FixedLenDecoderEmitter.cpp revision 3015dfb7d739f4cc0b1408555889ecea880ffac9
1//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
19#include "llvm/TableGen/Record.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24
25#include <vector>
26#include <map>
27#include <string>
28
29using namespace llvm;
30
31// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
32// for a bit value.
33//
34// BIT_UNFILTERED is used as the init value for a filter position.  It is used
35// only for filter processings.
36typedef enum {
37  BIT_TRUE,      // '1'
38  BIT_FALSE,     // '0'
39  BIT_UNSET,     // '?'
40  BIT_UNFILTERED // unfiltered
41} bit_value_t;
42
43static bool ValueSet(bit_value_t V) {
44  return (V == BIT_TRUE || V == BIT_FALSE);
45}
46static bool ValueNotSet(bit_value_t V) {
47  return (V == BIT_UNSET);
48}
49static int Value(bit_value_t V) {
50  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
51}
52static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
53  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
54    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
55
56  // The bit is uninitialized.
57  return BIT_UNSET;
58}
59// Prints the bit value for each position.
60static void dumpBits(raw_ostream &o, BitsInit &bits) {
61  unsigned index;
62
63  for (index = bits.getNumBits(); index > 0; index--) {
64    switch (bitFromBits(bits, index - 1)) {
65    case BIT_TRUE:
66      o << "1";
67      break;
68    case BIT_FALSE:
69      o << "0";
70      break;
71    case BIT_UNSET:
72      o << "_";
73      break;
74    default:
75      llvm_unreachable("unexpected return value from bitFromBits");
76    }
77  }
78}
79
80static BitsInit &getBitsField(const Record &def, const char *str) {
81  BitsInit *bits = def.getValueAsBitsInit(str);
82  return *bits;
83}
84
85// Forward declaration.
86class FilterChooser;
87
88// Representation of the instruction to work on.
89typedef std::vector<bit_value_t> insn_t;
90
91/// Filter - Filter works with FilterChooser to produce the decoding tree for
92/// the ISA.
93///
94/// It is useful to think of a Filter as governing the switch stmts of the
95/// decoding tree in a certain level.  Each case stmt delegates to an inferior
96/// FilterChooser to decide what further decoding logic to employ, or in another
97/// words, what other remaining bits to look at.  The FilterChooser eventually
98/// chooses a best Filter to do its job.
99///
100/// This recursive scheme ends when the number of Opcodes assigned to the
101/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
102/// the Filter/FilterChooser combo does not know how to distinguish among the
103/// Opcodes assigned.
104///
105/// An example of a conflict is
106///
107/// Conflict:
108///                     111101000.00........00010000....
109///                     111101000.00........0001........
110///                     1111010...00........0001........
111///                     1111010...00....................
112///                     1111010.........................
113///                     1111............................
114///                     ................................
115///     VST4q8a         111101000_00________00010000____
116///     VST4q8b         111101000_00________00010000____
117///
118/// The Debug output shows the path that the decoding tree follows to reach the
119/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
120/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
121///
122/// The encoding info in the .td files does not specify this meta information,
123/// which could have been used by the decoder to resolve the conflict.  The
124/// decoder could try to decode the even/odd register numbering and assign to
125/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
126/// version and return the Opcode since the two have the same Asm format string.
127class Filter {
128protected:
129  FilterChooser *Owner; // points to the FilterChooser who owns this filter
130  unsigned StartBit; // the starting bit position
131  unsigned NumBits; // number of bits to filter
132  bool Mixed; // a mixed region contains both set and unset bits
133
134  // Map of well-known segment value to the set of uid's with that value.
135  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
136
137  // Set of uid's with non-constant segment values.
138  std::vector<unsigned> VariableInstructions;
139
140  // Map of well-known segment value to its delegate.
141  std::map<unsigned, FilterChooser*> FilterChooserMap;
142
143  // Number of instructions which fall under FilteredInstructions category.
144  unsigned NumFiltered;
145
146  // Keeps track of the last opcode in the filtered bucket.
147  unsigned LastOpcFiltered;
148
149  // Number of instructions which fall under VariableInstructions category.
150  unsigned NumVariable;
151
152public:
153  unsigned getNumFiltered() { return NumFiltered; }
154  unsigned getNumVariable() { return NumVariable; }
155  unsigned getSingletonOpc() {
156    assert(NumFiltered == 1);
157    return LastOpcFiltered;
158  }
159  // Return the filter chooser for the group of instructions without constant
160  // segment values.
161  FilterChooser &getVariableFC() {
162    assert(NumFiltered == 1);
163    assert(FilterChooserMap.size() == 1);
164    return *(FilterChooserMap.find((unsigned)-1)->second);
165  }
166
167  Filter(const Filter &f);
168  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
169
170  ~Filter();
171
172  // Divides the decoding task into sub tasks and delegates them to the
173  // inferior FilterChooser's.
174  //
175  // A special case arises when there's only one entry in the filtered
176  // instructions.  In order to unambiguously decode the singleton, we need to
177  // match the remaining undecoded encoding bits against the singleton.
178  void recurse();
179
180  // Emit code to decode instructions given a segment or segments of bits.
181  void emit(raw_ostream &o, unsigned &Indentation);
182
183  // Returns the number of fanout produced by the filter.  More fanout implies
184  // the filter distinguishes more categories of instructions.
185  unsigned usefulness() const;
186}; // End of class Filter
187
188// These are states of our finite state machines used in FilterChooser's
189// filterProcessor() which produces the filter candidates to use.
190typedef enum {
191  ATTR_NONE,
192  ATTR_FILTERED,
193  ATTR_ALL_SET,
194  ATTR_ALL_UNSET,
195  ATTR_MIXED
196} bitAttr_t;
197
198/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
199/// in order to perform the decoding of instructions at the current level.
200///
201/// Decoding proceeds from the top down.  Based on the well-known encoding bits
202/// of instructions available, FilterChooser builds up the possible Filters that
203/// can further the task of decoding by distinguishing among the remaining
204/// candidate instructions.
205///
206/// Once a filter has been chosen, it is called upon to divide the decoding task
207/// into sub-tasks and delegates them to its inferior FilterChoosers for further
208/// processings.
209///
210/// It is useful to think of a Filter as governing the switch stmts of the
211/// decoding tree.  And each case is delegated to an inferior FilterChooser to
212/// decide what further remaining bits to look at.
213class FilterChooser {
214protected:
215  friend class Filter;
216
217  // Vector of codegen instructions to choose our filter.
218  const std::vector<const CodeGenInstruction*> &AllInstructions;
219
220  // Vector of uid's for this filter chooser to work on.
221  const std::vector<unsigned> Opcodes;
222
223  // Lookup table for the operand decoding of instructions.
224  std::map<unsigned, std::vector<OperandInfo> > &Operands;
225
226  // Vector of candidate filters.
227  std::vector<Filter> Filters;
228
229  // Array of bit values passed down from our parent.
230  // Set to all BIT_UNFILTERED's for Parent == NULL.
231  std::vector<bit_value_t> FilterBitValues;
232
233  // Links to the FilterChooser above us in the decoding tree.
234  FilterChooser *Parent;
235
236  // Index of the best filter from Filters.
237  int BestIndex;
238
239  // Width of instructions
240  unsigned BitWidth;
241
242  // Parent emitter
243  const FixedLenDecoderEmitter *Emitter;
244
245public:
246  FilterChooser(const FilterChooser &FC) :
247    AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
248      Operands(FC.Operands), Filters(FC.Filters),
249      FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
250    BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
251    Emitter(FC.Emitter) { }
252
253  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
254                const std::vector<unsigned> &IDs,
255    std::map<unsigned, std::vector<OperandInfo> > &Ops,
256                unsigned BW,
257                const FixedLenDecoderEmitter *E) :
258      AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
259      Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
260    for (unsigned i = 0; i < BitWidth; ++i)
261      FilterBitValues.push_back(BIT_UNFILTERED);
262
263    doFilter();
264  }
265
266  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
267                const std::vector<unsigned> &IDs,
268        std::map<unsigned, std::vector<OperandInfo> > &Ops,
269                std::vector<bit_value_t> &ParentFilterBitValues,
270                FilterChooser &parent) :
271      AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
272      Filters(), FilterBitValues(ParentFilterBitValues),
273      Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
274      Emitter(parent.Emitter) {
275    doFilter();
276  }
277
278  // The top level filter chooser has NULL as its parent.
279  bool isTopLevel() { return Parent == NULL; }
280
281  // Emit the top level typedef and decodeInstruction() function.
282  void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
283
284protected:
285  // Populates the insn given the uid.
286  void insnWithID(insn_t &Insn, unsigned Opcode) const {
287    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
288
289    // We may have a SoftFail bitmask, which specifies a mask where an encoding
290    // may differ from the value in "Inst" and yet still be valid, but the
291    // disassembler should return SoftFail instead of Success.
292    //
293    // This is used for marking UNPREDICTABLE instructions in the ARM world.
294    BitsInit *SFBits = AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
295
296    for (unsigned i = 0; i < BitWidth; ++i) {
297      if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
298        Insn.push_back(BIT_UNSET);
299      else
300        Insn.push_back(bitFromBits(Bits, i));
301    }
302  }
303
304  // Returns the record name.
305  const std::string &nameWithID(unsigned Opcode) const {
306    return AllInstructions[Opcode]->TheDef->getName();
307  }
308
309  // Populates the field of the insn given the start position and the number of
310  // consecutive bits to scan for.
311  //
312  // Returns false if there exists any uninitialized bit value in the range.
313  // Returns true, otherwise.
314  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
315      unsigned NumBits) const;
316
317  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
318  /// filter array as a series of chars.
319  void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
320
321  /// dumpStack - dumpStack traverses the filter chooser chain and calls
322  /// dumpFilterArray on each filter chooser up to the top level one.
323  void dumpStack(raw_ostream &o, const char *prefix);
324
325  Filter &bestFilter() {
326    assert(BestIndex != -1 && "BestIndex not set");
327    return Filters[BestIndex];
328  }
329
330  // Called from Filter::recurse() when singleton exists.  For debug purpose.
331  void SingletonExists(unsigned Opc);
332
333  bool PositionFiltered(unsigned i) {
334    return ValueSet(FilterBitValues[i]);
335  }
336
337  // Calculates the island(s) needed to decode the instruction.
338  // This returns a lit of undecoded bits of an instructions, for example,
339  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
340  // decoded bits in order to verify that the instruction matches the Opcode.
341  unsigned getIslands(std::vector<unsigned> &StartBits,
342      std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
343      insn_t &Insn);
344
345  // Emits code to check the Predicates member of an instruction are true.
346  // Returns true if predicate matches were emitted, false otherwise.
347  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
348
349  void emitSoftFailCheck(raw_ostream &o, unsigned Indentation, unsigned Opc);
350
351  // Emits code to decode the singleton.  Return true if we have matched all the
352  // well-known bits.
353  bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
354
355  // Emits code to decode the singleton, and then to decode the rest.
356  void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
357
358  void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
359                        OperandInfo &OpInfo);
360
361  // Assign a single filter and run with it.
362  void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
363      bool mixed);
364
365  // reportRegion is a helper function for filterProcessor to mark a region as
366  // eligible for use as a filter region.
367  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
368      bool AllowMixed);
369
370  // FilterProcessor scans the well-known encoding bits of the instructions and
371  // builds up a list of candidate filters.  It chooses the best filter and
372  // recursively descends down the decoding tree.
373  bool filterProcessor(bool AllowMixed, bool Greedy = true);
374
375  // Decides on the best configuration of filter(s) to use in order to decode
376  // the instructions.  A conflict of instructions may occur, in which case we
377  // dump the conflict set to the standard error.
378  void doFilter();
379
380  // Emits code to decode our share of instructions.  Returns true if the
381  // emitted code causes a return, which occurs if we know how to decode
382  // the instruction at this level or the instruction is not decodeable.
383  bool emit(raw_ostream &o, unsigned &Indentation);
384};
385
386///////////////////////////
387//                       //
388// Filter Implmenetation //
389//                       //
390///////////////////////////
391
392Filter::Filter(const Filter &f) :
393  Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
394  FilteredInstructions(f.FilteredInstructions),
395  VariableInstructions(f.VariableInstructions),
396  FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
397  LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
398}
399
400Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
401    bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
402                  Mixed(mixed) {
403  assert(StartBit + NumBits - 1 < Owner->BitWidth);
404
405  NumFiltered = 0;
406  LastOpcFiltered = 0;
407  NumVariable = 0;
408
409  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
410    insn_t Insn;
411
412    // Populates the insn given the uid.
413    Owner->insnWithID(Insn, Owner->Opcodes[i]);
414
415    uint64_t Field;
416    // Scans the segment for possibly well-specified encoding bits.
417    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
418
419    if (ok) {
420      // The encoding bits are well-known.  Lets add the uid of the
421      // instruction into the bucket keyed off the constant field value.
422      LastOpcFiltered = Owner->Opcodes[i];
423      FilteredInstructions[Field].push_back(LastOpcFiltered);
424      ++NumFiltered;
425    } else {
426      // Some of the encoding bit(s) are unspecfied.  This contributes to
427      // one additional member of "Variable" instructions.
428      VariableInstructions.push_back(Owner->Opcodes[i]);
429      ++NumVariable;
430    }
431  }
432
433  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
434         && "Filter returns no instruction categories");
435}
436
437Filter::~Filter() {
438  std::map<unsigned, FilterChooser*>::iterator filterIterator;
439  for (filterIterator = FilterChooserMap.begin();
440       filterIterator != FilterChooserMap.end();
441       filterIterator++) {
442    delete filterIterator->second;
443  }
444}
445
446// Divides the decoding task into sub tasks and delegates them to the
447// inferior FilterChooser's.
448//
449// A special case arises when there's only one entry in the filtered
450// instructions.  In order to unambiguously decode the singleton, we need to
451// match the remaining undecoded encoding bits against the singleton.
452void Filter::recurse() {
453  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
454
455  // Starts by inheriting our parent filter chooser's filter bit values.
456  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
457
458  unsigned bitIndex;
459
460  if (VariableInstructions.size()) {
461    // Conservatively marks each segment position as BIT_UNSET.
462    for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
463      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
464
465    // Delegates to an inferior filter chooser for further processing on this
466    // group of instructions whose segment values are variable.
467    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
468                              (unsigned)-1,
469                              new FilterChooser(Owner->AllInstructions,
470                                                VariableInstructions,
471                                                Owner->Operands,
472                                                BitValueArray,
473                                                *Owner)
474                              ));
475  }
476
477  // No need to recurse for a singleton filtered instruction.
478  // See also Filter::emit().
479  if (getNumFiltered() == 1) {
480    //Owner->SingletonExists(LastOpcFiltered);
481    assert(FilterChooserMap.size() == 1);
482    return;
483  }
484
485  // Otherwise, create sub choosers.
486  for (mapIterator = FilteredInstructions.begin();
487       mapIterator != FilteredInstructions.end();
488       mapIterator++) {
489
490    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
491    for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
492      if (mapIterator->first & (1ULL << bitIndex))
493        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
494      else
495        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
496    }
497
498    // Delegates to an inferior filter chooser for further processing on this
499    // category of instructions.
500    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
501                              mapIterator->first,
502                              new FilterChooser(Owner->AllInstructions,
503                                                mapIterator->second,
504                                                Owner->Operands,
505                                                BitValueArray,
506                                                *Owner)
507                              ));
508  }
509}
510
511// Emit code to decode instructions given a segment or segments of bits.
512void Filter::emit(raw_ostream &o, unsigned &Indentation) {
513  o.indent(Indentation) << "// Check Inst{";
514
515  if (NumBits > 1)
516    o << (StartBit + NumBits - 1) << '-';
517
518  o << StartBit << "} ...\n";
519
520  o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
521                        << "(insn, " << StartBit << ", "
522                        << NumBits << ")) {\n";
523
524  std::map<unsigned, FilterChooser*>::iterator filterIterator;
525
526  bool DefaultCase = false;
527  for (filterIterator = FilterChooserMap.begin();
528       filterIterator != FilterChooserMap.end();
529       filterIterator++) {
530
531    // Field value -1 implies a non-empty set of variable instructions.
532    // See also recurse().
533    if (filterIterator->first == (unsigned)-1) {
534      DefaultCase = true;
535
536      o.indent(Indentation) << "default:\n";
537      o.indent(Indentation) << "  break; // fallthrough\n";
538
539      // Closing curly brace for the switch statement.
540      // This is unconventional because we want the default processing to be
541      // performed for the fallthrough cases as well, i.e., when the "cases"
542      // did not prove a decoded instruction.
543      o.indent(Indentation) << "}\n";
544
545    } else
546      o.indent(Indentation) << "case " << filterIterator->first << ":\n";
547
548    // We arrive at a category of instructions with the same segment value.
549    // Now delegate to the sub filter chooser for further decodings.
550    // The case may fallthrough, which happens if the remaining well-known
551    // encoding bits do not match exactly.
552    if (!DefaultCase) { ++Indentation; ++Indentation; }
553
554    bool finished = filterIterator->second->emit(o, Indentation);
555    // For top level default case, there's no need for a break statement.
556    if (Owner->isTopLevel() && DefaultCase)
557      break;
558    if (!finished)
559      o.indent(Indentation) << "break;\n";
560
561    if (!DefaultCase) { --Indentation; --Indentation; }
562  }
563
564  // If there is no default case, we still need to supply a closing brace.
565  if (!DefaultCase) {
566    // Closing curly brace for the switch statement.
567    o.indent(Indentation) << "}\n";
568  }
569}
570
571// Returns the number of fanout produced by the filter.  More fanout implies
572// the filter distinguishes more categories of instructions.
573unsigned Filter::usefulness() const {
574  if (VariableInstructions.size())
575    return FilteredInstructions.size();
576  else
577    return FilteredInstructions.size() + 1;
578}
579
580//////////////////////////////////
581//                              //
582// Filterchooser Implementation //
583//                              //
584//////////////////////////////////
585
586// Emit the top level typedef and decodeInstruction() function.
587void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
588                            std::string Namespace) {
589  o.indent(Indentation) <<
590    "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth
591    << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
592    << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
593  o.indent(Indentation) << "  unsigned tmp = 0;\n";
594  o.indent(Indentation) << "  (void)tmp;\n";
595  o.indent(Indentation) << Emitter->Locals << "\n";
596  o.indent(Indentation) << "  uint64_t Bits = STI.getFeatureBits();\n";
597  o.indent(Indentation) << "  (void)Bits;\n";
598
599  ++Indentation; ++Indentation;
600  // Emits code to decode the instructions.
601  emit(o, Indentation);
602
603  o << '\n';
604  o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
605  --Indentation; --Indentation;
606
607  o.indent(Indentation) << "}\n";
608
609  o << '\n';
610}
611
612// Populates the field of the insn given the start position and the number of
613// consecutive bits to scan for.
614//
615// Returns false if and on the first uninitialized bit value encountered.
616// Returns true, otherwise.
617bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
618    unsigned StartBit, unsigned NumBits) const {
619  Field = 0;
620
621  for (unsigned i = 0; i < NumBits; ++i) {
622    if (Insn[StartBit + i] == BIT_UNSET)
623      return false;
624
625    if (Insn[StartBit + i] == BIT_TRUE)
626      Field = Field | (1ULL << i);
627  }
628
629  return true;
630}
631
632/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
633/// filter array as a series of chars.
634void FilterChooser::dumpFilterArray(raw_ostream &o,
635                                    std::vector<bit_value_t> &filter) {
636  unsigned bitIndex;
637
638  for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
639    switch (filter[bitIndex - 1]) {
640    case BIT_UNFILTERED:
641      o << ".";
642      break;
643    case BIT_UNSET:
644      o << "_";
645      break;
646    case BIT_TRUE:
647      o << "1";
648      break;
649    case BIT_FALSE:
650      o << "0";
651      break;
652    }
653  }
654}
655
656/// dumpStack - dumpStack traverses the filter chooser chain and calls
657/// dumpFilterArray on each filter chooser up to the top level one.
658void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
659  FilterChooser *current = this;
660
661  while (current) {
662    o << prefix;
663    dumpFilterArray(o, current->FilterBitValues);
664    o << '\n';
665    current = current->Parent;
666  }
667}
668
669// Called from Filter::recurse() when singleton exists.  For debug purpose.
670void FilterChooser::SingletonExists(unsigned Opc) {
671  insn_t Insn0;
672  insnWithID(Insn0, Opc);
673
674  errs() << "Singleton exists: " << nameWithID(Opc)
675         << " with its decoding dominating ";
676  for (unsigned i = 0; i < Opcodes.size(); ++i) {
677    if (Opcodes[i] == Opc) continue;
678    errs() << nameWithID(Opcodes[i]) << ' ';
679  }
680  errs() << '\n';
681
682  dumpStack(errs(), "\t\t");
683  for (unsigned i = 0; i < Opcodes.size(); i++) {
684    const std::string &Name = nameWithID(Opcodes[i]);
685
686    errs() << '\t' << Name << " ";
687    dumpBits(errs(),
688             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
689    errs() << '\n';
690  }
691}
692
693// Calculates the island(s) needed to decode the instruction.
694// This returns a list of undecoded bits of an instructions, for example,
695// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
696// decoded bits in order to verify that the instruction matches the Opcode.
697unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
698    std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
699    insn_t &Insn) {
700  unsigned Num, BitNo;
701  Num = BitNo = 0;
702
703  uint64_t FieldVal = 0;
704
705  // 0: Init
706  // 1: Water (the bit value does not affect decoding)
707  // 2: Island (well-known bit value needed for decoding)
708  int State = 0;
709  int Val = -1;
710
711  for (unsigned i = 0; i < BitWidth; ++i) {
712    Val = Value(Insn[i]);
713    bool Filtered = PositionFiltered(i);
714    switch (State) {
715    default: llvm_unreachable("Unreachable code!");
716    case 0:
717    case 1:
718      if (Filtered || Val == -1)
719        State = 1; // Still in Water
720      else {
721        State = 2; // Into the Island
722        BitNo = 0;
723        StartBits.push_back(i);
724        FieldVal = Val;
725      }
726      break;
727    case 2:
728      if (Filtered || Val == -1) {
729        State = 1; // Into the Water
730        EndBits.push_back(i - 1);
731        FieldVals.push_back(FieldVal);
732        ++Num;
733      } else {
734        State = 2; // Still in Island
735        ++BitNo;
736        FieldVal = FieldVal | Val << BitNo;
737      }
738      break;
739    }
740  }
741  // If we are still in Island after the loop, do some housekeeping.
742  if (State == 2) {
743    EndBits.push_back(BitWidth - 1);
744    FieldVals.push_back(FieldVal);
745    ++Num;
746  }
747
748  assert(StartBits.size() == Num && EndBits.size() == Num &&
749         FieldVals.size() == Num);
750  return Num;
751}
752
753void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
754                         OperandInfo &OpInfo) {
755  std::string &Decoder = OpInfo.Decoder;
756
757  if (OpInfo.numFields() == 1) {
758    OperandInfo::iterator OI = OpInfo.begin();
759    o.indent(Indentation) << "  tmp = fieldFromInstruction" << BitWidth
760                            << "(insn, " << OI->Base << ", " << OI->Width
761                            << ");\n";
762  } else {
763    o.indent(Indentation) << "  tmp = 0;\n";
764    for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
765         OI != OE; ++OI) {
766      o.indent(Indentation) << "  tmp |= (fieldFromInstruction" << BitWidth
767                            << "(insn, " << OI->Base << ", " << OI->Width
768                            << ") << " << OI->Offset << ");\n";
769    }
770  }
771
772  if (Decoder != "")
773    o.indent(Indentation) << "  " << Emitter->GuardPrefix << Decoder
774                          << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n";
775  else
776    o.indent(Indentation) << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
777
778}
779
780static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
781                                     std::string PredicateNamespace) {
782  if (str[0] == '!')
783    o << "!(Bits & " << PredicateNamespace << "::"
784      << str.slice(1,str.size()) << ")";
785  else
786    o << "(Bits & " << PredicateNamespace << "::" << str << ")";
787}
788
789bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
790                                           unsigned Opc) {
791  ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
792  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
793    Record *Pred = Predicates->getElementAsRecord(i);
794    if (!Pred->getValue("AssemblerMatcherPredicate"))
795      continue;
796
797    std::string P = Pred->getValueAsString("AssemblerCondString");
798
799    if (!P.length())
800      continue;
801
802    if (i != 0)
803      o << " && ";
804
805    StringRef SR(P);
806    std::pair<StringRef, StringRef> pairs = SR.split(',');
807    while (pairs.second.size()) {
808      emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
809      o << " && ";
810      pairs = pairs.second.split(',');
811    }
812    emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
813  }
814  return Predicates->getSize() > 0;
815}
816
817void FilterChooser::emitSoftFailCheck(raw_ostream &o, unsigned Indentation, unsigned Opc) {
818  BitsInit *SFBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
819  if (!SFBits) return;
820  BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
821
822  APInt PositiveMask(BitWidth, 0ULL);
823  APInt NegativeMask(BitWidth, 0ULL);
824  for (unsigned i = 0; i < BitWidth; ++i) {
825    bit_value_t B = bitFromBits(*SFBits, i);
826    bit_value_t IB = bitFromBits(*InstBits, i);
827
828    if (B != BIT_TRUE) continue;
829
830    switch (IB) {
831    case BIT_FALSE:
832      // The bit is meant to be false, so emit a check to see if it is true.
833      PositiveMask.setBit(i);
834      break;
835    case BIT_TRUE:
836      // The bit is meant to be true, so emit a check to see if it is false.
837      NegativeMask.setBit(i);
838      break;
839    default:
840      // The bit is not set; this must be an error!
841      StringRef Name = AllInstructions[Opc]->TheDef->getName();
842      errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
843             << Name
844             << " is set but Inst{" << i <<"} is unset!\n"
845             << "  - You can only mark a bit as SoftFail if it is fully defined"
846             << " (1/0 - not '?') in Inst\n";
847      o << "#error SoftFail Conflict, " << Name << "::SoftFail{" << i
848        << "} set but Inst{" << i << "} undefined!\n";
849    }
850  }
851
852  bool NeedPositiveMask = PositiveMask.getBoolValue();
853  bool NeedNegativeMask = NegativeMask.getBoolValue();
854
855  if (!NeedPositiveMask && !NeedNegativeMask)
856    return;
857
858  std::string PositiveMaskStr = PositiveMask.toString(16, /*signed=*/false);
859  std::string NegativeMaskStr = NegativeMask.toString(16, /*signed=*/false);
860  StringRef BitExt = "";
861  if (BitWidth > 32)
862    BitExt = "ULL";
863
864  o.indent(Indentation) << "if (";
865  if (NeedPositiveMask)
866    o << "insn & 0x" << PositiveMaskStr << BitExt;
867  if (NeedPositiveMask && NeedNegativeMask)
868    o << " || ";
869  if (NeedNegativeMask)
870    o << "~insn & 0x" << NegativeMaskStr << BitExt;
871  o << ")\n";
872  o.indent(Indentation+2) << "S = MCDisassembler::SoftFail;\n";
873}
874
875// Emits code to decode the singleton.  Return true if we have matched all the
876// well-known bits.
877bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
878                                         unsigned Opc) {
879  std::vector<unsigned> StartBits;
880  std::vector<unsigned> EndBits;
881  std::vector<uint64_t> FieldVals;
882  insn_t Insn;
883  insnWithID(Insn, Opc);
884
885  // Look for islands of undecoded bits of the singleton.
886  getIslands(StartBits, EndBits, FieldVals, Insn);
887
888  unsigned Size = StartBits.size();
889  unsigned I, NumBits;
890
891  // If we have matched all the well-known bits, just issue a return.
892  if (Size == 0) {
893    o.indent(Indentation) << "if (";
894    if (!emitPredicateMatch(o, Indentation, Opc))
895      o << "1";
896    o << ") {\n";
897    emitSoftFailCheck(o, Indentation+2, Opc);
898    o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
899    std::vector<OperandInfo>& InsnOperands = Operands[Opc];
900    for (std::vector<OperandInfo>::iterator
901         I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
902      // If a custom instruction decoder was specified, use that.
903      if (I->numFields() == 0 && I->Decoder.size()) {
904        o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
905                              << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
906        break;
907      }
908
909      emitBinaryParser(o, Indentation, *I);
910    }
911
912    o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
913                          << '\n';
914    o.indent(Indentation) << "}\n"; // Closing predicate block.
915    return true;
916  }
917
918  // Otherwise, there are more decodings to be done!
919
920  // Emit code to match the island(s) for the singleton.
921  o.indent(Indentation) << "// Check ";
922
923  for (I = Size; I != 0; --I) {
924    o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
925    if (I > 1)
926      o << " && ";
927    else
928      o << "for singleton decoding...\n";
929  }
930
931  o.indent(Indentation) << "if (";
932  if (emitPredicateMatch(o, Indentation, Opc)) {
933    o << " &&\n";
934    o.indent(Indentation+4);
935  }
936
937  for (I = Size; I != 0; --I) {
938    NumBits = EndBits[I-1] - StartBits[I-1] + 1;
939    o << "fieldFromInstruction" << BitWidth << "(insn, "
940      << StartBits[I-1] << ", " << NumBits
941      << ") == " << FieldVals[I-1];
942    if (I > 1)
943      o << " && ";
944    else
945      o << ") {\n";
946  }
947  emitSoftFailCheck(o, Indentation+2, Opc);
948  o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
949  std::vector<OperandInfo>& InsnOperands = Operands[Opc];
950  for (std::vector<OperandInfo>::iterator
951       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
952    // If a custom instruction decoder was specified, use that.
953    if (I->numFields() == 0 && I->Decoder.size()) {
954      o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
955                            << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
956      break;
957    }
958
959    emitBinaryParser(o, Indentation, *I);
960  }
961  o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
962                        << '\n';
963  o.indent(Indentation) << "}\n";
964
965  return false;
966}
967
968// Emits code to decode the singleton, and then to decode the rest.
969void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
970    Filter &Best) {
971
972  unsigned Opc = Best.getSingletonOpc();
973
974  emitSingletonDecoder(o, Indentation, Opc);
975
976  // Emit code for the rest.
977  o.indent(Indentation) << "else\n";
978
979  Indentation += 2;
980  Best.getVariableFC().emit(o, Indentation);
981  Indentation -= 2;
982}
983
984// Assign a single filter and run with it.  Top level API client can initialize
985// with a single filter to start the filtering process.
986void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
987    unsigned numBit, bool mixed) {
988  Filters.clear();
989  Filter F(*this, startBit, numBit, true);
990  Filters.push_back(F);
991  BestIndex = 0; // Sole Filter instance to choose from.
992  bestFilter().recurse();
993}
994
995// reportRegion is a helper function for filterProcessor to mark a region as
996// eligible for use as a filter region.
997void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
998    unsigned BitIndex, bool AllowMixed) {
999  if (RA == ATTR_MIXED && AllowMixed)
1000    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1001  else if (RA == ATTR_ALL_SET && !AllowMixed)
1002    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1003}
1004
1005// FilterProcessor scans the well-known encoding bits of the instructions and
1006// builds up a list of candidate filters.  It chooses the best filter and
1007// recursively descends down the decoding tree.
1008bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1009  Filters.clear();
1010  BestIndex = -1;
1011  unsigned numInstructions = Opcodes.size();
1012
1013  assert(numInstructions && "Filter created with no instructions");
1014
1015  // No further filtering is necessary.
1016  if (numInstructions == 1)
1017    return true;
1018
1019  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1020  // instructions is 3.
1021  if (AllowMixed && !Greedy) {
1022    assert(numInstructions == 3);
1023
1024    for (unsigned i = 0; i < Opcodes.size(); ++i) {
1025      std::vector<unsigned> StartBits;
1026      std::vector<unsigned> EndBits;
1027      std::vector<uint64_t> FieldVals;
1028      insn_t Insn;
1029
1030      insnWithID(Insn, Opcodes[i]);
1031
1032      // Look for islands of undecoded bits of any instruction.
1033      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1034        // Found an instruction with island(s).  Now just assign a filter.
1035        runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1036                        true);
1037        return true;
1038      }
1039    }
1040  }
1041
1042  unsigned BitIndex, InsnIndex;
1043
1044  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1045  // The automaton consumes the corresponding bit from each
1046  // instruction.
1047  //
1048  //   Input symbols: 0, 1, and _ (unset).
1049  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1050  //   Initial state: NONE.
1051  //
1052  // (NONE) ------- [01] -> (ALL_SET)
1053  // (NONE) ------- _ ----> (ALL_UNSET)
1054  // (ALL_SET) ---- [01] -> (ALL_SET)
1055  // (ALL_SET) ---- _ ----> (MIXED)
1056  // (ALL_UNSET) -- [01] -> (MIXED)
1057  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1058  // (MIXED) ------ . ----> (MIXED)
1059  // (FILTERED)---- . ----> (FILTERED)
1060
1061  std::vector<bitAttr_t> bitAttrs;
1062
1063  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1064  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1065  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1066    if (FilterBitValues[BitIndex] == BIT_TRUE ||
1067        FilterBitValues[BitIndex] == BIT_FALSE)
1068      bitAttrs.push_back(ATTR_FILTERED);
1069    else
1070      bitAttrs.push_back(ATTR_NONE);
1071
1072  for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1073    insn_t insn;
1074
1075    insnWithID(insn, Opcodes[InsnIndex]);
1076
1077    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1078      switch (bitAttrs[BitIndex]) {
1079      case ATTR_NONE:
1080        if (insn[BitIndex] == BIT_UNSET)
1081          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1082        else
1083          bitAttrs[BitIndex] = ATTR_ALL_SET;
1084        break;
1085      case ATTR_ALL_SET:
1086        if (insn[BitIndex] == BIT_UNSET)
1087          bitAttrs[BitIndex] = ATTR_MIXED;
1088        break;
1089      case ATTR_ALL_UNSET:
1090        if (insn[BitIndex] != BIT_UNSET)
1091          bitAttrs[BitIndex] = ATTR_MIXED;
1092        break;
1093      case ATTR_MIXED:
1094      case ATTR_FILTERED:
1095        break;
1096      }
1097    }
1098  }
1099
1100  // The regionAttr automaton consumes the bitAttrs automatons' state,
1101  // lowest-to-highest.
1102  //
1103  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1104  //   States:        NONE, ALL_SET, MIXED
1105  //   Initial state: NONE
1106  //
1107  // (NONE) ----- F --> (NONE)
1108  // (NONE) ----- S --> (ALL_SET)     ; and set region start
1109  // (NONE) ----- U --> (NONE)
1110  // (NONE) ----- M --> (MIXED)       ; and set region start
1111  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1112  // (ALL_SET) -- S --> (ALL_SET)
1113  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1114  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1115  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1116  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1117  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1118  // (MIXED) ---- M --> (MIXED)
1119
1120  bitAttr_t RA = ATTR_NONE;
1121  unsigned StartBit = 0;
1122
1123  for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
1124    bitAttr_t bitAttr = bitAttrs[BitIndex];
1125
1126    assert(bitAttr != ATTR_NONE && "Bit without attributes");
1127
1128    switch (RA) {
1129    case ATTR_NONE:
1130      switch (bitAttr) {
1131      case ATTR_FILTERED:
1132        break;
1133      case ATTR_ALL_SET:
1134        StartBit = BitIndex;
1135        RA = ATTR_ALL_SET;
1136        break;
1137      case ATTR_ALL_UNSET:
1138        break;
1139      case ATTR_MIXED:
1140        StartBit = BitIndex;
1141        RA = ATTR_MIXED;
1142        break;
1143      default:
1144        llvm_unreachable("Unexpected bitAttr!");
1145      }
1146      break;
1147    case ATTR_ALL_SET:
1148      switch (bitAttr) {
1149      case ATTR_FILTERED:
1150        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1151        RA = ATTR_NONE;
1152        break;
1153      case ATTR_ALL_SET:
1154        break;
1155      case ATTR_ALL_UNSET:
1156        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1157        RA = ATTR_NONE;
1158        break;
1159      case ATTR_MIXED:
1160        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1161        StartBit = BitIndex;
1162        RA = ATTR_MIXED;
1163        break;
1164      default:
1165        llvm_unreachable("Unexpected bitAttr!");
1166      }
1167      break;
1168    case ATTR_MIXED:
1169      switch (bitAttr) {
1170      case ATTR_FILTERED:
1171        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1172        StartBit = BitIndex;
1173        RA = ATTR_NONE;
1174        break;
1175      case ATTR_ALL_SET:
1176        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1177        StartBit = BitIndex;
1178        RA = ATTR_ALL_SET;
1179        break;
1180      case ATTR_ALL_UNSET:
1181        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1182        RA = ATTR_NONE;
1183        break;
1184      case ATTR_MIXED:
1185        break;
1186      default:
1187        llvm_unreachable("Unexpected bitAttr!");
1188      }
1189      break;
1190    case ATTR_ALL_UNSET:
1191      llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1192    case ATTR_FILTERED:
1193      llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1194    }
1195  }
1196
1197  // At the end, if we're still in ALL_SET or MIXED states, report a region
1198  switch (RA) {
1199  case ATTR_NONE:
1200    break;
1201  case ATTR_FILTERED:
1202    break;
1203  case ATTR_ALL_SET:
1204    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1205    break;
1206  case ATTR_ALL_UNSET:
1207    break;
1208  case ATTR_MIXED:
1209    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1210    break;
1211  }
1212
1213  // We have finished with the filter processings.  Now it's time to choose
1214  // the best performing filter.
1215  BestIndex = 0;
1216  bool AllUseless = true;
1217  unsigned BestScore = 0;
1218
1219  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1220    unsigned Usefulness = Filters[i].usefulness();
1221
1222    if (Usefulness)
1223      AllUseless = false;
1224
1225    if (Usefulness > BestScore) {
1226      BestIndex = i;
1227      BestScore = Usefulness;
1228    }
1229  }
1230
1231  if (!AllUseless)
1232    bestFilter().recurse();
1233
1234  return !AllUseless;
1235} // end of FilterChooser::filterProcessor(bool)
1236
1237// Decides on the best configuration of filter(s) to use in order to decode
1238// the instructions.  A conflict of instructions may occur, in which case we
1239// dump the conflict set to the standard error.
1240void FilterChooser::doFilter() {
1241  unsigned Num = Opcodes.size();
1242  assert(Num && "FilterChooser created with no instructions");
1243
1244  // Try regions of consecutive known bit values first.
1245  if (filterProcessor(false))
1246    return;
1247
1248  // Then regions of mixed bits (both known and unitialized bit values allowed).
1249  if (filterProcessor(true))
1250    return;
1251
1252  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1253  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1254  // well-known encoding pattern.  In such case, we backtrack and scan for the
1255  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1256  if (Num == 3 && filterProcessor(true, false))
1257    return;
1258
1259  // If we come to here, the instruction decoding has failed.
1260  // Set the BestIndex to -1 to indicate so.
1261  BestIndex = -1;
1262}
1263
1264// Emits code to decode our share of instructions.  Returns true if the
1265// emitted code causes a return, which occurs if we know how to decode
1266// the instruction at this level or the instruction is not decodeable.
1267bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1268  if (Opcodes.size() == 1)
1269    // There is only one instruction in the set, which is great!
1270    // Call emitSingletonDecoder() to see whether there are any remaining
1271    // encodings bits.
1272    return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1273
1274  // Choose the best filter to do the decodings!
1275  if (BestIndex != -1) {
1276    Filter &Best = bestFilter();
1277    if (Best.getNumFiltered() == 1)
1278      emitSingletonDecoder(o, Indentation, Best);
1279    else
1280      bestFilter().emit(o, Indentation);
1281    return false;
1282  }
1283
1284  // We don't know how to decode these instructions!  Return 0 and dump the
1285  // conflict set!
1286  o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1287  for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1288    o << nameWithID(Opcodes[i]);
1289    if (i < (N - 1))
1290      o << ", ";
1291    else
1292      o << '\n';
1293  }
1294
1295  // Print out useful conflict information for postmortem analysis.
1296  errs() << "Decoding Conflict:\n";
1297
1298  dumpStack(errs(), "\t\t");
1299
1300  for (unsigned i = 0; i < Opcodes.size(); i++) {
1301    const std::string &Name = nameWithID(Opcodes[i]);
1302
1303    errs() << '\t' << Name << " ";
1304    dumpBits(errs(),
1305             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1306    errs() << '\n';
1307  }
1308
1309  return true;
1310}
1311
1312static bool populateInstruction(const CodeGenInstruction &CGI,
1313                                unsigned Opc,
1314                      std::map<unsigned, std::vector<OperandInfo> >& Operands){
1315  const Record &Def = *CGI.TheDef;
1316  // If all the bit positions are not specified; do not decode this instruction.
1317  // We are bound to fail!  For proper disassembly, the well-known encoding bits
1318  // of the instruction must be fully specified.
1319  //
1320  // This also removes pseudo instructions from considerations of disassembly,
1321  // which is a better design and less fragile than the name matchings.
1322  // Ignore "asm parser only" instructions.
1323  if (Def.getValueAsBit("isAsmParserOnly") ||
1324      Def.getValueAsBit("isCodeGenOnly"))
1325    return false;
1326
1327  BitsInit &Bits = getBitsField(Def, "Inst");
1328  if (Bits.allInComplete()) return false;
1329
1330  std::vector<OperandInfo> InsnOperands;
1331
1332  // If the instruction has specified a custom decoding hook, use that instead
1333  // of trying to auto-generate the decoder.
1334  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1335  if (InstDecoder != "") {
1336    InsnOperands.push_back(OperandInfo(InstDecoder));
1337    Operands[Opc] = InsnOperands;
1338    return true;
1339  }
1340
1341  // Generate a description of the operand of the instruction that we know
1342  // how to decode automatically.
1343  // FIXME: We'll need to have a way to manually override this as needed.
1344
1345  // Gather the outputs/inputs of the instruction, so we can find their
1346  // positions in the encoding.  This assumes for now that they appear in the
1347  // MCInst in the order that they're listed.
1348  std::vector<std::pair<Init*, std::string> > InOutOperands;
1349  DagInit *Out  = Def.getValueAsDag("OutOperandList");
1350  DagInit *In  = Def.getValueAsDag("InOperandList");
1351  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1352    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1353  for (unsigned i = 0; i < In->getNumArgs(); ++i)
1354    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1355
1356  // Search for tied operands, so that we can correctly instantiate
1357  // operands that are not explicitly represented in the encoding.
1358  std::map<std::string, std::string> TiedNames;
1359  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1360    int tiedTo = CGI.Operands[i].getTiedRegister();
1361    if (tiedTo != -1) {
1362      TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1363      TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1364    }
1365  }
1366
1367  // For each operand, see if we can figure out where it is encoded.
1368  for (std::vector<std::pair<Init*, std::string> >::iterator
1369       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1370    std::string Decoder = "";
1371
1372    // At this point, we can locate the field, but we need to know how to
1373    // interpret it.  As a first step, require the target to provide callbacks
1374    // for decoding register classes.
1375    // FIXME: This need to be extended to handle instructions with custom
1376    // decoder methods, and operands with (simple) MIOperandInfo's.
1377    TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1378    RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1379    Record *TypeRecord = Type->getRecord();
1380    bool isReg = false;
1381    if (TypeRecord->isSubClassOf("RegisterOperand"))
1382      TypeRecord = TypeRecord->getValueAsDef("RegClass");
1383    if (TypeRecord->isSubClassOf("RegisterClass")) {
1384      Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1385      isReg = true;
1386    }
1387
1388    RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1389    StringInit *String = DecoderString ?
1390      dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
1391    if (!isReg && String && String->getValue() != "")
1392      Decoder = String->getValue();
1393
1394    OperandInfo OpInfo(Decoder);
1395    unsigned Base = ~0U;
1396    unsigned Width = 0;
1397    unsigned Offset = 0;
1398
1399    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1400      VarInit *Var = 0;
1401      VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
1402      if (BI)
1403        Var = dynamic_cast<VarInit*>(BI->getVariable());
1404      else
1405        Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1406
1407      if (!Var) {
1408        if (Base != ~0U) {
1409          OpInfo.addField(Base, Width, Offset);
1410          Base = ~0U;
1411          Width = 0;
1412          Offset = 0;
1413        }
1414        continue;
1415      }
1416
1417      if (Var->getName() != NI->second &&
1418          Var->getName() != TiedNames[NI->second]) {
1419        if (Base != ~0U) {
1420          OpInfo.addField(Base, Width, Offset);
1421          Base = ~0U;
1422          Width = 0;
1423          Offset = 0;
1424        }
1425        continue;
1426      }
1427
1428      if (Base == ~0U) {
1429        Base = bi;
1430        Width = 1;
1431        Offset = BI ? BI->getBitNum() : 0;
1432      } else if (BI && BI->getBitNum() != Offset + Width) {
1433        OpInfo.addField(Base, Width, Offset);
1434        Base = bi;
1435        Width = 1;
1436        Offset = BI->getBitNum();
1437      } else {
1438        ++Width;
1439      }
1440    }
1441
1442    if (Base != ~0U)
1443      OpInfo.addField(Base, Width, Offset);
1444
1445    if (OpInfo.numFields() > 0)
1446      InsnOperands.push_back(OpInfo);
1447  }
1448
1449  Operands[Opc] = InsnOperands;
1450
1451
1452#if 0
1453  DEBUG({
1454      // Dumps the instruction encoding bits.
1455      dumpBits(errs(), Bits);
1456
1457      errs() << '\n';
1458
1459      // Dumps the list of operand info.
1460      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1461        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1462        const std::string &OperandName = Info.Name;
1463        const Record &OperandDef = *Info.Rec;
1464
1465        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1466      }
1467    });
1468#endif
1469
1470  return true;
1471}
1472
1473static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1474  unsigned Indentation = 0;
1475  std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
1476
1477  o << '\n';
1478
1479  o.indent(Indentation) << "static " << WidthStr <<
1480    " fieldFromInstruction" << BitWidth <<
1481    "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1482
1483  o.indent(Indentation) << "{\n";
1484
1485  ++Indentation; ++Indentation;
1486  o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1487                        << " && \"Instruction field out of bounds!\");\n";
1488  o << '\n';
1489  o.indent(Indentation) << WidthStr << " fieldMask;\n";
1490  o << '\n';
1491  o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1492
1493  ++Indentation; ++Indentation;
1494  o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1495  --Indentation; --Indentation;
1496
1497  o.indent(Indentation) << "else\n";
1498
1499  ++Indentation; ++Indentation;
1500  o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1501  --Indentation; --Indentation;
1502
1503  o << '\n';
1504  o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1505  --Indentation; --Indentation;
1506
1507  o.indent(Indentation) << "}\n";
1508
1509  o << '\n';
1510}
1511
1512// Emits disassembler code for instruction decoding.
1513void FixedLenDecoderEmitter::run(raw_ostream &o)
1514{
1515  o << "#include \"llvm/MC/MCInst.h\"\n";
1516  o << "#include \"llvm/Support/DataTypes.h\"\n";
1517  o << "#include <assert.h>\n";
1518  o << '\n';
1519  o << "namespace llvm {\n\n";
1520
1521  // Parameterize the decoders based on namespace and instruction width.
1522  NumberedInstructions = Target.getInstructionsByEnumValue();
1523  std::map<std::pair<std::string, unsigned>,
1524           std::vector<unsigned> > OpcMap;
1525  std::map<unsigned, std::vector<OperandInfo> > Operands;
1526
1527  for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1528    const CodeGenInstruction *Inst = NumberedInstructions[i];
1529    Record *Def = Inst->TheDef;
1530    unsigned Size = Def->getValueAsInt("Size");
1531    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1532        Def->getValueAsBit("isPseudo") ||
1533        Def->getValueAsBit("isAsmParserOnly") ||
1534        Def->getValueAsBit("isCodeGenOnly"))
1535      continue;
1536
1537    std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1538
1539    if (Size) {
1540      if (populateInstruction(*Inst, i, Operands)) {
1541        OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1542      }
1543    }
1544  }
1545
1546  std::set<unsigned> Sizes;
1547  for (std::map<std::pair<std::string, unsigned>,
1548                std::vector<unsigned> >::iterator
1549       I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1550    // If we haven't visited this instruction width before, emit the
1551    // helper method to extract fields.
1552    if (!Sizes.count(I->first.second)) {
1553      emitHelper(o, 8*I->first.second);
1554      Sizes.insert(I->first.second);
1555    }
1556
1557    // Emit the decoder for this namespace+width combination.
1558    FilterChooser FC(NumberedInstructions, I->second, Operands,
1559                     8*I->first.second, this);
1560    FC.emitTop(o, 0, I->first.first);
1561  }
1562
1563  o << "\n} // End llvm namespace \n";
1564}
1565