brw_fs.cpp revision 069901e2f5a8f4a58047d25335f2526f1acc7234
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31extern "C" {
32
33#include <sys/types.h>
34
35#include "main/macros.h"
36#include "main/shaderobj.h"
37#include "main/uniforms.h"
38#include "program/prog_parameter.h"
39#include "program/prog_print.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_print_visitor.h"
51
52#define MAX_INSTRUCTION (1 << 30)
53
54int
55fs_visitor::type_size(const struct glsl_type *type)
56{
57   unsigned int size, i;
58
59   switch (type->base_type) {
60   case GLSL_TYPE_UINT:
61   case GLSL_TYPE_INT:
62   case GLSL_TYPE_FLOAT:
63   case GLSL_TYPE_BOOL:
64      return type->components();
65   case GLSL_TYPE_ARRAY:
66      return type_size(type->fields.array) * type->length;
67   case GLSL_TYPE_STRUCT:
68      size = 0;
69      for (i = 0; i < type->length; i++) {
70	 size += type_size(type->fields.structure[i].type);
71      }
72      return size;
73   case GLSL_TYPE_SAMPLER:
74      /* Samplers take up no register space, since they're baked in at
75       * link time.
76       */
77      return 0;
78   default:
79      assert(!"not reached");
80      return 0;
81   }
82}
83
84void
85fs_visitor::fail(const char *format, ...)
86{
87   va_list va;
88   char *msg;
89
90   if (failed)
91      return;
92
93   failed = true;
94
95   va_start(va, format);
96   msg = ralloc_vasprintf(mem_ctx, format, va);
97   va_end(va);
98   msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
99
100   this->fail_msg = msg;
101
102   if (INTEL_DEBUG & DEBUG_WM) {
103      fprintf(stderr, "%s",  msg);
104   }
105}
106
107void
108fs_visitor::push_force_uncompressed()
109{
110   force_uncompressed_stack++;
111}
112
113void
114fs_visitor::pop_force_uncompressed()
115{
116   force_uncompressed_stack--;
117   assert(force_uncompressed_stack >= 0);
118}
119
120void
121fs_visitor::push_force_sechalf()
122{
123   force_sechalf_stack++;
124}
125
126void
127fs_visitor::pop_force_sechalf()
128{
129   force_sechalf_stack--;
130   assert(force_sechalf_stack >= 0);
131}
132
133/**
134 * Returns how many MRFs an FS opcode will write over.
135 *
136 * Note that this is not the 0 or 1 implied writes in an actual gen
137 * instruction -- the FS opcodes often generate MOVs in addition.
138 */
139int
140fs_visitor::implied_mrf_writes(fs_inst *inst)
141{
142   if (inst->mlen == 0)
143      return 0;
144
145   switch (inst->opcode) {
146   case SHADER_OPCODE_RCP:
147   case SHADER_OPCODE_RSQ:
148   case SHADER_OPCODE_SQRT:
149   case SHADER_OPCODE_EXP2:
150   case SHADER_OPCODE_LOG2:
151   case SHADER_OPCODE_SIN:
152   case SHADER_OPCODE_COS:
153      return 1 * c->dispatch_width / 8;
154   case SHADER_OPCODE_POW:
155   case SHADER_OPCODE_INT_QUOTIENT:
156   case SHADER_OPCODE_INT_REMAINDER:
157      return 2 * c->dispatch_width / 8;
158   case SHADER_OPCODE_TEX:
159   case FS_OPCODE_TXB:
160   case SHADER_OPCODE_TXD:
161   case SHADER_OPCODE_TXF:
162   case SHADER_OPCODE_TXL:
163   case SHADER_OPCODE_TXS:
164      return 1;
165   case FS_OPCODE_FB_WRITE:
166      return 2;
167   case FS_OPCODE_PULL_CONSTANT_LOAD:
168   case FS_OPCODE_UNSPILL:
169      return 1;
170   case FS_OPCODE_SPILL:
171      return 2;
172   default:
173      assert(!"not reached");
174      return inst->mlen;
175   }
176}
177
178int
179fs_visitor::virtual_grf_alloc(int size)
180{
181   if (virtual_grf_array_size <= virtual_grf_next) {
182      if (virtual_grf_array_size == 0)
183	 virtual_grf_array_size = 16;
184      else
185	 virtual_grf_array_size *= 2;
186      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
187				   virtual_grf_array_size);
188   }
189   virtual_grf_sizes[virtual_grf_next] = size;
190   return virtual_grf_next++;
191}
192
193/** Fixed HW reg constructor. */
194fs_reg::fs_reg(enum register_file file, int reg)
195{
196   init();
197   this->file = file;
198   this->reg = reg;
199   this->type = BRW_REGISTER_TYPE_F;
200}
201
202/** Fixed HW reg constructor. */
203fs_reg::fs_reg(enum register_file file, int reg, uint32_t type)
204{
205   init();
206   this->file = file;
207   this->reg = reg;
208   this->type = type;
209}
210
211/** Automatic reg constructor. */
212fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
213{
214   init();
215
216   this->file = GRF;
217   this->reg = v->virtual_grf_alloc(v->type_size(type));
218   this->reg_offset = 0;
219   this->type = brw_type_for_base_type(type);
220}
221
222fs_reg *
223fs_visitor::variable_storage(ir_variable *var)
224{
225   return (fs_reg *)hash_table_find(this->variable_ht, var);
226}
227
228void
229import_uniforms_callback(const void *key,
230			 void *data,
231			 void *closure)
232{
233   struct hash_table *dst_ht = (struct hash_table *)closure;
234   const fs_reg *reg = (const fs_reg *)data;
235
236   if (reg->file != UNIFORM)
237      return;
238
239   hash_table_insert(dst_ht, data, key);
240}
241
242/* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
243 * This brings in those uniform definitions
244 */
245void
246fs_visitor::import_uniforms(fs_visitor *v)
247{
248   hash_table_call_foreach(v->variable_ht,
249			   import_uniforms_callback,
250			   variable_ht);
251   this->params_remap = v->params_remap;
252}
253
254/* Our support for uniforms is piggy-backed on the struct
255 * gl_fragment_program, because that's where the values actually
256 * get stored, rather than in some global gl_shader_program uniform
257 * store.
258 */
259int
260fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
261{
262   unsigned int offset = 0;
263
264   if (type->is_matrix()) {
265      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
266							type->vector_elements,
267							1);
268
269      for (unsigned int i = 0; i < type->matrix_columns; i++) {
270	 offset += setup_uniform_values(loc + offset, column);
271      }
272
273      return offset;
274   }
275
276   switch (type->base_type) {
277   case GLSL_TYPE_FLOAT:
278   case GLSL_TYPE_UINT:
279   case GLSL_TYPE_INT:
280   case GLSL_TYPE_BOOL:
281      for (unsigned int i = 0; i < type->vector_elements; i++) {
282	 unsigned int param = c->prog_data.nr_params++;
283
284	 assert(param < ARRAY_SIZE(c->prog_data.param));
285
286	 if (ctx->Const.NativeIntegers) {
287	    c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
288	 } else {
289	    switch (type->base_type) {
290	    case GLSL_TYPE_FLOAT:
291	       c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
292	       break;
293	    case GLSL_TYPE_UINT:
294	       c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
295	       break;
296	    case GLSL_TYPE_INT:
297	       c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
298	       break;
299	    case GLSL_TYPE_BOOL:
300	       c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
301	       break;
302	    default:
303	       assert(!"not reached");
304	       c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
305	       break;
306	    }
307	 }
308	 this->param_index[param] = loc;
309	 this->param_offset[param] = i;
310      }
311      return 1;
312
313   case GLSL_TYPE_STRUCT:
314      for (unsigned int i = 0; i < type->length; i++) {
315	 offset += setup_uniform_values(loc + offset,
316					type->fields.structure[i].type);
317      }
318      return offset;
319
320   case GLSL_TYPE_ARRAY:
321      for (unsigned int i = 0; i < type->length; i++) {
322	 offset += setup_uniform_values(loc + offset, type->fields.array);
323      }
324      return offset;
325
326   case GLSL_TYPE_SAMPLER:
327      /* The sampler takes up a slot, but we don't use any values from it. */
328      return 1;
329
330   default:
331      assert(!"not reached");
332      return 0;
333   }
334}
335
336
337/* Our support for builtin uniforms is even scarier than non-builtin.
338 * It sits on top of the PROG_STATE_VAR parameters that are
339 * automatically updated from GL context state.
340 */
341void
342fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
343{
344   const ir_state_slot *const slots = ir->state_slots;
345   assert(ir->state_slots != NULL);
346
347   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
348      /* This state reference has already been setup by ir_to_mesa, but we'll
349       * get the same index back here.
350       */
351      int index = _mesa_add_state_reference(this->fp->Base.Parameters,
352					    (gl_state_index *)slots[i].tokens);
353
354      /* Add each of the unique swizzles of the element as a parameter.
355       * This'll end up matching the expected layout of the
356       * array/matrix/structure we're trying to fill in.
357       */
358      int last_swiz = -1;
359      for (unsigned int j = 0; j < 4; j++) {
360	 int swiz = GET_SWZ(slots[i].swizzle, j);
361	 if (swiz == last_swiz)
362	    break;
363	 last_swiz = swiz;
364
365	 c->prog_data.param_convert[c->prog_data.nr_params] =
366	    PARAM_NO_CONVERT;
367	 this->param_index[c->prog_data.nr_params] = index;
368	 this->param_offset[c->prog_data.nr_params] = swiz;
369	 c->prog_data.nr_params++;
370      }
371   }
372}
373
374fs_reg *
375fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
376{
377   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
378   fs_reg wpos = *reg;
379   bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
380
381   /* gl_FragCoord.x */
382   if (ir->pixel_center_integer) {
383      emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
384   } else {
385      emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
386   }
387   wpos.reg_offset++;
388
389   /* gl_FragCoord.y */
390   if (!flip && ir->pixel_center_integer) {
391      emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
392   } else {
393      fs_reg pixel_y = this->pixel_y;
394      float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
395
396      if (flip) {
397	 pixel_y.negate = true;
398	 offset += c->key.drawable_height - 1.0;
399      }
400
401      emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
402   }
403   wpos.reg_offset++;
404
405   /* gl_FragCoord.z */
406   if (intel->gen >= 6) {
407      emit(BRW_OPCODE_MOV, wpos,
408	   fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
409   } else {
410      emit(FS_OPCODE_LINTERP, wpos,
411           this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
412           this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
413           interp_reg(FRAG_ATTRIB_WPOS, 2));
414   }
415   wpos.reg_offset++;
416
417   /* gl_FragCoord.w: Already set up in emit_interpolation */
418   emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
419
420   return reg;
421}
422
423fs_reg *
424fs_visitor::emit_general_interpolation(ir_variable *ir)
425{
426   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
427   reg->type = brw_type_for_base_type(ir->type->get_scalar_type());
428   fs_reg attr = *reg;
429
430   unsigned int array_elements;
431   const glsl_type *type;
432
433   if (ir->type->is_array()) {
434      array_elements = ir->type->length;
435      if (array_elements == 0) {
436	 fail("dereferenced array '%s' has length 0\n", ir->name);
437      }
438      type = ir->type->fields.array;
439   } else {
440      array_elements = 1;
441      type = ir->type;
442   }
443
444   glsl_interp_qualifier interpolation_mode =
445      ir->determine_interpolation_mode(c->key.flat_shade);
446
447   int location = ir->location;
448   for (unsigned int i = 0; i < array_elements; i++) {
449      for (unsigned int j = 0; j < type->matrix_columns; j++) {
450	 if (urb_setup[location] == -1) {
451	    /* If there's no incoming setup data for this slot, don't
452	     * emit interpolation for it.
453	     */
454	    attr.reg_offset += type->vector_elements;
455	    location++;
456	    continue;
457	 }
458
459	 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
460	    /* Constant interpolation (flat shading) case. The SF has
461	     * handed us defined values in only the constant offset
462	     * field of the setup reg.
463	     */
464	    for (unsigned int k = 0; k < type->vector_elements; k++) {
465	       struct brw_reg interp = interp_reg(location, k);
466	       interp = suboffset(interp, 3);
467               interp.type = reg->type;
468	       emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
469	       attr.reg_offset++;
470	    }
471	 } else {
472	    /* Smooth/noperspective interpolation case. */
473	    for (unsigned int k = 0; k < type->vector_elements; k++) {
474	       /* FINISHME: At some point we probably want to push
475		* this farther by giving similar treatment to the
476		* other potentially constant components of the
477		* attribute, as well as making brw_vs_constval.c
478		* handle varyings other than gl_TexCoord.
479		*/
480	       if (location >= FRAG_ATTRIB_TEX0 &&
481		   location <= FRAG_ATTRIB_TEX7 &&
482		   k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
483		  emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
484	       } else {
485		  struct brw_reg interp = interp_reg(location, k);
486                  brw_wm_barycentric_interp_mode barycoord_mode;
487                  if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
488                     barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
489                  else
490                     barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
491                  emit(FS_OPCODE_LINTERP, attr,
492                       this->delta_x[barycoord_mode],
493                       this->delta_y[barycoord_mode], fs_reg(interp));
494	       }
495	       attr.reg_offset++;
496	    }
497
498	    if (intel->gen < 6) {
499	       attr.reg_offset -= type->vector_elements;
500	       for (unsigned int k = 0; k < type->vector_elements; k++) {
501		  emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
502		  attr.reg_offset++;
503	       }
504	    }
505	 }
506	 location++;
507      }
508   }
509
510   return reg;
511}
512
513fs_reg *
514fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
515{
516   fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
517
518   /* The frontfacing comes in as a bit in the thread payload. */
519   if (intel->gen >= 6) {
520      emit(BRW_OPCODE_ASR, *reg,
521	   fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
522	   fs_reg(15));
523      emit(BRW_OPCODE_NOT, *reg, *reg);
524      emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
525   } else {
526      struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
527      /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
528       * us front face
529       */
530      fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
531			   fs_reg(r1_6ud),
532			   fs_reg(1u << 31));
533      inst->conditional_mod = BRW_CONDITIONAL_L;
534      emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
535   }
536
537   return reg;
538}
539
540fs_inst *
541fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
542{
543   switch (opcode) {
544   case SHADER_OPCODE_RCP:
545   case SHADER_OPCODE_RSQ:
546   case SHADER_OPCODE_SQRT:
547   case SHADER_OPCODE_EXP2:
548   case SHADER_OPCODE_LOG2:
549   case SHADER_OPCODE_SIN:
550   case SHADER_OPCODE_COS:
551      break;
552   default:
553      assert(!"not reached: bad math opcode");
554      return NULL;
555   }
556
557   /* Can't do hstride == 0 args to gen6 math, so expand it out.  We
558    * might be able to do better by doing execsize = 1 math and then
559    * expanding that result out, but we would need to be careful with
560    * masking.
561    *
562    * Gen 6 hardware ignores source modifiers (negate and abs) on math
563    * instructions, so we also move to a temp to set those up.
564    */
565   if (intel->gen == 6 && (src.file == UNIFORM ||
566			   src.abs ||
567			   src.negate)) {
568      fs_reg expanded = fs_reg(this, glsl_type::float_type);
569      emit(BRW_OPCODE_MOV, expanded, src);
570      src = expanded;
571   }
572
573   fs_inst *inst = emit(opcode, dst, src);
574
575   if (intel->gen < 6) {
576      inst->base_mrf = 2;
577      inst->mlen = c->dispatch_width / 8;
578   }
579
580   return inst;
581}
582
583fs_inst *
584fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
585{
586   int base_mrf = 2;
587   fs_inst *inst;
588
589   switch (opcode) {
590   case SHADER_OPCODE_POW:
591   case SHADER_OPCODE_INT_QUOTIENT:
592   case SHADER_OPCODE_INT_REMAINDER:
593      break;
594   default:
595      assert(!"not reached: unsupported binary math opcode.");
596      return NULL;
597   }
598
599   if (intel->gen >= 7) {
600      inst = emit(opcode, dst, src0, src1);
601   } else if (intel->gen == 6) {
602      /* Can't do hstride == 0 args to gen6 math, so expand it out.
603       *
604       * The hardware ignores source modifiers (negate and abs) on math
605       * instructions, so we also move to a temp to set those up.
606       */
607      if (src0.file == UNIFORM || src0.abs || src0.negate) {
608	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
609	 expanded.type = src0.type;
610	 emit(BRW_OPCODE_MOV, expanded, src0);
611	 src0 = expanded;
612      }
613
614      if (src1.file == UNIFORM || src1.abs || src1.negate) {
615	 fs_reg expanded = fs_reg(this, glsl_type::float_type);
616	 expanded.type = src1.type;
617	 emit(BRW_OPCODE_MOV, expanded, src1);
618	 src1 = expanded;
619      }
620
621      inst = emit(opcode, dst, src0, src1);
622   } else {
623      /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
624       * "Message Payload":
625       *
626       * "Operand0[7].  For the INT DIV functions, this operand is the
627       *  denominator."
628       *  ...
629       * "Operand1[7].  For the INT DIV functions, this operand is the
630       *  numerator."
631       */
632      bool is_int_div = opcode != SHADER_OPCODE_POW;
633      fs_reg &op0 = is_int_div ? src1 : src0;
634      fs_reg &op1 = is_int_div ? src0 : src1;
635
636      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1);
637      inst = emit(opcode, dst, op0, reg_null_f);
638
639      inst->base_mrf = base_mrf;
640      inst->mlen = 2 * c->dispatch_width / 8;
641   }
642   return inst;
643}
644
645/**
646 * To be called after the last _mesa_add_state_reference() call, to
647 * set up prog_data.param[] for assign_curb_setup() and
648 * setup_pull_constants().
649 */
650void
651fs_visitor::setup_paramvalues_refs()
652{
653   if (c->dispatch_width != 8)
654      return;
655
656   /* Set up the pointers to ParamValues now that that array is finalized. */
657   for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
658      c->prog_data.param[i] =
659	 (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] +
660	 this->param_offset[i];
661   }
662}
663
664void
665fs_visitor::assign_curb_setup()
666{
667   c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
668   if (c->dispatch_width == 8) {
669      c->prog_data.first_curbe_grf = c->nr_payload_regs;
670   } else {
671      c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
672   }
673
674   /* Map the offsets in the UNIFORM file to fixed HW regs. */
675   foreach_list(node, &this->instructions) {
676      fs_inst *inst = (fs_inst *)node;
677
678      for (unsigned int i = 0; i < 3; i++) {
679	 if (inst->src[i].file == UNIFORM) {
680	    int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
681	    struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
682						  constant_nr / 8,
683						  constant_nr % 8);
684
685	    inst->src[i].file = FIXED_HW_REG;
686	    inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
687	 }
688      }
689   }
690}
691
692void
693fs_visitor::calculate_urb_setup()
694{
695   for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
696      urb_setup[i] = -1;
697   }
698
699   int urb_next = 0;
700   /* Figure out where each of the incoming setup attributes lands. */
701   if (intel->gen >= 6) {
702      for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
703	 if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
704	    urb_setup[i] = urb_next++;
705	 }
706      }
707   } else {
708      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
709      for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
710	 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
711	    int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
712
713	    if (fp_index >= 0)
714	       urb_setup[fp_index] = urb_next++;
715	 }
716      }
717   }
718
719   /* Each attribute is 4 setup channels, each of which is half a reg. */
720   c->prog_data.urb_read_length = urb_next * 2;
721}
722
723void
724fs_visitor::assign_urb_setup()
725{
726   int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
727
728   /* Offset all the urb_setup[] index by the actual position of the
729    * setup regs, now that the location of the constants has been chosen.
730    */
731   foreach_list(node, &this->instructions) {
732      fs_inst *inst = (fs_inst *)node;
733
734      if (inst->opcode == FS_OPCODE_LINTERP) {
735	 assert(inst->src[2].file == FIXED_HW_REG);
736	 inst->src[2].fixed_hw_reg.nr += urb_start;
737      }
738
739      if (inst->opcode == FS_OPCODE_CINTERP) {
740	 assert(inst->src[0].file == FIXED_HW_REG);
741	 inst->src[0].fixed_hw_reg.nr += urb_start;
742      }
743   }
744
745   this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
746}
747
748/**
749 * Split large virtual GRFs into separate components if we can.
750 *
751 * This is mostly duplicated with what brw_fs_vector_splitting does,
752 * but that's really conservative because it's afraid of doing
753 * splitting that doesn't result in real progress after the rest of
754 * the optimization phases, which would cause infinite looping in
755 * optimization.  We can do it once here, safely.  This also has the
756 * opportunity to split interpolated values, or maybe even uniforms,
757 * which we don't have at the IR level.
758 *
759 * We want to split, because virtual GRFs are what we register
760 * allocate and spill (due to contiguousness requirements for some
761 * instructions), and they're what we naturally generate in the
762 * codegen process, but most virtual GRFs don't actually need to be
763 * contiguous sets of GRFs.  If we split, we'll end up with reduced
764 * live intervals and better dead code elimination and coalescing.
765 */
766void
767fs_visitor::split_virtual_grfs()
768{
769   int num_vars = this->virtual_grf_next;
770   bool split_grf[num_vars];
771   int new_virtual_grf[num_vars];
772
773   /* Try to split anything > 0 sized. */
774   for (int i = 0; i < num_vars; i++) {
775      if (this->virtual_grf_sizes[i] != 1)
776	 split_grf[i] = true;
777      else
778	 split_grf[i] = false;
779   }
780
781   if (brw->has_pln &&
782       this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) {
783      /* PLN opcodes rely on the delta_xy being contiguous.  We only have to
784       * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to
785       * Gen6, that was the only supported interpolation mode, and since Gen6,
786       * delta_x and delta_y are in fixed hardware registers.
787       */
788      split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] =
789         false;
790   }
791
792   foreach_list(node, &this->instructions) {
793      fs_inst *inst = (fs_inst *)node;
794
795      /* Texturing produces 4 contiguous registers, so no splitting. */
796      if (inst->is_tex()) {
797	 split_grf[inst->dst.reg] = false;
798      }
799   }
800
801   /* Allocate new space for split regs.  Note that the virtual
802    * numbers will be contiguous.
803    */
804   for (int i = 0; i < num_vars; i++) {
805      if (split_grf[i]) {
806	 new_virtual_grf[i] = virtual_grf_alloc(1);
807	 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
808	    int reg = virtual_grf_alloc(1);
809	    assert(reg == new_virtual_grf[i] + j - 1);
810	    (void) reg;
811	 }
812	 this->virtual_grf_sizes[i] = 1;
813      }
814   }
815
816   foreach_list(node, &this->instructions) {
817      fs_inst *inst = (fs_inst *)node;
818
819      if (inst->dst.file == GRF &&
820	  split_grf[inst->dst.reg] &&
821	  inst->dst.reg_offset != 0) {
822	 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
823			  inst->dst.reg_offset - 1);
824	 inst->dst.reg_offset = 0;
825      }
826      for (int i = 0; i < 3; i++) {
827	 if (inst->src[i].file == GRF &&
828	     split_grf[inst->src[i].reg] &&
829	     inst->src[i].reg_offset != 0) {
830	    inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
831				inst->src[i].reg_offset - 1);
832	    inst->src[i].reg_offset = 0;
833	 }
834      }
835   }
836   this->live_intervals_valid = false;
837}
838
839bool
840fs_visitor::remove_dead_constants()
841{
842   if (c->dispatch_width == 8) {
843      this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params);
844
845      for (unsigned int i = 0; i < c->prog_data.nr_params; i++)
846	 this->params_remap[i] = -1;
847
848      /* Find which params are still in use. */
849      foreach_list(node, &this->instructions) {
850	 fs_inst *inst = (fs_inst *)node;
851
852	 for (int i = 0; i < 3; i++) {
853	    int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
854
855	    if (inst->src[i].file != UNIFORM)
856	       continue;
857
858	    assert(constant_nr < (int)c->prog_data.nr_params);
859
860	    /* For now, set this to non-negative.  We'll give it the
861	     * actual new number in a moment, in order to keep the
862	     * register numbers nicely ordered.
863	     */
864	    this->params_remap[constant_nr] = 0;
865	 }
866      }
867
868      /* Figure out what the new numbers for the params will be.  At some
869       * point when we're doing uniform array access, we're going to want
870       * to keep the distinction between .reg and .reg_offset, but for
871       * now we don't care.
872       */
873      unsigned int new_nr_params = 0;
874      for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
875	 if (this->params_remap[i] != -1) {
876	    this->params_remap[i] = new_nr_params++;
877	 }
878      }
879
880      /* Update the list of params to be uploaded to match our new numbering. */
881      for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
882	 int remapped = this->params_remap[i];
883
884	 if (remapped == -1)
885	    continue;
886
887	 /* We've already done setup_paramvalues_refs() so no need to worry
888	  * about param_index and param_offset.
889	  */
890	 c->prog_data.param[remapped] = c->prog_data.param[i];
891	 c->prog_data.param_convert[remapped] = c->prog_data.param_convert[i];
892      }
893
894      c->prog_data.nr_params = new_nr_params;
895   } else {
896      /* This should have been generated in the 8-wide pass already. */
897      assert(this->params_remap);
898   }
899
900   /* Now do the renumbering of the shader to remove unused params. */
901   foreach_list(node, &this->instructions) {
902      fs_inst *inst = (fs_inst *)node;
903
904      for (int i = 0; i < 3; i++) {
905	 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
906
907	 if (inst->src[i].file != UNIFORM)
908	    continue;
909
910	 assert(this->params_remap[constant_nr] != -1);
911	 inst->src[i].reg = this->params_remap[constant_nr];
912	 inst->src[i].reg_offset = 0;
913      }
914   }
915
916   return true;
917}
918
919/**
920 * Choose accesses from the UNIFORM file to demote to using the pull
921 * constant buffer.
922 *
923 * We allow a fragment shader to have more than the specified minimum
924 * maximum number of fragment shader uniform components (64).  If
925 * there are too many of these, they'd fill up all of register space.
926 * So, this will push some of them out to the pull constant buffer and
927 * update the program to load them.
928 */
929void
930fs_visitor::setup_pull_constants()
931{
932   /* Only allow 16 registers (128 uniform components) as push constants. */
933   unsigned int max_uniform_components = 16 * 8;
934   if (c->prog_data.nr_params <= max_uniform_components)
935      return;
936
937   if (c->dispatch_width == 16) {
938      fail("Pull constants not supported in 16-wide\n");
939      return;
940   }
941
942   /* Just demote the end of the list.  We could probably do better
943    * here, demoting things that are rarely used in the program first.
944    */
945   int pull_uniform_base = max_uniform_components;
946   int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
947
948   foreach_list(node, &this->instructions) {
949      fs_inst *inst = (fs_inst *)node;
950
951      for (int i = 0; i < 3; i++) {
952	 if (inst->src[i].file != UNIFORM)
953	    continue;
954
955	 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
956	 if (uniform_nr < pull_uniform_base)
957	    continue;
958
959	 fs_reg dst = fs_reg(this, glsl_type::float_type);
960	 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
961					      dst);
962	 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
963	 pull->ir = inst->ir;
964	 pull->annotation = inst->annotation;
965	 pull->base_mrf = 14;
966	 pull->mlen = 1;
967
968	 inst->insert_before(pull);
969
970	 inst->src[i].file = GRF;
971	 inst->src[i].reg = dst.reg;
972	 inst->src[i].reg_offset = 0;
973	 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
974      }
975   }
976
977   for (int i = 0; i < pull_uniform_count; i++) {
978      c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
979      c->prog_data.pull_param_convert[i] =
980	 c->prog_data.param_convert[pull_uniform_base + i];
981   }
982   c->prog_data.nr_params -= pull_uniform_count;
983   c->prog_data.nr_pull_params = pull_uniform_count;
984}
985
986void
987fs_visitor::calculate_live_intervals()
988{
989   int num_vars = this->virtual_grf_next;
990   int *def = ralloc_array(mem_ctx, int, num_vars);
991   int *use = ralloc_array(mem_ctx, int, num_vars);
992   int loop_depth = 0;
993   int loop_start = 0;
994
995   if (this->live_intervals_valid)
996      return;
997
998   for (int i = 0; i < num_vars; i++) {
999      def[i] = MAX_INSTRUCTION;
1000      use[i] = -1;
1001   }
1002
1003   int ip = 0;
1004   foreach_list(node, &this->instructions) {
1005      fs_inst *inst = (fs_inst *)node;
1006
1007      if (inst->opcode == BRW_OPCODE_DO) {
1008	 if (loop_depth++ == 0)
1009	    loop_start = ip;
1010      } else if (inst->opcode == BRW_OPCODE_WHILE) {
1011	 loop_depth--;
1012
1013	 if (loop_depth == 0) {
1014	    /* Patches up the use of vars marked for being live across
1015	     * the whole loop.
1016	     */
1017	    for (int i = 0; i < num_vars; i++) {
1018	       if (use[i] == loop_start) {
1019		  use[i] = ip;
1020	       }
1021	    }
1022	 }
1023      } else {
1024	 for (unsigned int i = 0; i < 3; i++) {
1025	    if (inst->src[i].file == GRF) {
1026	       int reg = inst->src[i].reg;
1027
1028	       if (!loop_depth) {
1029		  use[reg] = ip;
1030	       } else {
1031		  def[reg] = MIN2(loop_start, def[reg]);
1032		  use[reg] = loop_start;
1033
1034		  /* Nobody else is going to go smash our start to
1035		   * later in the loop now, because def[reg] now
1036		   * points before the bb header.
1037		   */
1038	       }
1039	    }
1040	 }
1041	 if (inst->dst.file == GRF) {
1042	    int reg = inst->dst.reg;
1043
1044	    if (!loop_depth) {
1045	       def[reg] = MIN2(def[reg], ip);
1046	    } else {
1047	       def[reg] = MIN2(def[reg], loop_start);
1048	    }
1049	 }
1050      }
1051
1052      ip++;
1053   }
1054
1055   ralloc_free(this->virtual_grf_def);
1056   ralloc_free(this->virtual_grf_use);
1057   this->virtual_grf_def = def;
1058   this->virtual_grf_use = use;
1059
1060   this->live_intervals_valid = true;
1061}
1062
1063/**
1064 * Attempts to move immediate constants into the immediate
1065 * constant slot of following instructions.
1066 *
1067 * Immediate constants are a bit tricky -- they have to be in the last
1068 * operand slot, you can't do abs/negate on them,
1069 */
1070
1071bool
1072fs_visitor::propagate_constants()
1073{
1074   bool progress = false;
1075
1076   calculate_live_intervals();
1077
1078   foreach_list(node, &this->instructions) {
1079      fs_inst *inst = (fs_inst *)node;
1080
1081      if (inst->opcode != BRW_OPCODE_MOV ||
1082	  inst->predicated ||
1083	  inst->dst.file != GRF || inst->src[0].file != IMM ||
1084	  inst->dst.type != inst->src[0].type ||
1085	  (c->dispatch_width == 16 &&
1086	   (inst->force_uncompressed || inst->force_sechalf)))
1087	 continue;
1088
1089      /* Don't bother with cases where we should have had the
1090       * operation on the constant folded in GLSL already.
1091       */
1092      if (inst->saturate)
1093	 continue;
1094
1095      /* Found a move of a constant to a GRF.  Find anything else using the GRF
1096       * before it's written, and replace it with the constant if we can.
1097       */
1098      for (fs_inst *scan_inst = (fs_inst *)inst->next;
1099	   !scan_inst->is_tail_sentinel();
1100	   scan_inst = (fs_inst *)scan_inst->next) {
1101	 if (scan_inst->opcode == BRW_OPCODE_DO ||
1102	     scan_inst->opcode == BRW_OPCODE_WHILE ||
1103	     scan_inst->opcode == BRW_OPCODE_ELSE ||
1104	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
1105	    break;
1106	 }
1107
1108	 for (int i = 2; i >= 0; i--) {
1109	    if (scan_inst->src[i].file != GRF ||
1110		scan_inst->src[i].reg != inst->dst.reg ||
1111		scan_inst->src[i].reg_offset != inst->dst.reg_offset)
1112	       continue;
1113
1114	    /* Don't bother with cases where we should have had the
1115	     * operation on the constant folded in GLSL already.
1116	     */
1117	    if (scan_inst->src[i].negate || scan_inst->src[i].abs)
1118	       continue;
1119
1120	    switch (scan_inst->opcode) {
1121	    case BRW_OPCODE_MOV:
1122	       scan_inst->src[i] = inst->src[0];
1123	       progress = true;
1124	       break;
1125
1126	    case BRW_OPCODE_MUL:
1127	    case BRW_OPCODE_ADD:
1128	       if (i == 1) {
1129		  scan_inst->src[i] = inst->src[0];
1130		  progress = true;
1131	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
1132		  /* Fit this constant in by commuting the operands.
1133		   * Exception: we can't do this for 32-bit integer MUL
1134		   * because it's asymmetric.
1135		   */
1136		  if (scan_inst->opcode == BRW_OPCODE_MUL &&
1137		      (scan_inst->src[1].type == BRW_REGISTER_TYPE_D ||
1138		       scan_inst->src[1].type == BRW_REGISTER_TYPE_UD))
1139		     break;
1140		  scan_inst->src[0] = scan_inst->src[1];
1141		  scan_inst->src[1] = inst->src[0];
1142		  progress = true;
1143	       }
1144	       break;
1145
1146	    case BRW_OPCODE_CMP:
1147	    case BRW_OPCODE_IF:
1148	       if (i == 1) {
1149		  scan_inst->src[i] = inst->src[0];
1150		  progress = true;
1151	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
1152		  uint32_t new_cmod;
1153
1154		  new_cmod = brw_swap_cmod(scan_inst->conditional_mod);
1155		  if (new_cmod != ~0u) {
1156		     /* Fit this constant in by swapping the operands and
1157		      * flipping the test
1158		      */
1159		     scan_inst->src[0] = scan_inst->src[1];
1160		     scan_inst->src[1] = inst->src[0];
1161		     scan_inst->conditional_mod = new_cmod;
1162		     progress = true;
1163		  }
1164	       }
1165	       break;
1166
1167	    case BRW_OPCODE_SEL:
1168	       if (i == 1) {
1169		  scan_inst->src[i] = inst->src[0];
1170		  progress = true;
1171	       } else if (i == 0 && scan_inst->src[1].file != IMM) {
1172		  scan_inst->src[0] = scan_inst->src[1];
1173		  scan_inst->src[1] = inst->src[0];
1174
1175		  /* If this was predicated, flipping operands means
1176		   * we also need to flip the predicate.
1177		   */
1178		  if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) {
1179		     scan_inst->predicate_inverse =
1180			!scan_inst->predicate_inverse;
1181		  }
1182		  progress = true;
1183	       }
1184	       break;
1185
1186	    case SHADER_OPCODE_RCP:
1187	       /* The hardware doesn't do math on immediate values
1188		* (because why are you doing that, seriously?), but
1189		* the correct answer is to just constant fold it
1190		* anyway.
1191		*/
1192	       assert(i == 0);
1193	       if (inst->src[0].imm.f != 0.0f) {
1194		  scan_inst->opcode = BRW_OPCODE_MOV;
1195		  scan_inst->src[0] = inst->src[0];
1196		  scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f;
1197		  progress = true;
1198	       }
1199	       break;
1200
1201	    default:
1202	       break;
1203	    }
1204	 }
1205
1206	 if (scan_inst->dst.file == GRF &&
1207	     scan_inst->dst.reg == inst->dst.reg &&
1208	     (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1209	      scan_inst->is_tex())) {
1210	    break;
1211	 }
1212      }
1213   }
1214
1215   if (progress)
1216       this->live_intervals_valid = false;
1217
1218   return progress;
1219}
1220
1221
1222/**
1223 * Attempts to move immediate constants into the immediate
1224 * constant slot of following instructions.
1225 *
1226 * Immediate constants are a bit tricky -- they have to be in the last
1227 * operand slot, you can't do abs/negate on them,
1228 */
1229
1230bool
1231fs_visitor::opt_algebraic()
1232{
1233   bool progress = false;
1234
1235   calculate_live_intervals();
1236
1237   foreach_list(node, &this->instructions) {
1238      fs_inst *inst = (fs_inst *)node;
1239
1240      switch (inst->opcode) {
1241      case BRW_OPCODE_MUL:
1242	 if (inst->src[1].file != IMM)
1243	    continue;
1244
1245	 /* a * 1.0 = a */
1246	 if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
1247	     inst->src[1].imm.f == 1.0) {
1248	    inst->opcode = BRW_OPCODE_MOV;
1249	    inst->src[1] = reg_undef;
1250	    progress = true;
1251	    break;
1252	 }
1253
1254	 break;
1255      default:
1256	 break;
1257      }
1258   }
1259
1260   return progress;
1261}
1262
1263/**
1264 * Must be called after calculate_live_intervales() to remove unused
1265 * writes to registers -- register allocation will fail otherwise
1266 * because something deffed but not used won't be considered to
1267 * interfere with other regs.
1268 */
1269bool
1270fs_visitor::dead_code_eliminate()
1271{
1272   bool progress = false;
1273   int pc = 0;
1274
1275   calculate_live_intervals();
1276
1277   foreach_list_safe(node, &this->instructions) {
1278      fs_inst *inst = (fs_inst *)node;
1279
1280      if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
1281	 inst->remove();
1282	 progress = true;
1283      }
1284
1285      pc++;
1286   }
1287
1288   if (progress)
1289      live_intervals_valid = false;
1290
1291   return progress;
1292}
1293
1294bool
1295fs_visitor::register_coalesce()
1296{
1297   bool progress = false;
1298   int if_depth = 0;
1299   int loop_depth = 0;
1300
1301   foreach_list_safe(node, &this->instructions) {
1302      fs_inst *inst = (fs_inst *)node;
1303
1304      /* Make sure that we dominate the instructions we're going to
1305       * scan for interfering with our coalescing, or we won't have
1306       * scanned enough to see if anything interferes with our
1307       * coalescing.  We don't dominate the following instructions if
1308       * we're in a loop or an if block.
1309       */
1310      switch (inst->opcode) {
1311      case BRW_OPCODE_DO:
1312	 loop_depth++;
1313	 break;
1314      case BRW_OPCODE_WHILE:
1315	 loop_depth--;
1316	 break;
1317      case BRW_OPCODE_IF:
1318	 if_depth++;
1319	 break;
1320      case BRW_OPCODE_ENDIF:
1321	 if_depth--;
1322	 break;
1323      default:
1324	 break;
1325      }
1326      if (loop_depth || if_depth)
1327	 continue;
1328
1329      if (inst->opcode != BRW_OPCODE_MOV ||
1330	  inst->predicated ||
1331	  inst->saturate ||
1332	  inst->dst.file != GRF || (inst->src[0].file != GRF &&
1333				    inst->src[0].file != UNIFORM)||
1334	  inst->dst.type != inst->src[0].type)
1335	 continue;
1336
1337      bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
1338
1339      /* Found a move of a GRF to a GRF.  Let's see if we can coalesce
1340       * them: check for no writes to either one until the exit of the
1341       * program.
1342       */
1343      bool interfered = false;
1344
1345      for (fs_inst *scan_inst = (fs_inst *)inst->next;
1346	   !scan_inst->is_tail_sentinel();
1347	   scan_inst = (fs_inst *)scan_inst->next) {
1348	 if (scan_inst->dst.file == GRF) {
1349	    if (scan_inst->dst.reg == inst->dst.reg &&
1350		(scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1351		 scan_inst->is_tex())) {
1352	       interfered = true;
1353	       break;
1354	    }
1355	    if (inst->src[0].file == GRF &&
1356		scan_inst->dst.reg == inst->src[0].reg &&
1357		(scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
1358		 scan_inst->is_tex())) {
1359	       interfered = true;
1360	       break;
1361	    }
1362	 }
1363
1364	 /* The gen6 MATH instruction can't handle source modifiers or
1365	  * unusual register regions, so avoid coalescing those for
1366	  * now.  We should do something more specific.
1367	  */
1368	 if (intel->gen >= 6 &&
1369	     scan_inst->is_math() &&
1370	     (has_source_modifiers || inst->src[0].file == UNIFORM)) {
1371	    interfered = true;
1372	    break;
1373	 }
1374
1375	 /* The accumulator result appears to get used for the
1376	  * conditional modifier generation.  When negating a UD
1377	  * value, there is a 33rd bit generated for the sign in the
1378	  * accumulator value, so now you can't check, for example,
1379	  * equality with a 32-bit value.  See piglit fs-op-neg-uint.
1380	  */
1381	 if (scan_inst->conditional_mod &&
1382	     inst->src[0].negate &&
1383	     inst->src[0].type == BRW_REGISTER_TYPE_UD) {
1384	    interfered = true;
1385	    break;
1386	 }
1387      }
1388      if (interfered) {
1389	 continue;
1390      }
1391
1392      /* Rewrite the later usage to point at the source of the move to
1393       * be removed.
1394       */
1395      for (fs_inst *scan_inst = inst;
1396	   !scan_inst->is_tail_sentinel();
1397	   scan_inst = (fs_inst *)scan_inst->next) {
1398	 for (int i = 0; i < 3; i++) {
1399	    if (scan_inst->src[i].file == GRF &&
1400		scan_inst->src[i].reg == inst->dst.reg &&
1401		scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
1402	       fs_reg new_src = inst->src[0];
1403               if (scan_inst->src[i].abs) {
1404                  new_src.negate = 0;
1405                  new_src.abs = 1;
1406               }
1407	       new_src.negate ^= scan_inst->src[i].negate;
1408	       scan_inst->src[i] = new_src;
1409	    }
1410	 }
1411      }
1412
1413      inst->remove();
1414      progress = true;
1415   }
1416
1417   if (progress)
1418      live_intervals_valid = false;
1419
1420   return progress;
1421}
1422
1423
1424bool
1425fs_visitor::compute_to_mrf()
1426{
1427   bool progress = false;
1428   int next_ip = 0;
1429
1430   calculate_live_intervals();
1431
1432   foreach_list_safe(node, &this->instructions) {
1433      fs_inst *inst = (fs_inst *)node;
1434
1435      int ip = next_ip;
1436      next_ip++;
1437
1438      if (inst->opcode != BRW_OPCODE_MOV ||
1439	  inst->predicated ||
1440	  inst->dst.file != MRF || inst->src[0].file != GRF ||
1441	  inst->dst.type != inst->src[0].type ||
1442	  inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
1443	 continue;
1444
1445      /* Work out which hardware MRF registers are written by this
1446       * instruction.
1447       */
1448      int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
1449      int mrf_high;
1450      if (inst->dst.reg & BRW_MRF_COMPR4) {
1451	 mrf_high = mrf_low + 4;
1452      } else if (c->dispatch_width == 16 &&
1453		 (!inst->force_uncompressed && !inst->force_sechalf)) {
1454	 mrf_high = mrf_low + 1;
1455      } else {
1456	 mrf_high = mrf_low;
1457      }
1458
1459      /* Can't compute-to-MRF this GRF if someone else was going to
1460       * read it later.
1461       */
1462      if (this->virtual_grf_use[inst->src[0].reg] > ip)
1463	 continue;
1464
1465      /* Found a move of a GRF to a MRF.  Let's see if we can go
1466       * rewrite the thing that made this GRF to write into the MRF.
1467       */
1468      fs_inst *scan_inst;
1469      for (scan_inst = (fs_inst *)inst->prev;
1470	   scan_inst->prev != NULL;
1471	   scan_inst = (fs_inst *)scan_inst->prev) {
1472	 if (scan_inst->dst.file == GRF &&
1473	     scan_inst->dst.reg == inst->src[0].reg) {
1474	    /* Found the last thing to write our reg we want to turn
1475	     * into a compute-to-MRF.
1476	     */
1477
1478	    if (scan_inst->is_tex()) {
1479	       /* texturing writes several continuous regs, so we can't
1480		* compute-to-mrf that.
1481		*/
1482	       break;
1483	    }
1484
1485	    /* If it's predicated, it (probably) didn't populate all
1486	     * the channels.  We might be able to rewrite everything
1487	     * that writes that reg, but it would require smarter
1488	     * tracking to delay the rewriting until complete success.
1489	     */
1490	    if (scan_inst->predicated)
1491	       break;
1492
1493	    /* If it's half of register setup and not the same half as
1494	     * our MOV we're trying to remove, bail for now.
1495	     */
1496	    if (scan_inst->force_uncompressed != inst->force_uncompressed ||
1497		scan_inst->force_sechalf != inst->force_sechalf) {
1498	       break;
1499	    }
1500
1501	    /* SEND instructions can't have MRF as a destination. */
1502	    if (scan_inst->mlen)
1503	       break;
1504
1505	    if (intel->gen >= 6) {
1506	       /* gen6 math instructions must have the destination be
1507		* GRF, so no compute-to-MRF for them.
1508		*/
1509	       if (scan_inst->is_math()) {
1510		  break;
1511	       }
1512	    }
1513
1514	    if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1515	       /* Found the creator of our MRF's source value. */
1516	       scan_inst->dst.file = MRF;
1517	       scan_inst->dst.reg = inst->dst.reg;
1518	       scan_inst->saturate |= inst->saturate;
1519	       inst->remove();
1520	       progress = true;
1521	    }
1522	    break;
1523	 }
1524
1525	 /* We don't handle flow control here.  Most computation of
1526	  * values that end up in MRFs are shortly before the MRF
1527	  * write anyway.
1528	  */
1529	 if (scan_inst->opcode == BRW_OPCODE_DO ||
1530	     scan_inst->opcode == BRW_OPCODE_WHILE ||
1531	     scan_inst->opcode == BRW_OPCODE_ELSE ||
1532	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
1533	    break;
1534	 }
1535
1536	 /* You can't read from an MRF, so if someone else reads our
1537	  * MRF's source GRF that we wanted to rewrite, that stops us.
1538	  */
1539	 bool interfered = false;
1540	 for (int i = 0; i < 3; i++) {
1541	    if (scan_inst->src[i].file == GRF &&
1542		scan_inst->src[i].reg == inst->src[0].reg &&
1543		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1544	       interfered = true;
1545	    }
1546	 }
1547	 if (interfered)
1548	    break;
1549
1550	 if (scan_inst->dst.file == MRF) {
1551	    /* If somebody else writes our MRF here, we can't
1552	     * compute-to-MRF before that.
1553	     */
1554	    int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
1555	    int scan_mrf_high;
1556
1557	    if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
1558	       scan_mrf_high = scan_mrf_low + 4;
1559	    } else if (c->dispatch_width == 16 &&
1560		       (!scan_inst->force_uncompressed &&
1561			!scan_inst->force_sechalf)) {
1562	       scan_mrf_high = scan_mrf_low + 1;
1563	    } else {
1564	       scan_mrf_high = scan_mrf_low;
1565	    }
1566
1567	    if (mrf_low == scan_mrf_low ||
1568		mrf_low == scan_mrf_high ||
1569		mrf_high == scan_mrf_low ||
1570		mrf_high == scan_mrf_high) {
1571	       break;
1572	    }
1573	 }
1574
1575	 if (scan_inst->mlen > 0) {
1576	    /* Found a SEND instruction, which means that there are
1577	     * live values in MRFs from base_mrf to base_mrf +
1578	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
1579	     * above it.
1580	     */
1581	    if (mrf_low >= scan_inst->base_mrf &&
1582		mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
1583	       break;
1584	    }
1585	    if (mrf_high >= scan_inst->base_mrf &&
1586		mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
1587	       break;
1588	    }
1589	 }
1590      }
1591   }
1592
1593   return progress;
1594}
1595
1596/**
1597 * Walks through basic blocks, locking for repeated MRF writes and
1598 * removing the later ones.
1599 */
1600bool
1601fs_visitor::remove_duplicate_mrf_writes()
1602{
1603   fs_inst *last_mrf_move[16];
1604   bool progress = false;
1605
1606   /* Need to update the MRF tracking for compressed instructions. */
1607   if (c->dispatch_width == 16)
1608      return false;
1609
1610   memset(last_mrf_move, 0, sizeof(last_mrf_move));
1611
1612   foreach_list_safe(node, &this->instructions) {
1613      fs_inst *inst = (fs_inst *)node;
1614
1615      switch (inst->opcode) {
1616      case BRW_OPCODE_DO:
1617      case BRW_OPCODE_WHILE:
1618      case BRW_OPCODE_IF:
1619      case BRW_OPCODE_ELSE:
1620      case BRW_OPCODE_ENDIF:
1621	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1622	 continue;
1623      default:
1624	 break;
1625      }
1626
1627      if (inst->opcode == BRW_OPCODE_MOV &&
1628	  inst->dst.file == MRF) {
1629	 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
1630	 if (prev_inst && inst->equals(prev_inst)) {
1631	    inst->remove();
1632	    progress = true;
1633	    continue;
1634	 }
1635      }
1636
1637      /* Clear out the last-write records for MRFs that were overwritten. */
1638      if (inst->dst.file == MRF) {
1639	 last_mrf_move[inst->dst.reg] = NULL;
1640      }
1641
1642      if (inst->mlen > 0) {
1643	 /* Found a SEND instruction, which will include two or fewer
1644	  * implied MRF writes.  We could do better here.
1645	  */
1646	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
1647	    last_mrf_move[inst->base_mrf + i] = NULL;
1648	 }
1649      }
1650
1651      /* Clear out any MRF move records whose sources got overwritten. */
1652      if (inst->dst.file == GRF) {
1653	 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
1654	    if (last_mrf_move[i] &&
1655		last_mrf_move[i]->src[0].reg == inst->dst.reg) {
1656	       last_mrf_move[i] = NULL;
1657	    }
1658	 }
1659      }
1660
1661      if (inst->opcode == BRW_OPCODE_MOV &&
1662	  inst->dst.file == MRF &&
1663	  inst->src[0].file == GRF &&
1664	  !inst->predicated) {
1665	 last_mrf_move[inst->dst.reg] = inst;
1666      }
1667   }
1668
1669   return progress;
1670}
1671
1672bool
1673fs_visitor::virtual_grf_interferes(int a, int b)
1674{
1675   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
1676   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
1677
1678   /* We can't handle dead register writes here, without iterating
1679    * over the whole instruction stream to find every single dead
1680    * write to that register to compare to the live interval of the
1681    * other register.  Just assert that dead_code_eliminate() has been
1682    * called.
1683    */
1684   assert((this->virtual_grf_use[a] != -1 ||
1685	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
1686	  (this->virtual_grf_use[b] != -1 ||
1687	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
1688
1689   /* If the register is used to store 16 values of less than float
1690    * size (only the case for pixel_[xy]), then we can't allocate
1691    * another dword-sized thing to that register that would be used in
1692    * the same instruction.  This is because when the GPU decodes (for
1693    * example):
1694    *
1695    * (declare (in ) vec4 gl_FragCoord@0x97766a0)
1696    * add(16)         g6<1>F          g6<8,8,1>UW     0.5F { align1 compr };
1697    *
1698    * it's actually processed as:
1699    * add(8)         g6<1>F          g6<8,8,1>UW     0.5F { align1 };
1700    * add(8)         g7<1>F          g6.8<8,8,1>UW   0.5F { align1 sechalf };
1701    *
1702    * so our second half values in g6 got overwritten in the first
1703    * half.
1704    */
1705   if (c->dispatch_width == 16 && (this->pixel_x.reg == a ||
1706				   this->pixel_x.reg == b ||
1707				   this->pixel_y.reg == a ||
1708				   this->pixel_y.reg == b)) {
1709      return start <= end;
1710   }
1711
1712   return start < end;
1713}
1714
1715bool
1716fs_visitor::run()
1717{
1718   uint32_t prog_offset_16 = 0;
1719   uint32_t orig_nr_params = c->prog_data.nr_params;
1720
1721   brw_wm_payload_setup(brw, c);
1722
1723   if (c->dispatch_width == 16) {
1724      /* align to 64 byte boundary. */
1725      while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
1726	 brw_NOP(p);
1727      }
1728
1729      /* Save off the start of this 16-wide program in case we succeed. */
1730      prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
1731
1732      brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1733   }
1734
1735   if (0) {
1736      emit_dummy_fs();
1737   } else {
1738      calculate_urb_setup();
1739      if (intel->gen < 6)
1740	 emit_interpolation_setup_gen4();
1741      else
1742	 emit_interpolation_setup_gen6();
1743
1744      /* Generate FS IR for main().  (the visitor only descends into
1745       * functions called "main").
1746       */
1747      foreach_list(node, &*shader->ir) {
1748	 ir_instruction *ir = (ir_instruction *)node;
1749	 base_ir = ir;
1750	 this->result = reg_undef;
1751	 ir->accept(this);
1752      }
1753      if (failed)
1754	 return false;
1755
1756      emit_fb_writes();
1757
1758      split_virtual_grfs();
1759
1760      setup_paramvalues_refs();
1761      setup_pull_constants();
1762
1763      bool progress;
1764      do {
1765	 progress = false;
1766
1767	 progress = remove_duplicate_mrf_writes() || progress;
1768
1769	 progress = propagate_constants() || progress;
1770	 progress = opt_algebraic() || progress;
1771	 progress = register_coalesce() || progress;
1772	 progress = compute_to_mrf() || progress;
1773	 progress = dead_code_eliminate() || progress;
1774      } while (progress);
1775
1776      remove_dead_constants();
1777
1778      schedule_instructions();
1779
1780      assign_curb_setup();
1781      assign_urb_setup();
1782
1783      if (0) {
1784	 /* Debug of register spilling: Go spill everything. */
1785	 int virtual_grf_count = virtual_grf_next;
1786	 for (int i = 0; i < virtual_grf_count; i++) {
1787	    spill_reg(i);
1788	 }
1789      }
1790
1791      if (0)
1792	 assign_regs_trivial();
1793      else {
1794	 while (!assign_regs()) {
1795	    if (failed)
1796	       break;
1797	 }
1798      }
1799   }
1800   assert(force_uncompressed_stack == 0);
1801   assert(force_sechalf_stack == 0);
1802
1803   if (failed)
1804      return false;
1805
1806   generate_code();
1807
1808   if (c->dispatch_width == 8) {
1809      c->prog_data.reg_blocks = brw_register_blocks(grf_used);
1810   } else {
1811      c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
1812      c->prog_data.prog_offset_16 = prog_offset_16;
1813
1814      /* Make sure we didn't try to sneak in an extra uniform */
1815      assert(orig_nr_params == c->prog_data.nr_params);
1816      (void) orig_nr_params;
1817   }
1818
1819   return !failed;
1820}
1821
1822bool
1823brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
1824	       struct gl_shader_program *prog)
1825{
1826   struct intel_context *intel = &brw->intel;
1827
1828   if (!prog)
1829      return false;
1830
1831   struct brw_shader *shader =
1832     (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1833   if (!shader)
1834      return false;
1835
1836   if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
1837      printf("GLSL IR for native fragment shader %d:\n", prog->Name);
1838      _mesa_print_ir(shader->ir, NULL);
1839      printf("\n\n");
1840   }
1841
1842   /* Now the main event: Visit the shader IR and generate our FS IR for it.
1843    */
1844   c->dispatch_width = 8;
1845
1846   fs_visitor v(c, prog, shader);
1847   if (!v.run()) {
1848      prog->LinkStatus = false;
1849      ralloc_strcat(&prog->InfoLog, v.fail_msg);
1850
1851      return false;
1852   }
1853
1854   if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
1855      c->dispatch_width = 16;
1856      fs_visitor v2(c, prog, shader);
1857      v2.import_uniforms(&v);
1858      v2.run();
1859   }
1860
1861   c->prog_data.dispatch_width = 8;
1862
1863   return true;
1864}
1865
1866bool
1867brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
1868{
1869   struct brw_context *brw = brw_context(ctx);
1870   struct brw_wm_prog_key key;
1871
1872   if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT])
1873      return true;
1874
1875   struct gl_fragment_program *fp = (struct gl_fragment_program *)
1876      prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
1877   struct brw_fragment_program *bfp = brw_fragment_program(fp);
1878
1879   memset(&key, 0, sizeof(key));
1880
1881   if (fp->UsesKill)
1882      key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
1883
1884   if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
1885      key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
1886
1887   /* Just assume depth testing. */
1888   key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
1889   key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
1890
1891   key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
1892   for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
1893      if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
1894	 continue;
1895
1896      key.proj_attrib_mask |= 1 << i;
1897
1898      int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
1899
1900      if (vp_index >= 0)
1901	 key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
1902   }
1903
1904   key.clamp_fragment_color = true;
1905
1906   for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) {
1907      if (fp->Base.ShadowSamplers & (1 << i))
1908	 key.tex.compare_funcs[i] = GL_LESS;
1909
1910      /* FINISHME: depth compares might use (0,0,0,W) for example */
1911      key.tex.swizzles[i] = SWIZZLE_XYZW;
1912   }
1913
1914   if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
1915      key.drawable_height = ctx->DrawBuffer->Height;
1916      key.render_to_fbo = ctx->DrawBuffer->Name != 0;
1917   }
1918
1919   key.nr_color_regions = 1;
1920
1921   key.program_string_id = bfp->id;
1922
1923   uint32_t old_prog_offset = brw->wm.prog_offset;
1924   struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
1925
1926   bool success = do_wm_prog(brw, prog, bfp, &key);
1927
1928   brw->wm.prog_offset = old_prog_offset;
1929   brw->wm.prog_data = old_prog_data;
1930
1931   return success;
1932}
1933