FixedLenDecoderEmitter.cpp revision d4a9066c93da9a5aab47ca228d82e796fdec70c0
1//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
19#include "Record.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23
24#include <vector>
25#include <map>
26#include <string>
27
28using namespace llvm;
29
30// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31// for a bit value.
32//
33// BIT_UNFILTERED is used as the init value for a filter position.  It is used
34// only for filter processings.
35typedef enum {
36  BIT_TRUE,      // '1'
37  BIT_FALSE,     // '0'
38  BIT_UNSET,     // '?'
39  BIT_UNFILTERED // unfiltered
40} bit_value_t;
41
42static bool ValueSet(bit_value_t V) {
43  return (V == BIT_TRUE || V == BIT_FALSE);
44}
45static bool ValueNotSet(bit_value_t V) {
46  return (V == BIT_UNSET);
47}
48static int Value(bit_value_t V) {
49  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
50}
51static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
52  if (const BitInit *bit = dynamic_cast<const BitInit*>(bits.getBit(index)))
53    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
54
55  // The bit is uninitialized.
56  return BIT_UNSET;
57}
58// Prints the bit value for each position.
59static void dumpBits(raw_ostream &o, const BitsInit &bits) {
60  unsigned index;
61
62  for (index = bits.getNumBits(); index > 0; index--) {
63    switch (bitFromBits(bits, index - 1)) {
64    case BIT_TRUE:
65      o << "1";
66      break;
67    case BIT_FALSE:
68      o << "0";
69      break;
70    case BIT_UNSET:
71      o << "_";
72      break;
73    default:
74      assert(0 && "unexpected return value from bitFromBits");
75    }
76  }
77}
78
79static const BitsInit &getBitsField(const Record &def, const char *str) {
80  const BitsInit *bits = def.getValueAsBitsInit(str);
81  return *bits;
82}
83
84// Forward declaration.
85class FilterChooser;
86
87// FIXME: Possibly auto-detected?
88#define BIT_WIDTH 32
89
90// Representation of the instruction to work on.
91typedef bit_value_t insn_t[BIT_WIDTH];
92
93/// Filter - Filter works with FilterChooser to produce the decoding tree for
94/// the ISA.
95///
96/// It is useful to think of a Filter as governing the switch stmts of the
97/// decoding tree in a certain level.  Each case stmt delegates to an inferior
98/// FilterChooser to decide what further decoding logic to employ, or in another
99/// words, what other remaining bits to look at.  The FilterChooser eventually
100/// chooses a best Filter to do its job.
101///
102/// This recursive scheme ends when the number of Opcodes assigned to the
103/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
104/// the Filter/FilterChooser combo does not know how to distinguish among the
105/// Opcodes assigned.
106///
107/// An example of a conflict is
108///
109/// Conflict:
110///                     111101000.00........00010000....
111///                     111101000.00........0001........
112///                     1111010...00........0001........
113///                     1111010...00....................
114///                     1111010.........................
115///                     1111............................
116///                     ................................
117///     VST4q8a         111101000_00________00010000____
118///     VST4q8b         111101000_00________00010000____
119///
120/// The Debug output shows the path that the decoding tree follows to reach the
121/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
122/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
123///
124/// The encoding info in the .td files does not specify this meta information,
125/// which could have been used by the decoder to resolve the conflict.  The
126/// decoder could try to decode the even/odd register numbering and assign to
127/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
128/// version and return the Opcode since the two have the same Asm format string.
129class Filter {
130protected:
131  FilterChooser *Owner; // points to the FilterChooser who owns this filter
132  unsigned StartBit; // the starting bit position
133  unsigned NumBits; // number of bits to filter
134  bool Mixed; // a mixed region contains both set and unset bits
135
136  // Map of well-known segment value to the set of uid's with that value.
137  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
138
139  // Set of uid's with non-constant segment values.
140  std::vector<unsigned> VariableInstructions;
141
142  // Map of well-known segment value to its delegate.
143  std::map<unsigned, FilterChooser*> FilterChooserMap;
144
145  // Number of instructions which fall under FilteredInstructions category.
146  unsigned NumFiltered;
147
148  // Keeps track of the last opcode in the filtered bucket.
149  unsigned LastOpcFiltered;
150
151  // Number of instructions which fall under VariableInstructions category.
152  unsigned NumVariable;
153
154public:
155  unsigned getNumFiltered() { return NumFiltered; }
156  unsigned getNumVariable() { return NumVariable; }
157  unsigned getSingletonOpc() {
158    assert(NumFiltered == 1);
159    return LastOpcFiltered;
160  }
161  // Return the filter chooser for the group of instructions without constant
162  // segment values.
163  FilterChooser &getVariableFC() {
164    assert(NumFiltered == 1);
165    assert(FilterChooserMap.size() == 1);
166    return *(FilterChooserMap.find((unsigned)-1)->second);
167  }
168
169  Filter(const Filter &f);
170  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
171
172  ~Filter();
173
174  // Divides the decoding task into sub tasks and delegates them to the
175  // inferior FilterChooser's.
176  //
177  // A special case arises when there's only one entry in the filtered
178  // instructions.  In order to unambiguously decode the singleton, we need to
179  // match the remaining undecoded encoding bits against the singleton.
180  void recurse();
181
182  // Emit code to decode instructions given a segment or segments of bits.
183  void emit(raw_ostream &o, unsigned &Indentation);
184
185  // Returns the number of fanout produced by the filter.  More fanout implies
186  // the filter distinguishes more categories of instructions.
187  unsigned usefulness() const;
188}; // End of class Filter
189
190// These are states of our finite state machines used in FilterChooser's
191// filterProcessor() which produces the filter candidates to use.
192typedef enum {
193  ATTR_NONE,
194  ATTR_FILTERED,
195  ATTR_ALL_SET,
196  ATTR_ALL_UNSET,
197  ATTR_MIXED
198} bitAttr_t;
199
200/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
201/// in order to perform the decoding of instructions at the current level.
202///
203/// Decoding proceeds from the top down.  Based on the well-known encoding bits
204/// of instructions available, FilterChooser builds up the possible Filters that
205/// can further the task of decoding by distinguishing among the remaining
206/// candidate instructions.
207///
208/// Once a filter has been chosen, it is called upon to divide the decoding task
209/// into sub-tasks and delegates them to its inferior FilterChoosers for further
210/// processings.
211///
212/// It is useful to think of a Filter as governing the switch stmts of the
213/// decoding tree.  And each case is delegated to an inferior FilterChooser to
214/// decide what further remaining bits to look at.
215class FilterChooser {
216protected:
217  friend class Filter;
218
219  // Vector of codegen instructions to choose our filter.
220  const std::vector<const CodeGenInstruction*> &AllInstructions;
221
222  // Vector of uid's for this filter chooser to work on.
223  const std::vector<unsigned> Opcodes;
224
225  // Lookup table for the operand decoding of instructions.
226  std::map<unsigned, std::vector<OperandInfo> > &Operands;
227
228  // Vector of candidate filters.
229  std::vector<Filter> Filters;
230
231  // Array of bit values passed down from our parent.
232  // Set to all BIT_UNFILTERED's for Parent == NULL.
233  bit_value_t FilterBitValues[BIT_WIDTH];
234
235  // Links to the FilterChooser above us in the decoding tree.
236  FilterChooser *Parent;
237
238  // Index of the best filter from Filters.
239  int BestIndex;
240
241public:
242  FilterChooser(const FilterChooser &FC) :
243    AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
244      Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent),
245      BestIndex(FC.BestIndex) {
246    memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
247  }
248
249  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
250                const std::vector<unsigned> &IDs,
251    std::map<unsigned, std::vector<OperandInfo> > &Ops) :
252      AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
253      Parent(NULL), BestIndex(-1) {
254    for (unsigned i = 0; i < BIT_WIDTH; ++i)
255      FilterBitValues[i] = BIT_UNFILTERED;
256
257    doFilter();
258  }
259
260  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
261                const std::vector<unsigned> &IDs,
262        std::map<unsigned, std::vector<OperandInfo> > &Ops,
263                bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
264                FilterChooser &parent) :
265      AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
266      Filters(), Parent(&parent), BestIndex(-1) {
267    for (unsigned i = 0; i < BIT_WIDTH; ++i)
268      FilterBitValues[i] = ParentFilterBitValues[i];
269
270    doFilter();
271  }
272
273  // The top level filter chooser has NULL as its parent.
274  bool isTopLevel() { return Parent == NULL; }
275
276  // Emit the top level typedef and decodeInstruction() function.
277  void emitTop(raw_ostream &o, unsigned Indentation);
278
279protected:
280  // Populates the insn given the uid.
281  void insnWithID(insn_t &Insn, unsigned Opcode) const {
282    const BitsInit &Bits =
283      getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
284
285    for (unsigned i = 0; i < BIT_WIDTH; ++i)
286      Insn[i] = bitFromBits(Bits, i);
287  }
288
289  // Returns the record name.
290  const std::string &nameWithID(unsigned Opcode) const {
291    return AllInstructions[Opcode]->TheDef->getName();
292  }
293
294  // Populates the field of the insn given the start position and the number of
295  // consecutive bits to scan for.
296  //
297  // Returns false if there exists any uninitialized bit value in the range.
298  // Returns true, otherwise.
299  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
300      unsigned NumBits) const;
301
302  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
303  /// filter array as a series of chars.
304  void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
305
306  /// dumpStack - dumpStack traverses the filter chooser chain and calls
307  /// dumpFilterArray on each filter chooser up to the top level one.
308  void dumpStack(raw_ostream &o, const char *prefix);
309
310  Filter &bestFilter() {
311    assert(BestIndex != -1 && "BestIndex not set");
312    return Filters[BestIndex];
313  }
314
315  // Called from Filter::recurse() when singleton exists.  For debug purpose.
316  void SingletonExists(unsigned Opc);
317
318  bool PositionFiltered(unsigned i) {
319    return ValueSet(FilterBitValues[i]);
320  }
321
322  // Calculates the island(s) needed to decode the instruction.
323  // This returns a lit of undecoded bits of an instructions, for example,
324  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
325  // decoded bits in order to verify that the instruction matches the Opcode.
326  unsigned getIslands(std::vector<unsigned> &StartBits,
327      std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
328      insn_t &Insn);
329
330  // Emits code to decode the singleton.  Return true if we have matched all the
331  // well-known bits.
332  bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
333
334  // Emits code to decode the singleton, and then to decode the rest.
335  void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
336
337  // Assign a single filter and run with it.
338  void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
339      bool mixed);
340
341  // reportRegion is a helper function for filterProcessor to mark a region as
342  // eligible for use as a filter region.
343  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
344      bool AllowMixed);
345
346  // FilterProcessor scans the well-known encoding bits of the instructions and
347  // builds up a list of candidate filters.  It chooses the best filter and
348  // recursively descends down the decoding tree.
349  bool filterProcessor(bool AllowMixed, bool Greedy = true);
350
351  // Decides on the best configuration of filter(s) to use in order to decode
352  // the instructions.  A conflict of instructions may occur, in which case we
353  // dump the conflict set to the standard error.
354  void doFilter();
355
356  // Emits code to decode our share of instructions.  Returns true if the
357  // emitted code causes a return, which occurs if we know how to decode
358  // the instruction at this level or the instruction is not decodeable.
359  bool emit(raw_ostream &o, unsigned &Indentation);
360};
361
362///////////////////////////
363//                       //
364// Filter Implmenetation //
365//                       //
366///////////////////////////
367
368Filter::Filter(const Filter &f) :
369  Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
370  FilteredInstructions(f.FilteredInstructions),
371  VariableInstructions(f.VariableInstructions),
372  FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
373  LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
374}
375
376Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
377    bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
378                  Mixed(mixed) {
379  assert(StartBit + NumBits - 1 < BIT_WIDTH);
380
381  NumFiltered = 0;
382  LastOpcFiltered = 0;
383  NumVariable = 0;
384
385  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
386    insn_t Insn;
387
388    // Populates the insn given the uid.
389    Owner->insnWithID(Insn, Owner->Opcodes[i]);
390
391    uint64_t Field;
392    // Scans the segment for possibly well-specified encoding bits.
393    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
394
395    if (ok) {
396      // The encoding bits are well-known.  Lets add the uid of the
397      // instruction into the bucket keyed off the constant field value.
398      LastOpcFiltered = Owner->Opcodes[i];
399      FilteredInstructions[Field].push_back(LastOpcFiltered);
400      ++NumFiltered;
401    } else {
402      // Some of the encoding bit(s) are unspecfied.  This contributes to
403      // one additional member of "Variable" instructions.
404      VariableInstructions.push_back(Owner->Opcodes[i]);
405      ++NumVariable;
406    }
407  }
408
409  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
410         && "Filter returns no instruction categories");
411}
412
413Filter::~Filter() {
414  std::map<unsigned, FilterChooser*>::iterator filterIterator;
415  for (filterIterator = FilterChooserMap.begin();
416       filterIterator != FilterChooserMap.end();
417       filterIterator++) {
418    delete filterIterator->second;
419  }
420}
421
422// Divides the decoding task into sub tasks and delegates them to the
423// inferior FilterChooser's.
424//
425// A special case arises when there's only one entry in the filtered
426// instructions.  In order to unambiguously decode the singleton, we need to
427// match the remaining undecoded encoding bits against the singleton.
428void Filter::recurse() {
429  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
430
431  bit_value_t BitValueArray[BIT_WIDTH];
432  // Starts by inheriting our parent filter chooser's filter bit values.
433  memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
434
435  unsigned bitIndex;
436
437  if (VariableInstructions.size()) {
438    // Conservatively marks each segment position as BIT_UNSET.
439    for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
440      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
441
442    // Delegates to an inferior filter chooser for further processing on this
443    // group of instructions whose segment values are variable.
444    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
445                              (unsigned)-1,
446                              new FilterChooser(Owner->AllInstructions,
447                                                VariableInstructions,
448                                                Owner->Operands,
449                                                BitValueArray,
450                                                *Owner)
451                              ));
452  }
453
454  // No need to recurse for a singleton filtered instruction.
455  // See also Filter::emit().
456  if (getNumFiltered() == 1) {
457    //Owner->SingletonExists(LastOpcFiltered);
458    assert(FilterChooserMap.size() == 1);
459    return;
460  }
461
462  // Otherwise, create sub choosers.
463  for (mapIterator = FilteredInstructions.begin();
464       mapIterator != FilteredInstructions.end();
465       mapIterator++) {
466
467    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
468    for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
469      if (mapIterator->first & (1ULL << bitIndex))
470        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
471      else
472        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
473    }
474
475    // Delegates to an inferior filter chooser for further processing on this
476    // category of instructions.
477    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
478                              mapIterator->first,
479                              new FilterChooser(Owner->AllInstructions,
480                                                mapIterator->second,
481                                                Owner->Operands,
482                                                BitValueArray,
483                                                *Owner)
484                              ));
485  }
486}
487
488// Emit code to decode instructions given a segment or segments of bits.
489void Filter::emit(raw_ostream &o, unsigned &Indentation) {
490  o.indent(Indentation) << "// Check Inst{";
491
492  if (NumBits > 1)
493    o << (StartBit + NumBits - 1) << '-';
494
495  o << StartBit << "} ...\n";
496
497  o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
498                        << StartBit << ", " << NumBits << ")) {\n";
499
500  std::map<unsigned, FilterChooser*>::iterator filterIterator;
501
502  bool DefaultCase = false;
503  for (filterIterator = FilterChooserMap.begin();
504       filterIterator != FilterChooserMap.end();
505       filterIterator++) {
506
507    // Field value -1 implies a non-empty set of variable instructions.
508    // See also recurse().
509    if (filterIterator->first == (unsigned)-1) {
510      DefaultCase = true;
511
512      o.indent(Indentation) << "default:\n";
513      o.indent(Indentation) << "  break; // fallthrough\n";
514
515      // Closing curly brace for the switch statement.
516      // This is unconventional because we want the default processing to be
517      // performed for the fallthrough cases as well, i.e., when the "cases"
518      // did not prove a decoded instruction.
519      o.indent(Indentation) << "}\n";
520
521    } else
522      o.indent(Indentation) << "case " << filterIterator->first << ":\n";
523
524    // We arrive at a category of instructions with the same segment value.
525    // Now delegate to the sub filter chooser for further decodings.
526    // The case may fallthrough, which happens if the remaining well-known
527    // encoding bits do not match exactly.
528    if (!DefaultCase) { ++Indentation; ++Indentation; }
529
530    bool finished = filterIterator->second->emit(o, Indentation);
531    // For top level default case, there's no need for a break statement.
532    if (Owner->isTopLevel() && DefaultCase)
533      break;
534    if (!finished)
535      o.indent(Indentation) << "break;\n";
536
537    if (!DefaultCase) { --Indentation; --Indentation; }
538  }
539
540  // If there is no default case, we still need to supply a closing brace.
541  if (!DefaultCase) {
542    // Closing curly brace for the switch statement.
543    o.indent(Indentation) << "}\n";
544  }
545}
546
547// Returns the number of fanout produced by the filter.  More fanout implies
548// the filter distinguishes more categories of instructions.
549unsigned Filter::usefulness() const {
550  if (VariableInstructions.size())
551    return FilteredInstructions.size();
552  else
553    return FilteredInstructions.size() + 1;
554}
555
556//////////////////////////////////
557//                              //
558// Filterchooser Implementation //
559//                              //
560//////////////////////////////////
561
562// Emit the top level typedef and decodeInstruction() function.
563void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) {
564  switch (BIT_WIDTH) {
565  case 8:
566    o.indent(Indentation) << "typedef uint8_t field_t;\n";
567    break;
568  case 16:
569    o.indent(Indentation) << "typedef uint16_t field_t;\n";
570    break;
571  case 32:
572    o.indent(Indentation) << "typedef uint32_t field_t;\n";
573    break;
574  case 64:
575    o.indent(Indentation) << "typedef uint64_t field_t;\n";
576    break;
577  default:
578    assert(0 && "Unexpected instruction size!");
579  }
580
581  o << '\n';
582
583  o.indent(Indentation) << "static field_t " <<
584    "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
585
586  o.indent(Indentation) << "{\n";
587
588  ++Indentation; ++Indentation;
589  o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
590                        << " && \"Instruction field out of bounds!\");\n";
591  o << '\n';
592  o.indent(Indentation) << "field_t fieldMask;\n";
593  o << '\n';
594  o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
595
596  ++Indentation; ++Indentation;
597  o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
598  --Indentation; --Indentation;
599
600  o.indent(Indentation) << "else\n";
601
602  ++Indentation; ++Indentation;
603  o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
604  --Indentation; --Indentation;
605
606  o << '\n';
607  o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
608  --Indentation; --Indentation;
609
610  o.indent(Indentation) << "}\n";
611
612  o << '\n';
613
614  o.indent(Indentation) <<
615    "static bool decodeInstruction(MCInst &MI, field_t insn, "
616    "uint64_t Address, const void *Decoder) {\n";
617  o.indent(Indentation) << "  unsigned tmp = 0;\n";
618
619  ++Indentation; ++Indentation;
620  // Emits code to decode the instructions.
621  emit(o, Indentation);
622
623  o << '\n';
624  o.indent(Indentation) << "return false;\n";
625  --Indentation; --Indentation;
626
627  o.indent(Indentation) << "}\n";
628
629  o << '\n';
630}
631
632// Populates the field of the insn given the start position and the number of
633// consecutive bits to scan for.
634//
635// Returns false if and on the first uninitialized bit value encountered.
636// Returns true, otherwise.
637bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
638    unsigned StartBit, unsigned NumBits) const {
639  Field = 0;
640
641  for (unsigned i = 0; i < NumBits; ++i) {
642    if (Insn[StartBit + i] == BIT_UNSET)
643      return false;
644
645    if (Insn[StartBit + i] == BIT_TRUE)
646      Field = Field | (1ULL << i);
647  }
648
649  return true;
650}
651
652/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
653/// filter array as a series of chars.
654void FilterChooser::dumpFilterArray(raw_ostream &o,
655                                    bit_value_t (&filter)[BIT_WIDTH]) {
656  unsigned bitIndex;
657
658  for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
659    switch (filter[bitIndex - 1]) {
660    case BIT_UNFILTERED:
661      o << ".";
662      break;
663    case BIT_UNSET:
664      o << "_";
665      break;
666    case BIT_TRUE:
667      o << "1";
668      break;
669    case BIT_FALSE:
670      o << "0";
671      break;
672    }
673  }
674}
675
676/// dumpStack - dumpStack traverses the filter chooser chain and calls
677/// dumpFilterArray on each filter chooser up to the top level one.
678void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
679  FilterChooser *current = this;
680
681  while (current) {
682    o << prefix;
683    dumpFilterArray(o, current->FilterBitValues);
684    o << '\n';
685    current = current->Parent;
686  }
687}
688
689// Called from Filter::recurse() when singleton exists.  For debug purpose.
690void FilterChooser::SingletonExists(unsigned Opc) {
691  insn_t Insn0;
692  insnWithID(Insn0, Opc);
693
694  errs() << "Singleton exists: " << nameWithID(Opc)
695         << " with its decoding dominating ";
696  for (unsigned i = 0; i < Opcodes.size(); ++i) {
697    if (Opcodes[i] == Opc) continue;
698    errs() << nameWithID(Opcodes[i]) << ' ';
699  }
700  errs() << '\n';
701
702  dumpStack(errs(), "\t\t");
703  for (unsigned i = 0; i < Opcodes.size(); i++) {
704    const std::string &Name = nameWithID(Opcodes[i]);
705
706    errs() << '\t' << Name << " ";
707    dumpBits(errs(),
708             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
709    errs() << '\n';
710  }
711}
712
713// Calculates the island(s) needed to decode the instruction.
714// This returns a list of undecoded bits of an instructions, for example,
715// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
716// decoded bits in order to verify that the instruction matches the Opcode.
717unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
718    std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
719    insn_t &Insn) {
720  unsigned Num, BitNo;
721  Num = BitNo = 0;
722
723  uint64_t FieldVal = 0;
724
725  // 0: Init
726  // 1: Water (the bit value does not affect decoding)
727  // 2: Island (well-known bit value needed for decoding)
728  int State = 0;
729  int Val = -1;
730
731  for (unsigned i = 0; i < BIT_WIDTH; ++i) {
732    Val = Value(Insn[i]);
733    bool Filtered = PositionFiltered(i);
734    switch (State) {
735    default:
736      assert(0 && "Unreachable code!");
737      break;
738    case 0:
739    case 1:
740      if (Filtered || Val == -1)
741        State = 1; // Still in Water
742      else {
743        State = 2; // Into the Island
744        BitNo = 0;
745        StartBits.push_back(i);
746        FieldVal = Val;
747      }
748      break;
749    case 2:
750      if (Filtered || Val == -1) {
751        State = 1; // Into the Water
752        EndBits.push_back(i - 1);
753        FieldVals.push_back(FieldVal);
754        ++Num;
755      } else {
756        State = 2; // Still in Island
757        ++BitNo;
758        FieldVal = FieldVal | Val << BitNo;
759      }
760      break;
761    }
762  }
763  // If we are still in Island after the loop, do some housekeeping.
764  if (State == 2) {
765    EndBits.push_back(BIT_WIDTH - 1);
766    FieldVals.push_back(FieldVal);
767    ++Num;
768  }
769
770  assert(StartBits.size() == Num && EndBits.size() == Num &&
771         FieldVals.size() == Num);
772  return Num;
773}
774
775// Emits code to decode the singleton.  Return true if we have matched all the
776// well-known bits.
777bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
778                                         unsigned Opc) {
779  std::vector<unsigned> StartBits;
780  std::vector<unsigned> EndBits;
781  std::vector<uint64_t> FieldVals;
782  insn_t Insn;
783  insnWithID(Insn, Opc);
784
785  // Look for islands of undecoded bits of the singleton.
786  getIslands(StartBits, EndBits, FieldVals, Insn);
787
788  unsigned Size = StartBits.size();
789  unsigned I, NumBits;
790
791  // If we have matched all the well-known bits, just issue a return.
792  if (Size == 0) {
793    o.indent(Indentation) << "{\n";
794    o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
795    std::vector<OperandInfo>& InsnOperands = Operands[Opc];
796    for (std::vector<OperandInfo>::iterator
797         I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
798      // If a custom instruction decoder was specified, use that.
799      if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
800        o.indent(Indentation) << "  " << I->Decoder
801                              << "(MI, insn, Address, Decoder);\n";
802        break;
803      }
804
805      o.indent(Indentation)
806        << "  tmp = fieldFromInstruction(insn, " << I->FieldBase
807        << ", " << I->FieldLength << ");\n";
808      if (I->Decoder != "") {
809        o.indent(Indentation) << "  " << I->Decoder
810                              << "(MI, tmp, Address, Decoder);\n";
811      } else {
812        o.indent(Indentation)
813          << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
814      }
815    }
816
817    o.indent(Indentation) << "  return true; // " << nameWithID(Opc)
818                          << '\n';
819    o.indent(Indentation) << "}\n";
820    return true;
821  }
822
823  // Otherwise, there are more decodings to be done!
824
825  // Emit code to match the island(s) for the singleton.
826  o.indent(Indentation) << "// Check ";
827
828  for (I = Size; I != 0; --I) {
829    o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
830    if (I > 1)
831      o << "&& ";
832    else
833      o << "for singleton decoding...\n";
834  }
835
836  o.indent(Indentation) << "if (";
837
838  for (I = Size; I != 0; --I) {
839    NumBits = EndBits[I-1] - StartBits[I-1] + 1;
840    o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
841      << ") == " << FieldVals[I-1];
842    if (I > 1)
843      o << " && ";
844    else
845      o << ") {\n";
846  }
847  o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
848  std::vector<OperandInfo>& InsnOperands = Operands[Opc];
849  for (std::vector<OperandInfo>::iterator
850       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
851    // If a custom instruction decoder was specified, use that.
852    if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
853      o.indent(Indentation) << "  " << I->Decoder
854                            << "(MI, insn, Address, Decoder);\n";
855      break;
856    }
857
858    o.indent(Indentation)
859      << "  tmp = fieldFromInstruction(insn, " << I->FieldBase
860      << ", " << I->FieldLength << ");\n";
861    if (I->Decoder != "") {
862      o.indent(Indentation) << "  " << I->Decoder
863                            << "(MI, tmp, Address, Decoder);\n";
864    } else {
865      o.indent(Indentation)
866        << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
867    }
868  }
869  o.indent(Indentation) << "  return true; // " << nameWithID(Opc)
870                        << '\n';
871  o.indent(Indentation) << "}\n";
872
873  return false;
874}
875
876// Emits code to decode the singleton, and then to decode the rest.
877void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
878    Filter &Best) {
879
880  unsigned Opc = Best.getSingletonOpc();
881
882  emitSingletonDecoder(o, Indentation, Opc);
883
884  // Emit code for the rest.
885  o.indent(Indentation) << "else\n";
886
887  Indentation += 2;
888  Best.getVariableFC().emit(o, Indentation);
889  Indentation -= 2;
890}
891
892// Assign a single filter and run with it.  Top level API client can initialize
893// with a single filter to start the filtering process.
894void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
895    unsigned numBit, bool mixed) {
896  Filters.clear();
897  Filter F(*this, startBit, numBit, true);
898  Filters.push_back(F);
899  BestIndex = 0; // Sole Filter instance to choose from.
900  bestFilter().recurse();
901}
902
903// reportRegion is a helper function for filterProcessor to mark a region as
904// eligible for use as a filter region.
905void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
906    unsigned BitIndex, bool AllowMixed) {
907  if (RA == ATTR_MIXED && AllowMixed)
908    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
909  else if (RA == ATTR_ALL_SET && !AllowMixed)
910    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
911}
912
913// FilterProcessor scans the well-known encoding bits of the instructions and
914// builds up a list of candidate filters.  It chooses the best filter and
915// recursively descends down the decoding tree.
916bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
917  Filters.clear();
918  BestIndex = -1;
919  unsigned numInstructions = Opcodes.size();
920
921  assert(numInstructions && "Filter created with no instructions");
922
923  // No further filtering is necessary.
924  if (numInstructions == 1)
925    return true;
926
927  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
928  // instructions is 3.
929  if (AllowMixed && !Greedy) {
930    assert(numInstructions == 3);
931
932    for (unsigned i = 0; i < Opcodes.size(); ++i) {
933      std::vector<unsigned> StartBits;
934      std::vector<unsigned> EndBits;
935      std::vector<uint64_t> FieldVals;
936      insn_t Insn;
937
938      insnWithID(Insn, Opcodes[i]);
939
940      // Look for islands of undecoded bits of any instruction.
941      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
942        // Found an instruction with island(s).  Now just assign a filter.
943        runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
944                        true);
945        return true;
946      }
947    }
948  }
949
950  unsigned BitIndex, InsnIndex;
951
952  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
953  // The automaton consumes the corresponding bit from each
954  // instruction.
955  //
956  //   Input symbols: 0, 1, and _ (unset).
957  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
958  //   Initial state: NONE.
959  //
960  // (NONE) ------- [01] -> (ALL_SET)
961  // (NONE) ------- _ ----> (ALL_UNSET)
962  // (ALL_SET) ---- [01] -> (ALL_SET)
963  // (ALL_SET) ---- _ ----> (MIXED)
964  // (ALL_UNSET) -- [01] -> (MIXED)
965  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
966  // (MIXED) ------ . ----> (MIXED)
967  // (FILTERED)---- . ----> (FILTERED)
968
969  bitAttr_t bitAttrs[BIT_WIDTH];
970
971  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
972  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
973  for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
974    if (FilterBitValues[BitIndex] == BIT_TRUE ||
975        FilterBitValues[BitIndex] == BIT_FALSE)
976      bitAttrs[BitIndex] = ATTR_FILTERED;
977    else
978      bitAttrs[BitIndex] = ATTR_NONE;
979
980  for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
981    insn_t insn;
982
983    insnWithID(insn, Opcodes[InsnIndex]);
984
985    for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
986      switch (bitAttrs[BitIndex]) {
987      case ATTR_NONE:
988        if (insn[BitIndex] == BIT_UNSET)
989          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
990        else
991          bitAttrs[BitIndex] = ATTR_ALL_SET;
992        break;
993      case ATTR_ALL_SET:
994        if (insn[BitIndex] == BIT_UNSET)
995          bitAttrs[BitIndex] = ATTR_MIXED;
996        break;
997      case ATTR_ALL_UNSET:
998        if (insn[BitIndex] != BIT_UNSET)
999          bitAttrs[BitIndex] = ATTR_MIXED;
1000        break;
1001      case ATTR_MIXED:
1002      case ATTR_FILTERED:
1003        break;
1004      }
1005    }
1006  }
1007
1008  // The regionAttr automaton consumes the bitAttrs automatons' state,
1009  // lowest-to-highest.
1010  //
1011  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1012  //   States:        NONE, ALL_SET, MIXED
1013  //   Initial state: NONE
1014  //
1015  // (NONE) ----- F --> (NONE)
1016  // (NONE) ----- S --> (ALL_SET)     ; and set region start
1017  // (NONE) ----- U --> (NONE)
1018  // (NONE) ----- M --> (MIXED)       ; and set region start
1019  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1020  // (ALL_SET) -- S --> (ALL_SET)
1021  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1022  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1023  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1024  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1025  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1026  // (MIXED) ---- M --> (MIXED)
1027
1028  bitAttr_t RA = ATTR_NONE;
1029  unsigned StartBit = 0;
1030
1031  for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1032    bitAttr_t bitAttr = bitAttrs[BitIndex];
1033
1034    assert(bitAttr != ATTR_NONE && "Bit without attributes");
1035
1036    switch (RA) {
1037    case ATTR_NONE:
1038      switch (bitAttr) {
1039      case ATTR_FILTERED:
1040        break;
1041      case ATTR_ALL_SET:
1042        StartBit = BitIndex;
1043        RA = ATTR_ALL_SET;
1044        break;
1045      case ATTR_ALL_UNSET:
1046        break;
1047      case ATTR_MIXED:
1048        StartBit = BitIndex;
1049        RA = ATTR_MIXED;
1050        break;
1051      default:
1052        assert(0 && "Unexpected bitAttr!");
1053      }
1054      break;
1055    case ATTR_ALL_SET:
1056      switch (bitAttr) {
1057      case ATTR_FILTERED:
1058        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1059        RA = ATTR_NONE;
1060        break;
1061      case ATTR_ALL_SET:
1062        break;
1063      case ATTR_ALL_UNSET:
1064        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1065        RA = ATTR_NONE;
1066        break;
1067      case ATTR_MIXED:
1068        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1069        StartBit = BitIndex;
1070        RA = ATTR_MIXED;
1071        break;
1072      default:
1073        assert(0 && "Unexpected bitAttr!");
1074      }
1075      break;
1076    case ATTR_MIXED:
1077      switch (bitAttr) {
1078      case ATTR_FILTERED:
1079        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1080        StartBit = BitIndex;
1081        RA = ATTR_NONE;
1082        break;
1083      case ATTR_ALL_SET:
1084        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1085        StartBit = BitIndex;
1086        RA = ATTR_ALL_SET;
1087        break;
1088      case ATTR_ALL_UNSET:
1089        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1090        RA = ATTR_NONE;
1091        break;
1092      case ATTR_MIXED:
1093        break;
1094      default:
1095        assert(0 && "Unexpected bitAttr!");
1096      }
1097      break;
1098    case ATTR_ALL_UNSET:
1099      assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1100    case ATTR_FILTERED:
1101      assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1102    }
1103  }
1104
1105  // At the end, if we're still in ALL_SET or MIXED states, report a region
1106  switch (RA) {
1107  case ATTR_NONE:
1108    break;
1109  case ATTR_FILTERED:
1110    break;
1111  case ATTR_ALL_SET:
1112    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1113    break;
1114  case ATTR_ALL_UNSET:
1115    break;
1116  case ATTR_MIXED:
1117    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1118    break;
1119  }
1120
1121  // We have finished with the filter processings.  Now it's time to choose
1122  // the best performing filter.
1123  BestIndex = 0;
1124  bool AllUseless = true;
1125  unsigned BestScore = 0;
1126
1127  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1128    unsigned Usefulness = Filters[i].usefulness();
1129
1130    if (Usefulness)
1131      AllUseless = false;
1132
1133    if (Usefulness > BestScore) {
1134      BestIndex = i;
1135      BestScore = Usefulness;
1136    }
1137  }
1138
1139  if (!AllUseless)
1140    bestFilter().recurse();
1141
1142  return !AllUseless;
1143} // end of FilterChooser::filterProcessor(bool)
1144
1145// Decides on the best configuration of filter(s) to use in order to decode
1146// the instructions.  A conflict of instructions may occur, in which case we
1147// dump the conflict set to the standard error.
1148void FilterChooser::doFilter() {
1149  unsigned Num = Opcodes.size();
1150  assert(Num && "FilterChooser created with no instructions");
1151
1152  // Try regions of consecutive known bit values first.
1153  if (filterProcessor(false))
1154    return;
1155
1156  // Then regions of mixed bits (both known and unitialized bit values allowed).
1157  if (filterProcessor(true))
1158    return;
1159
1160  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1161  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1162  // well-known encoding pattern.  In such case, we backtrack and scan for the
1163  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1164  if (Num == 3 && filterProcessor(true, false))
1165    return;
1166
1167  // If we come to here, the instruction decoding has failed.
1168  // Set the BestIndex to -1 to indicate so.
1169  BestIndex = -1;
1170}
1171
1172// Emits code to decode our share of instructions.  Returns true if the
1173// emitted code causes a return, which occurs if we know how to decode
1174// the instruction at this level or the instruction is not decodeable.
1175bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1176  if (Opcodes.size() == 1)
1177    // There is only one instruction in the set, which is great!
1178    // Call emitSingletonDecoder() to see whether there are any remaining
1179    // encodings bits.
1180    return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1181
1182  // Choose the best filter to do the decodings!
1183  if (BestIndex != -1) {
1184    Filter &Best = bestFilter();
1185    if (Best.getNumFiltered() == 1)
1186      emitSingletonDecoder(o, Indentation, Best);
1187    else
1188      bestFilter().emit(o, Indentation);
1189    return false;
1190  }
1191
1192  // We don't know how to decode these instructions!  Return 0 and dump the
1193  // conflict set!
1194  o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1195  for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1196    o << nameWithID(Opcodes[i]);
1197    if (i < (N - 1))
1198      o << ", ";
1199    else
1200      o << '\n';
1201  }
1202
1203  // Print out useful conflict information for postmortem analysis.
1204  errs() << "Decoding Conflict:\n";
1205
1206  dumpStack(errs(), "\t\t");
1207
1208  for (unsigned i = 0; i < Opcodes.size(); i++) {
1209    const std::string &Name = nameWithID(Opcodes[i]);
1210
1211    errs() << '\t' << Name << " ";
1212    dumpBits(errs(),
1213             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1214    errs() << '\n';
1215  }
1216
1217  return true;
1218}
1219
1220bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI,
1221                                                 unsigned Opc){
1222  const Record &Def = *CGI.TheDef;
1223  // If all the bit positions are not specified; do not decode this instruction.
1224  // We are bound to fail!  For proper disassembly, the well-known encoding bits
1225  // of the instruction must be fully specified.
1226  //
1227  // This also removes pseudo instructions from considerations of disassembly,
1228  // which is a better design and less fragile than the name matchings.
1229  // Ignore "asm parser only" instructions.
1230  if (Def.getValueAsBit("isAsmParserOnly") ||
1231      Def.getValueAsBit("isCodeGenOnly"))
1232    return false;
1233
1234  const BitsInit &Bits = getBitsField(Def, "Inst");
1235  if (Bits.allInComplete()) return false;
1236
1237  std::vector<OperandInfo> InsnOperands;
1238
1239  // If the instruction has specified a custom decoding hook, use that instead
1240  // of trying to auto-generate the decoder.
1241  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1242  if (InstDecoder != "") {
1243    InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder));
1244    Operands[Opc] = InsnOperands;
1245    return true;
1246  }
1247
1248  // Generate a description of the operand of the instruction that we know
1249  // how to decode automatically.
1250  // FIXME: We'll need to have a way to manually override this as needed.
1251
1252  // Gather the outputs/inputs of the instruction, so we can find their
1253  // positions in the encoding.  This assumes for now that they appear in the
1254  // MCInst in the order that they're listed.
1255  std::vector<std::pair<const Init*, std::string> > InOutOperands;
1256  const DagInit *Out = Def.getValueAsDag("OutOperandList");
1257  const DagInit *In  = Def.getValueAsDag("InOperandList");
1258  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1259    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1260  for (unsigned i = 0; i < In->getNumArgs(); ++i)
1261    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1262
1263  // For each operand, see if we can figure out where it is encoded.
1264  for (std::vector<std::pair<const Init*, std::string> >::iterator
1265       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1266    unsigned PrevBit = ~0;
1267    unsigned Base = ~0;
1268    unsigned PrevPos = ~0;
1269    std::string Decoder = "";
1270
1271    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1272      const VarBitInit *BI = dynamic_cast<const VarBitInit*>(Bits.getBit(bi));
1273      if (!BI) continue;
1274
1275      const VarInit *Var = dynamic_cast<const VarInit*>(BI->getVariable());
1276      assert(Var);
1277      unsigned CurrBit = BI->getBitNum();
1278      if (Var->getName() != NI->second) continue;
1279
1280      // Figure out the lowest bit of the value, and the width of the field.
1281      // Deliberately don't try to handle cases where the field is scattered,
1282      // or where not all bits of the the field are explicit.
1283      if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) {
1284        if (CurrBit == 0)
1285          Base = bi;
1286        else
1287          continue;
1288      }
1289
1290      if ((PrevPos != ~0U && bi-1 != PrevPos) ||
1291          (CurrBit != ~0U && CurrBit-1 != PrevBit)) {
1292        PrevBit = ~0;
1293        Base = ~0;
1294        PrevPos = ~0;
1295      }
1296
1297      PrevPos = bi;
1298      PrevBit = CurrBit;
1299
1300      // At this point, we can locate the field, but we need to know how to
1301      // interpret it.  As a first step, require the target to provide callbacks
1302      // for decoding register classes.
1303      // FIXME: This need to be extended to handle instructions with custom
1304      // decoder methods, and operands with (simple) MIOperandInfo's.
1305      const TypedInit *TI = dynamic_cast<const TypedInit*>(NI->first);
1306      RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1307      Record *TypeRecord = Type->getRecord();
1308      bool isReg = false;
1309      if (TypeRecord->isSubClassOf("RegisterOperand"))
1310        TypeRecord = TypeRecord->getValueAsDef("RegClass");
1311      if (TypeRecord->isSubClassOf("RegisterClass")) {
1312        Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1313        isReg = true;
1314      }
1315
1316      RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1317      const StringInit *String = DecoderString ?
1318        dynamic_cast<const StringInit*>(DecoderString->getValue()) :
1319        0;
1320      if (!isReg && String && String->getValue() != "")
1321        Decoder = String->getValue();
1322    }
1323
1324    if (Base != ~0U) {
1325      InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder));
1326      DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ ("
1327                   << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n");
1328    }
1329  }
1330
1331  Operands[Opc] = InsnOperands;
1332
1333
1334#if 0
1335  DEBUG({
1336      // Dumps the instruction encoding bits.
1337      dumpBits(errs(), Bits);
1338
1339      errs() << '\n';
1340
1341      // Dumps the list of operand info.
1342      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1343        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1344        const std::string &OperandName = Info.Name;
1345        const Record &OperandDef = *Info.Rec;
1346
1347        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1348      }
1349    });
1350#endif
1351
1352  return true;
1353}
1354
1355void FixedLenDecoderEmitter::populateInstructions() {
1356  for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) {
1357    Record *R = NumberedInstructions[i]->TheDef;
1358    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
1359        R->getValueAsBit("isPseudo"))
1360      continue;
1361
1362    if (populateInstruction(*NumberedInstructions[i], i))
1363      Opcodes.push_back(i);
1364  }
1365}
1366
1367// Emits disassembler code for instruction decoding.
1368void FixedLenDecoderEmitter::run(raw_ostream &o)
1369{
1370  o << "#include \"llvm/MC/MCInst.h\"\n";
1371  o << "#include \"llvm/Support/DataTypes.h\"\n";
1372  o << "#include <assert.h>\n";
1373  o << '\n';
1374  o << "namespace llvm {\n\n";
1375
1376  NumberedInstructions = Target.getInstructionsByEnumValue();
1377  populateInstructions();
1378  FilterChooser FC(NumberedInstructions, Opcodes, Operands);
1379  FC.emitTop(o, 0);
1380
1381  o << "\n} // End llvm namespace \n";
1382}
1383