left;
8273  if (cputype == MachO::CPU_TYPE_X86_64) {
8274    while (begin < end) {
8275      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8276        memcpy((char *)&flavor, begin, sizeof(uint32_t));
8277        begin += sizeof(uint32_t);
8278      } else {
8279        flavor = 0;
8280        begin = end;
8281      }
8282      if (isLittleEndian != sys::IsLittleEndianHost)
8283        sys::swapByteOrder(flavor);
8284      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8285        memcpy((char *)&count, begin, sizeof(uint32_t));
8286        begin += sizeof(uint32_t);
8287      } else {
8288        count = 0;
8289        begin = end;
8290      }
8291      if (isLittleEndian != sys::IsLittleEndianHost)
8292        sys::swapByteOrder(count);
8293      if (flavor == MachO::x86_THREAD_STATE64) {
8294        outs() << "     flavor x86_THREAD_STATE64\n";
8295        if (count == MachO::x86_THREAD_STATE64_COUNT)
8296          outs() << "      count x86_THREAD_STATE64_COUNT\n";
8297        else
8298          outs() << "      count " << count
8299                 << " (not x86_THREAD_STATE64_COUNT)\n";
8300        MachO::x86_thread_state64_t cpu64;
8301        left = end - begin;
8302        if (left >= sizeof(MachO::x86_thread_state64_t)) {
8303          memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
8304          begin += sizeof(MachO::x86_thread_state64_t);
8305        } else {
8306          memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
8307          memcpy(&cpu64, begin, left);
8308          begin += left;
8309        }
8310        if (isLittleEndian != sys::IsLittleEndianHost)
8311          swapStruct(cpu64);
8312        Print_x86_thread_state64_t(cpu64);
8313      } else if (flavor == MachO::x86_THREAD_STATE) {
8314        outs() << "     flavor x86_THREAD_STATE\n";
8315        if (count == MachO::x86_THREAD_STATE_COUNT)
8316          outs() << "      count x86_THREAD_STATE_COUNT\n";
8317        else
8318          outs() << "      count " << count
8319                 << " (not x86_THREAD_STATE_COUNT)\n";
8320        struct MachO::x86_thread_state_t ts;
8321        left = end - begin;
8322        if (left >= sizeof(MachO::x86_thread_state_t)) {
8323          memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
8324          begin += sizeof(MachO::x86_thread_state_t);
8325        } else {
8326          memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
8327          memcpy(&ts, begin, left);
8328          begin += left;
8329        }
8330        if (isLittleEndian != sys::IsLittleEndianHost)
8331          swapStruct(ts);
8332        if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
8333          outs() << "\t    tsh.flavor x86_THREAD_STATE64 ";
8334          if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
8335            outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
8336          else
8337            outs() << "tsh.count " << ts.tsh.count
8338                   << " (not x86_THREAD_STATE64_COUNT\n";
8339          Print_x86_thread_state64_t(ts.uts.ts64);
8340        } else {
8341          outs() << "\t    tsh.flavor " << ts.tsh.flavor << "  tsh.count "
8342                 << ts.tsh.count << "\n";
8343        }
8344      } else if (flavor == MachO::x86_FLOAT_STATE) {
8345        outs() << "     flavor x86_FLOAT_STATE\n";
8346        if (count == MachO::x86_FLOAT_STATE_COUNT)
8347          outs() << "      count x86_FLOAT_STATE_COUNT\n";
8348        else
8349          outs() << "      count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
8350        struct MachO::x86_float_state_t fs;
8351        left = end - begin;
8352        if (left >= sizeof(MachO::x86_float_state_t)) {
8353          memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
8354          begin += sizeof(MachO::x86_float_state_t);
8355        } else {
8356          memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
8357          memcpy(&fs, begin, left);
8358          begin += left;
8359        }
8360        if (isLittleEndian != sys::IsLittleEndianHost)
8361          swapStruct(fs);
8362        if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
8363          outs() << "\t    fsh.flavor x86_FLOAT_STATE64 ";
8364          if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
8365            outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
8366          else
8367            outs() << "fsh.count " << fs.fsh.count
8368                   << " (not x86_FLOAT_STATE64_COUNT\n";
8369          Print_x86_float_state_t(fs.ufs.fs64);
8370        } else {
8371          outs() << "\t    fsh.flavor " << fs.fsh.flavor << "  fsh.count "
8372                 << fs.fsh.count << "\n";
8373        }
8374      } else if (flavor == MachO::x86_EXCEPTION_STATE) {
8375        outs() << "     flavor x86_EXCEPTION_STATE\n";
8376        if (count == MachO::x86_EXCEPTION_STATE_COUNT)
8377          outs() << "      count x86_EXCEPTION_STATE_COUNT\n";
8378        else
8379          outs() << "      count " << count
8380                 << " (not x86_EXCEPTION_STATE_COUNT)\n";
8381        struct MachO::x86_exception_state_t es;
8382        left = end - begin;
8383        if (left >= sizeof(MachO::x86_exception_state_t)) {
8384          memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
8385          begin += sizeof(MachO::x86_exception_state_t);
8386        } else {
8387          memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
8388          memcpy(&es, begin, left);
8389          begin += left;
8390        }
8391        if (isLittleEndian != sys::IsLittleEndianHost)
8392          swapStruct(es);
8393        if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
8394          outs() << "\t    esh.flavor x86_EXCEPTION_STATE64\n";
8395          if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
8396            outs() << "\t    esh.count x86_EXCEPTION_STATE64_COUNT\n";
8397          else
8398            outs() << "\t    esh.count " << es.esh.count
8399                   << " (not x86_EXCEPTION_STATE64_COUNT\n";
8400          Print_x86_exception_state_t(es.ues.es64);
8401        } else {
8402          outs() << "\t    esh.flavor " << es.esh.flavor << "  esh.count "
8403                 << es.esh.count << "\n";
8404        }
8405      } else {
8406        outs() << "     flavor " << flavor << " (unknown)\n";
8407        outs() << "      count " << count << "\n";
8408        outs() << "      state (unknown)\n";
8409        begin += count * sizeof(uint32_t);
8410      }
8411    }
8412  } else {
8413    while (begin < end) {
8414      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8415        memcpy((char *)&flavor, begin, sizeof(uint32_t));
8416        begin += sizeof(uint32_t);
8417      } else {
8418        flavor = 0;
8419        begin = end;
8420      }
8421      if (isLittleEndian != sys::IsLittleEndianHost)
8422        sys::swapByteOrder(flavor);
8423      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8424        memcpy((char *)&count, begin, sizeof(uint32_t));
8425        begin += sizeof(uint32_t);
8426      } else {
8427        count = 0;
8428        begin = end;
8429      }
8430      if (isLittleEndian != sys::IsLittleEndianHost)
8431        sys::swapByteOrder(count);
8432      outs() << "     flavor " << flavor << "\n";
8433      outs() << "      count " << count << "\n";
8434      outs() << "      state (Unknown cputype/cpusubtype)\n";
8435      begin += count * sizeof(uint32_t);
8436    }
8437  }
8438}
8439
8440static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
8441  if (dl.cmd == MachO::LC_ID_DYLIB)
8442    outs() << "          cmd LC_ID_DYLIB\n";
8443  else if (dl.cmd == MachO::LC_LOAD_DYLIB)
8444    outs() << "          cmd LC_LOAD_DYLIB\n";
8445  else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
8446    outs() << "          cmd LC_LOAD_WEAK_DYLIB\n";
8447  else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
8448    outs() << "          cmd LC_REEXPORT_DYLIB\n";
8449  else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
8450    outs() << "          cmd LC_LAZY_LOAD_DYLIB\n";
8451  else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
8452    outs() << "          cmd LC_LOAD_UPWARD_DYLIB\n";
8453  else
8454    outs() << "          cmd " << dl.cmd << " (unknown)\n";
8455  outs() << "      cmdsize " << dl.cmdsize;
8456  if (dl.cmdsize < sizeof(struct MachO::dylib_command))
8457    outs() << " Incorrect size\n";
8458  else
8459    outs() << "\n";
8460  if (dl.dylib.name < dl.cmdsize) {
8461    const char *P = (const char *)(Ptr) + dl.dylib.name;
8462    outs() << "         name " << P << " (offset " << dl.dylib.name << ")\n";
8463  } else {
8464    outs() << "         name ?(bad offset " << dl.dylib.name << ")\n";
8465  }
8466  outs() << "   time stamp " << dl.dylib.timestamp << " ";
8467  time_t t = dl.dylib.timestamp;
8468  outs() << ctime(&t);
8469  outs() << "      current version ";
8470  if (dl.dylib.current_version == 0xffffffff)
8471    outs() << "n/a\n";
8472  else
8473    outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
8474           << ((dl.dylib.current_version >> 8) & 0xff) << "."
8475           << (dl.dylib.current_version & 0xff) << "\n";
8476  outs() << "compatibility version ";
8477  if (dl.dylib.compatibility_version == 0xffffffff)
8478    outs() << "n/a\n";
8479  else
8480    outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
8481           << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
8482           << (dl.dylib.compatibility_version & 0xff) << "\n";
8483}
8484
8485static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
8486                                     uint32_t object_size) {
8487  if (ld.cmd == MachO::LC_CODE_SIGNATURE)
8488    outs() << "      cmd LC_FUNCTION_STARTS\n";
8489  else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
8490    outs() << "      cmd LC_SEGMENT_SPLIT_INFO\n";
8491  else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
8492    outs() << "      cmd LC_FUNCTION_STARTS\n";
8493  else if (ld.cmd == MachO::LC_DATA_IN_CODE)
8494    outs() << "      cmd LC_DATA_IN_CODE\n";
8495  else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
8496    outs() << "      cmd LC_DYLIB_CODE_SIGN_DRS\n";
8497  else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
8498    outs() << "      cmd LC_LINKER_OPTIMIZATION_HINT\n";
8499  else
8500    outs() << "      cmd " << ld.cmd << " (?)\n";
8501  outs() << "  cmdsize " << ld.cmdsize;
8502  if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
8503    outs() << " Incorrect size\n";
8504  else
8505    outs() << "\n";
8506  outs() << "  dataoff " << ld.dataoff;
8507  if (ld.dataoff > object_size)
8508    outs() << " (past end of file)\n";
8509  else
8510    outs() << "\n";
8511  outs() << " datasize " << ld.datasize;
8512  uint64_t big_size = ld.dataoff;
8513  big_size += ld.datasize;
8514  if (big_size > object_size)
8515    outs() << " (past end of file)\n";
8516  else
8517    outs() << "\n";
8518}
8519
8520static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
8521                              uint32_t cputype, bool verbose) {
8522  StringRef Buf = Obj->getData();
8523  unsigned Index = 0;
8524  for (const auto &Command : Obj->load_commands()) {
8525    outs() << "Load command " << Index++ << "\n";
8526    if (Command.C.cmd == MachO::LC_SEGMENT) {
8527      MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
8528      const char *sg_segname = SLC.segname;
8529      PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
8530                          SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
8531                          SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
8532                          verbose);
8533      for (unsigned j = 0; j < SLC.nsects; j++) {
8534        MachO::section S = Obj->getSection(Command, j);
8535        PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
8536                     S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
8537                     SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
8538      }
8539    } else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
8540      MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
8541      const char *sg_segname = SLC_64.segname;
8542      PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
8543                          SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
8544                          SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
8545                          SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
8546      for (unsigned j = 0; j < SLC_64.nsects; j++) {
8547        MachO::section_64 S_64 = Obj->getSection64(Command, j);
8548        PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
8549                     S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
8550                     S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
8551                     sg_segname, filetype, Buf.size(), verbose);
8552      }
8553    } else if (Command.C.cmd == MachO::LC_SYMTAB) {
8554      MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8555      PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
8556    } else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
8557      MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
8558      MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8559      PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
8560                               Obj->is64Bit());
8561    } else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
8562               Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
8563      MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
8564      PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
8565    } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
8566               Command.C.cmd == MachO::LC_ID_DYLINKER ||
8567               Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
8568      MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
8569      PrintDyldLoadCommand(Dyld, Command.Ptr);
8570    } else if (Command.C.cmd == MachO::LC_UUID) {
8571      MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
8572      PrintUuidLoadCommand(Uuid);
8573    } else if (Command.C.cmd == MachO::LC_RPATH) {
8574      MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
8575      PrintRpathLoadCommand(Rpath, Command.Ptr);
8576    } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
8577               Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS ||
8578               Command.C.cmd == MachO::LC_VERSION_MIN_TVOS ||
8579               Command.C.cmd == MachO::LC_VERSION_MIN_WATCHOS) {
8580      MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
8581      PrintVersionMinLoadCommand(Vd);
8582    } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
8583      MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
8584      PrintSourceVersionCommand(Sd);
8585    } else if (Command.C.cmd == MachO::LC_MAIN) {
8586      MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
8587      PrintEntryPointCommand(Ep);
8588    } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
8589      MachO::encryption_info_command Ei =
8590          Obj->getEncryptionInfoCommand(Command);
8591      PrintEncryptionInfoCommand(Ei, Buf.size());
8592    } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
8593      MachO::encryption_info_command_64 Ei =
8594          Obj->getEncryptionInfoCommand64(Command);
8595      PrintEncryptionInfoCommand64(Ei, Buf.size());
8596    } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
8597      MachO::linker_option_command Lo =
8598          Obj->getLinkerOptionLoadCommand(Command);
8599      PrintLinkerOptionCommand(Lo, Command.Ptr);
8600    } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
8601      MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
8602      PrintSubFrameworkCommand(Sf, Command.Ptr);
8603    } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
8604      MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
8605      PrintSubUmbrellaCommand(Sf, Command.Ptr);
8606    } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
8607      MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
8608      PrintSubLibraryCommand(Sl, Command.Ptr);
8609    } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
8610      MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
8611      PrintSubClientCommand(Sc, Command.Ptr);
8612    } else if (Command.C.cmd == MachO::LC_ROUTINES) {
8613      MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
8614      PrintRoutinesCommand(Rc);
8615    } else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
8616      MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
8617      PrintRoutinesCommand64(Rc);
8618    } else if (Command.C.cmd == MachO::LC_THREAD ||
8619               Command.C.cmd == MachO::LC_UNIXTHREAD) {
8620      MachO::thread_command Tc = Obj->getThreadCommand(Command);
8621      PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
8622    } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
8623               Command.C.cmd == MachO::LC_ID_DYLIB ||
8624               Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
8625               Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
8626               Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
8627               Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
8628      MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
8629      PrintDylibCommand(Dl, Command.Ptr);
8630    } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
8631               Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
8632               Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
8633               Command.C.cmd == MachO::LC_DATA_IN_CODE ||
8634               Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
8635               Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
8636      MachO::linkedit_data_command Ld =
8637          Obj->getLinkeditDataLoadCommand(Command);
8638      PrintLinkEditDataCommand(Ld, Buf.size());
8639    } else {
8640      outs() << "      cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
8641             << ")\n";
8642      outs() << "  cmdsize " << Command.C.cmdsize << "\n";
8643      // TODO: get and print the raw bytes of the load command.
8644    }
8645    // TODO: print all the other kinds of load commands.
8646  }
8647}
8648
8649static void getAndPrintMachHeader(const MachOObjectFile *Obj,
8650                                  uint32_t &filetype, uint32_t &cputype,
8651                                  bool verbose) {
8652  if (Obj->is64Bit()) {
8653    MachO::mach_header_64 H_64;
8654    H_64 = Obj->getHeader64();
8655    PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
8656                    H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
8657    filetype = H_64.filetype;
8658    cputype = H_64.cputype;
8659  } else {
8660    MachO::mach_header H;
8661    H = Obj->getHeader();
8662    PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
8663                    H.sizeofcmds, H.flags, verbose);
8664    filetype = H.filetype;
8665    cputype = H.cputype;
8666  }
8667}
8668
8669void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
8670  const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
8671  uint32_t filetype = 0;
8672  uint32_t cputype = 0;
8673  getAndPrintMachHeader(file, filetype, cputype, !NonVerbose);
8674  PrintLoadCommands(file, filetype, cputype, !NonVerbose);
8675}
8676
8677//===----------------------------------------------------------------------===//
8678// export trie dumping
8679//===----------------------------------------------------------------------===//
8680
8681void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
8682  for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
8683    uint64_t Flags = Entry.flags();
8684    bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
8685    bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
8686    bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
8687                        MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
8688    bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
8689                MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
8690    bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
8691    if (ReExport)
8692      outs() << "[re-export] ";
8693    else
8694      outs() << format("0x%08llX  ",
8695                       Entry.address()); // FIXME:add in base address
8696    outs() << Entry.name();
8697    if (WeakDef || ThreadLocal || Resolver || Abs) {
8698      bool NeedsComma = false;
8699      outs() << " [";
8700      if (WeakDef) {
8701        outs() << "weak_def";
8702        NeedsComma = true;
8703      }
8704      if (ThreadLocal) {
8705        if (NeedsComma)
8706          outs() << ", ";
8707        outs() << "per-thread";
8708        NeedsComma = true;
8709      }
8710      if (Abs) {
8711        if (NeedsComma)
8712          outs() << ", ";
8713        outs() << "absolute";
8714        NeedsComma = true;
8715      }
8716      if (Resolver) {
8717        if (NeedsComma)
8718          outs() << ", ";
8719        outs() << format("resolver=0x%08llX", Entry.other());
8720        NeedsComma = true;
8721      }
8722      outs() << "]";
8723    }
8724    if (ReExport) {
8725      StringRef DylibName = "unknown";
8726      int Ordinal = Entry.other() - 1;
8727      Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
8728      if (Entry.otherName().empty())
8729        outs() << " (from " << DylibName << ")";
8730      else
8731        outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
8732    }
8733    outs() << "\n";
8734  }
8735}
8736
8737//===----------------------------------------------------------------------===//
8738// rebase table dumping
8739//===----------------------------------------------------------------------===//
8740
8741namespace {
8742class SegInfo {
8743public:
8744  SegInfo(const object::MachOObjectFile *Obj);
8745
8746  StringRef segmentName(uint32_t SegIndex);
8747  StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
8748  uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
8749  bool isValidSegIndexAndOffset(uint32_t SegIndex, uint64_t SegOffset);
8750
8751private:
8752  struct SectionInfo {
8753    uint64_t Address;
8754    uint64_t Size;
8755    StringRef SectionName;
8756    StringRef SegmentName;
8757    uint64_t OffsetInSegment;
8758    uint64_t SegmentStartAddress;
8759    uint32_t SegmentIndex;
8760  };
8761  const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
8762  SmallVector<SectionInfo, 32> Sections;
8763};
8764}
8765
8766SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
8767  // Build table of sections so segIndex/offset pairs can be translated.
8768  uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
8769  StringRef CurSegName;
8770  uint64_t CurSegAddress;
8771  for (const SectionRef &Section : Obj->sections()) {
8772    SectionInfo Info;
8773    error(Section.getName(Info.SectionName));
8774    Info.Address = Section.getAddress();
8775    Info.Size = Section.getSize();
8776    Info.SegmentName =
8777        Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
8778    if (!Info.SegmentName.equals(CurSegName)) {
8779      ++CurSegIndex;
8780      CurSegName = Info.SegmentName;
8781      CurSegAddress = Info.Address;
8782    }
8783    Info.SegmentIndex = CurSegIndex - 1;
8784    Info.OffsetInSegment = Info.Address - CurSegAddress;
8785    Info.SegmentStartAddress = CurSegAddress;
8786    Sections.push_back(Info);
8787  }
8788}
8789
8790StringRef SegInfo::segmentName(uint32_t SegIndex) {
8791  for (const SectionInfo &SI : Sections) {
8792    if (SI.SegmentIndex == SegIndex)
8793      return SI.SegmentName;
8794  }
8795  llvm_unreachable("invalid segIndex");
8796}
8797
8798bool SegInfo::isValidSegIndexAndOffset(uint32_t SegIndex,
8799                                       uint64_t OffsetInSeg) {
8800  for (const SectionInfo &SI : Sections) {
8801    if (SI.SegmentIndex != SegIndex)
8802      continue;
8803    if (SI.OffsetInSegment > OffsetInSeg)
8804      continue;
8805    if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
8806      continue;
8807    return true;
8808  }
8809  return false;
8810}
8811
8812const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
8813                                                 uint64_t OffsetInSeg) {
8814  for (const SectionInfo &SI : Sections) {
8815    if (SI.SegmentIndex != SegIndex)
8816      continue;
8817    if (SI.OffsetInSegment > OffsetInSeg)
8818      continue;
8819    if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
8820      continue;
8821    return SI;
8822  }
8823  llvm_unreachable("segIndex and offset not in any section");
8824}
8825
8826StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
8827  return findSection(SegIndex, OffsetInSeg).SectionName;
8828}
8829
8830uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
8831  const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
8832  return SI.SegmentStartAddress + OffsetInSeg;
8833}
8834
8835void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
8836  // Build table of sections so names can used in final output.
8837  SegInfo sectionTable(Obj);
8838
8839  outs() << "segment  section            address     type\n";
8840  for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
8841    uint32_t SegIndex = Entry.segmentIndex();
8842    uint64_t OffsetInSeg = Entry.segmentOffset();
8843    StringRef SegmentName = sectionTable.segmentName(SegIndex);
8844    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8845    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8846
8847    // Table lines look like: __DATA  __nl_symbol_ptr  0x0000F00C  pointer
8848    outs() << format("%-8s %-18s 0x%08" PRIX64 "  %s\n",
8849                     SegmentName.str().c_str(), SectionName.str().c_str(),
8850                     Address, Entry.typeName().str().c_str());
8851  }
8852}
8853
8854static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
8855  StringRef DylibName;
8856  switch (Ordinal) {
8857  case MachO::BIND_SPECIAL_DYLIB_SELF:
8858    return "this-image";
8859  case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
8860    return "main-executable";
8861  case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
8862    return "flat-namespace";
8863  default:
8864    if (Ordinal > 0) {
8865      std::error_code EC =
8866          Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
8867      if (EC)
8868        return "<<bad library ordinal>>";
8869      return DylibName;
8870    }
8871  }
8872  return "<<unknown special ordinal>>";
8873}
8874
8875//===----------------------------------------------------------------------===//
8876// bind table dumping
8877//===----------------------------------------------------------------------===//
8878
8879void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
8880  // Build table of sections so names can used in final output.
8881  SegInfo sectionTable(Obj);
8882
8883  outs() << "segment  section            address    type       "
8884            "addend dylib            symbol\n";
8885  for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
8886    uint32_t SegIndex = Entry.segmentIndex();
8887    uint64_t OffsetInSeg = Entry.segmentOffset();
8888    StringRef SegmentName = sectionTable.segmentName(SegIndex);
8889    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8890    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8891
8892    // Table lines look like:
8893    //  __DATA  __got  0x00012010    pointer   0 libSystem ___stack_chk_guard
8894    StringRef Attr;
8895    if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
8896      Attr = " (weak_import)";
8897    outs() << left_justify(SegmentName, 8) << " "
8898           << left_justify(SectionName, 18) << " "
8899           << format_hex(Address, 10, true) << " "
8900           << left_justify(Entry.typeName(), 8) << " "
8901           << format_decimal(Entry.addend(), 8) << " "
8902           << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
8903           << Entry.symbolName() << Attr << "\n";
8904  }
8905}
8906
8907//===----------------------------------------------------------------------===//
8908// lazy bind table dumping
8909//===----------------------------------------------------------------------===//
8910
8911void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
8912  // Build table of sections so names can used in final output.
8913  SegInfo sectionTable(Obj);
8914
8915  outs() << "segment  section            address     "
8916            "dylib            symbol\n";
8917  for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
8918    uint32_t SegIndex = Entry.segmentIndex();
8919    uint64_t OffsetInSeg = Entry.segmentOffset();
8920    StringRef SegmentName = sectionTable.segmentName(SegIndex);
8921    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8922    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8923
8924    // Table lines look like:
8925    //  __DATA  __got  0x00012010 libSystem ___stack_chk_guard
8926    outs() << left_justify(SegmentName, 8) << " "
8927           << left_justify(SectionName, 18) << " "
8928           << format_hex(Address, 10, true) << " "
8929           << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
8930           << Entry.symbolName() << "\n";
8931  }
8932}
8933
8934//===----------------------------------------------------------------------===//
8935// weak bind table dumping
8936//===----------------------------------------------------------------------===//
8937
8938void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
8939  // Build table of sections so names can used in final output.
8940  SegInfo sectionTable(Obj);
8941
8942  outs() << "segment  section            address     "
8943            "type       addend   symbol\n";
8944  for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
8945    // Strong symbols don't have a location to update.
8946    if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
8947      outs() << "                                        strong              "
8948             << Entry.symbolName() << "\n";
8949      continue;
8950    }
8951    uint32_t SegIndex = Entry.segmentIndex();
8952    uint64_t OffsetInSeg = Entry.segmentOffset();
8953    StringRef SegmentName = sectionTable.segmentName(SegIndex);
8954    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8955    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8956
8957    // Table lines look like:
8958    // __DATA  __data  0x00001000  pointer    0   _foo
8959    outs() << left_justify(SegmentName, 8) << " "
8960           << left_justify(SectionName, 18) << " "
8961           << format_hex(Address, 10, true) << " "
8962           << left_justify(Entry.typeName(), 8) << " "
8963           << format_decimal(Entry.addend(), 8) << "   " << Entry.symbolName()
8964           << "\n";
8965  }
8966}
8967
8968// get_dyld_bind_info_symbolname() is used for disassembly and passed an
8969// address, ReferenceValue, in the Mach-O file and looks in the dyld bind
8970// information for that address. If the address is found its binding symbol
8971// name is returned.  If not nullptr is returned.
8972static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
8973                                                 struct DisassembleInfo *info) {
8974  if (info->bindtable == nullptr) {
8975    info->bindtable = new (BindTable);
8976    SegInfo sectionTable(info->O);
8977    for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
8978      uint32_t SegIndex = Entry.segmentIndex();
8979      uint64_t OffsetInSeg = Entry.segmentOffset();
8980      if (!sectionTable.isValidSegIndexAndOffset(SegIndex, OffsetInSeg))
8981        continue;
8982      uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8983      const char *SymbolName = nullptr;
8984      StringRef name = Entry.symbolName();
8985      if (!name.empty())
8986        SymbolName = name.data();
8987      info->bindtable->push_back(std::make_pair(Address, SymbolName));
8988    }
8989  }
8990  for (bind_table_iterator BI = info->bindtable->begin(),
8991                           BE = info->bindtable->end();
8992       BI != BE; ++BI) {
8993    uint64_t Address = BI->first;
8994    if (ReferenceValue == Address) {
8995      const char *SymbolName = BI->second;
8996      return SymbolName;
8997    }
8998  }
8999  return nullptr;
9000}
9001