m_matrix.c revision 50db8129152f3d5ea8db13d55f82673d53bf1b8f
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3
4 *
5 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37#include "main/glheader.h"
38#include "main/imports.h"
39#include "main/macros.h"
40
41#include "m_matrix.h"
42
43
44/**
45 * \defgroup MatFlags MAT_FLAG_XXX-flags
46 *
47 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
48 * It would be nice to make all these flags private to m_matrix.c
49 */
50/*@{*/
51#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
52                                       *   (Not actually used - the identity
53                                       *   matrix is identified by the absense
54                                       *   of all other flags.)
55                                       */
56#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
57#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
58#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
59#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
60#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
61#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
62#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
63#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
64#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
65#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
66#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
67
68/** angle preserving matrix flags mask */
69#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
70				    MAT_FLAG_TRANSLATION | \
71				    MAT_FLAG_UNIFORM_SCALE)
72
73/** geometry related matrix flags mask */
74#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75			    MAT_FLAG_ROTATION | \
76			    MAT_FLAG_TRANSLATION | \
77			    MAT_FLAG_UNIFORM_SCALE | \
78			    MAT_FLAG_GENERAL_SCALE | \
79			    MAT_FLAG_GENERAL_3D | \
80			    MAT_FLAG_PERSPECTIVE | \
81	                    MAT_FLAG_SINGULAR)
82
83/** length preserving matrix flags mask */
84#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
85				     MAT_FLAG_TRANSLATION)
86
87
88/** 3D (non-perspective) matrix flags mask */
89#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
90		      MAT_FLAG_TRANSLATION | \
91		      MAT_FLAG_UNIFORM_SCALE | \
92		      MAT_FLAG_GENERAL_SCALE | \
93		      MAT_FLAG_GENERAL_3D)
94
95/** dirty matrix flags mask */
96#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
97			    MAT_DIRTY_FLAGS | \
98			    MAT_DIRTY_INVERSE)
99
100/*@}*/
101
102
103/**
104 * Test geometry related matrix flags.
105 *
106 * \param mat a pointer to a GLmatrix structure.
107 * \param a flags mask.
108 *
109 * \returns non-zero if all geometry related matrix flags are contained within
110 * the mask, or zero otherwise.
111 */
112#define TEST_MAT_FLAGS(mat, a)  \
113    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
114
115
116
117/**
118 * Names of the corresponding GLmatrixtype values.
119 */
120static const char *types[] = {
121   "MATRIX_GENERAL",
122   "MATRIX_IDENTITY",
123   "MATRIX_3D_NO_ROT",
124   "MATRIX_PERSPECTIVE",
125   "MATRIX_2D",
126   "MATRIX_2D_NO_ROT",
127   "MATRIX_3D"
128};
129
130
131/**
132 * Identity matrix.
133 */
134static GLfloat Identity[16] = {
135   1.0, 0.0, 0.0, 0.0,
136   0.0, 1.0, 0.0, 0.0,
137   0.0, 0.0, 1.0, 0.0,
138   0.0, 0.0, 0.0, 1.0
139};
140
141
142
143/**********************************************************************/
144/** \name Matrix multiplication */
145/*@{*/
146
147#define A(row,col)  a[(col<<2)+row]
148#define B(row,col)  b[(col<<2)+row]
149#define P(row,col)  product[(col<<2)+row]
150
151/**
152 * Perform a full 4x4 matrix multiplication.
153 *
154 * \param a matrix.
155 * \param b matrix.
156 * \param product will receive the product of \p a and \p b.
157 *
158 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159 *
160 * \note KW: 4*16 = 64 multiplications
161 *
162 * \author This \c matmul was contributed by Thomas Malik
163 */
164static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
165{
166   GLint i;
167   for (i = 0; i < 4; i++) {
168      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
169      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
170      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
171      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
172      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
173   }
174}
175
176/**
177 * Multiply two matrices known to occupy only the top three rows, such
178 * as typical model matrices, and orthogonal matrices.
179 *
180 * \param a matrix.
181 * \param b matrix.
182 * \param product will receive the product of \p a and \p b.
183 */
184static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
185{
186   GLint i;
187   for (i = 0; i < 3; i++) {
188      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
189      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
190      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
191      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
192      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
193   }
194   P(3,0) = 0;
195   P(3,1) = 0;
196   P(3,2) = 0;
197   P(3,3) = 1;
198}
199
200#undef A
201#undef B
202#undef P
203
204/**
205 * Multiply a matrix by an array of floats with known properties.
206 *
207 * \param mat pointer to a GLmatrix structure containing the left multiplication
208 * matrix, and that will receive the product result.
209 * \param m right multiplication matrix array.
210 * \param flags flags of the matrix \p m.
211 *
212 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
213 * if both matrices are 3D, or matmul4() otherwise.
214 */
215static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
216{
217   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
218
219   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
220      matmul34( mat->m, mat->m, m );
221   else
222      matmul4( mat->m, mat->m, m );
223}
224
225/**
226 * Matrix multiplication.
227 *
228 * \param dest destination matrix.
229 * \param a left matrix.
230 * \param b right matrix.
231 *
232 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
233 * if both matrices are 3D, or matmul4() otherwise.
234 */
235void
236_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
237{
238   dest->flags = (a->flags |
239		  b->flags |
240		  MAT_DIRTY_TYPE |
241		  MAT_DIRTY_INVERSE);
242
243   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
244      matmul34( dest->m, a->m, b->m );
245   else
246      matmul4( dest->m, a->m, b->m );
247}
248
249/**
250 * Matrix multiplication.
251 *
252 * \param dest left and destination matrix.
253 * \param m right matrix array.
254 *
255 * Marks the matrix flags with general flag, and type and inverse dirty flags.
256 * Calls matmul4() for the multiplication.
257 */
258void
259_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
260{
261   dest->flags |= (MAT_FLAG_GENERAL |
262		   MAT_DIRTY_TYPE |
263		   MAT_DIRTY_INVERSE |
264                   MAT_DIRTY_FLAGS);
265
266   matmul4( dest->m, dest->m, m );
267}
268
269/*@}*/
270
271
272/**********************************************************************/
273/** \name Matrix output */
274/*@{*/
275
276/**
277 * Print a matrix array.
278 *
279 * \param m matrix array.
280 *
281 * Called by _math_matrix_print() to print a matrix or its inverse.
282 */
283static void print_matrix_floats( const GLfloat m[16] )
284{
285   int i;
286   for (i=0;i<4;i++) {
287      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
288   }
289}
290
291/**
292 * Dumps the contents of a GLmatrix structure.
293 *
294 * \param m pointer to the GLmatrix structure.
295 */
296void
297_math_matrix_print( const GLmatrix *m )
298{
299   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
300   print_matrix_floats(m->m);
301   _mesa_debug(NULL, "Inverse: \n");
302   if (m->inv) {
303      GLfloat prod[16];
304      print_matrix_floats(m->inv);
305      matmul4(prod, m->m, m->inv);
306      _mesa_debug(NULL, "Mat * Inverse:\n");
307      print_matrix_floats(prod);
308   }
309   else {
310      _mesa_debug(NULL, "  - not available\n");
311   }
312}
313
314/*@}*/
315
316
317/**
318 * References an element of 4x4 matrix.
319 *
320 * \param m matrix array.
321 * \param c column of the desired element.
322 * \param r row of the desired element.
323 *
324 * \return value of the desired element.
325 *
326 * Calculate the linear storage index of the element and references it.
327 */
328#define MAT(m,r,c) (m)[(c)*4+(r)]
329
330
331/**********************************************************************/
332/** \name Matrix inversion */
333/*@{*/
334
335/**
336 * Swaps the values of two floating pointer variables.
337 *
338 * Used by invert_matrix_general() to swap the row pointers.
339 */
340#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
341
342/**
343 * Compute inverse of 4x4 transformation matrix.
344 *
345 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
346 * stored in the GLmatrix::inv attribute.
347 *
348 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
349 *
350 * \author
351 * Code contributed by Jacques Leroy jle@star.be
352 *
353 * Calculates the inverse matrix by performing the gaussian matrix reduction
354 * with partial pivoting followed by back/substitution with the loops manually
355 * unrolled.
356 */
357static GLboolean invert_matrix_general( GLmatrix *mat )
358{
359   const GLfloat *m = mat->m;
360   GLfloat *out = mat->inv;
361   GLfloat wtmp[4][8];
362   GLfloat m0, m1, m2, m3, s;
363   GLfloat *r0, *r1, *r2, *r3;
364
365   r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
366
367   r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
368   r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
369   r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
370
371   r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
372   r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
373   r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
374
375   r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
376   r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
377   r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
378
379   r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
380   r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
381   r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
382
383   /* choose pivot - or die */
384   if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2);
385   if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1);
386   if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0);
387   if (0.0 == r0[0])  return GL_FALSE;
388
389   /* eliminate first variable     */
390   m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
391   s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
392   s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
393   s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
394   s = r0[4];
395   if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
396   s = r0[5];
397   if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
398   s = r0[6];
399   if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
400   s = r0[7];
401   if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
402
403   /* choose pivot - or die */
404   if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2);
405   if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1);
406   if (0.0 == r1[1])  return GL_FALSE;
407
408   /* eliminate second variable */
409   m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
410   r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
411   r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
412   s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
413   s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
414   s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
415   s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
416
417   /* choose pivot - or die */
418   if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2);
419   if (0.0 == r2[2])  return GL_FALSE;
420
421   /* eliminate third variable */
422   m3 = r3[2]/r2[2];
423   r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
424   r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
425   r3[7] -= m3 * r2[7];
426
427   /* last check */
428   if (0.0 == r3[3]) return GL_FALSE;
429
430   s = 1.0F/r3[3];             /* now back substitute row 3 */
431   r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
432
433   m2 = r2[3];                 /* now back substitute row 2 */
434   s  = 1.0F/r2[2];
435   r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
436   r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
437   m1 = r1[3];
438   r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
439   r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
440   m0 = r0[3];
441   r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
442   r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
443
444   m1 = r1[2];                 /* now back substitute row 1 */
445   s  = 1.0F/r1[1];
446   r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
447   r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
448   m0 = r0[2];
449   r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
450   r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
451
452   m0 = r0[1];                 /* now back substitute row 0 */
453   s  = 1.0F/r0[0];
454   r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
455   r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
456
457   MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
458   MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
459   MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
460   MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
461   MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
462   MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
463   MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
464   MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
465
466   return GL_TRUE;
467}
468#undef SWAP_ROWS
469
470/**
471 * Compute inverse of a general 3d transformation matrix.
472 *
473 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
474 * stored in the GLmatrix::inv attribute.
475 *
476 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
477 *
478 * \author Adapted from graphics gems II.
479 *
480 * Calculates the inverse of the upper left by first calculating its
481 * determinant and multiplying it to the symmetric adjust matrix of each
482 * element. Finally deals with the translation part by transforming the
483 * original translation vector using by the calculated submatrix inverse.
484 */
485static GLboolean invert_matrix_3d_general( GLmatrix *mat )
486{
487   const GLfloat *in = mat->m;
488   GLfloat *out = mat->inv;
489   GLfloat pos, neg, t;
490   GLfloat det;
491
492   /* Calculate the determinant of upper left 3x3 submatrix and
493    * determine if the matrix is singular.
494    */
495   pos = neg = 0.0;
496   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
497   if (t >= 0.0) pos += t; else neg += t;
498
499   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
500   if (t >= 0.0) pos += t; else neg += t;
501
502   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
503   if (t >= 0.0) pos += t; else neg += t;
504
505   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
506   if (t >= 0.0) pos += t; else neg += t;
507
508   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
509   if (t >= 0.0) pos += t; else neg += t;
510
511   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
512   if (t >= 0.0) pos += t; else neg += t;
513
514   det = pos + neg;
515
516   if (FABSF(det) < 1e-25)
517      return GL_FALSE;
518
519   det = 1.0F / det;
520   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
521   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
522   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
523   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
524   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
525   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
526   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
527   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
528   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
529
530   /* Do the translation part */
531   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
532		     MAT(in,1,3) * MAT(out,0,1) +
533		     MAT(in,2,3) * MAT(out,0,2) );
534   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
535		     MAT(in,1,3) * MAT(out,1,1) +
536		     MAT(in,2,3) * MAT(out,1,2) );
537   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
538		     MAT(in,1,3) * MAT(out,2,1) +
539		     MAT(in,2,3) * MAT(out,2,2) );
540
541   return GL_TRUE;
542}
543
544/**
545 * Compute inverse of a 3d transformation matrix.
546 *
547 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
548 * stored in the GLmatrix::inv attribute.
549 *
550 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
551 *
552 * If the matrix is not an angle preserving matrix then calls
553 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
554 * the inverse matrix analyzing and inverting each of the scaling, rotation and
555 * translation parts.
556 */
557static GLboolean invert_matrix_3d( GLmatrix *mat )
558{
559   const GLfloat *in = mat->m;
560   GLfloat *out = mat->inv;
561
562   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
563      return invert_matrix_3d_general( mat );
564   }
565
566   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
567      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
568                       MAT(in,0,1) * MAT(in,0,1) +
569                       MAT(in,0,2) * MAT(in,0,2));
570
571      if (scale == 0.0)
572         return GL_FALSE;
573
574      scale = 1.0F / scale;
575
576      /* Transpose and scale the 3 by 3 upper-left submatrix. */
577      MAT(out,0,0) = scale * MAT(in,0,0);
578      MAT(out,1,0) = scale * MAT(in,0,1);
579      MAT(out,2,0) = scale * MAT(in,0,2);
580      MAT(out,0,1) = scale * MAT(in,1,0);
581      MAT(out,1,1) = scale * MAT(in,1,1);
582      MAT(out,2,1) = scale * MAT(in,1,2);
583      MAT(out,0,2) = scale * MAT(in,2,0);
584      MAT(out,1,2) = scale * MAT(in,2,1);
585      MAT(out,2,2) = scale * MAT(in,2,2);
586   }
587   else if (mat->flags & MAT_FLAG_ROTATION) {
588      /* Transpose the 3 by 3 upper-left submatrix. */
589      MAT(out,0,0) = MAT(in,0,0);
590      MAT(out,1,0) = MAT(in,0,1);
591      MAT(out,2,0) = MAT(in,0,2);
592      MAT(out,0,1) = MAT(in,1,0);
593      MAT(out,1,1) = MAT(in,1,1);
594      MAT(out,2,1) = MAT(in,1,2);
595      MAT(out,0,2) = MAT(in,2,0);
596      MAT(out,1,2) = MAT(in,2,1);
597      MAT(out,2,2) = MAT(in,2,2);
598   }
599   else {
600      /* pure translation */
601      memcpy( out, Identity, sizeof(Identity) );
602      MAT(out,0,3) = - MAT(in,0,3);
603      MAT(out,1,3) = - MAT(in,1,3);
604      MAT(out,2,3) = - MAT(in,2,3);
605      return GL_TRUE;
606   }
607
608   if (mat->flags & MAT_FLAG_TRANSLATION) {
609      /* Do the translation part */
610      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
611			MAT(in,1,3) * MAT(out,0,1) +
612			MAT(in,2,3) * MAT(out,0,2) );
613      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
614			MAT(in,1,3) * MAT(out,1,1) +
615			MAT(in,2,3) * MAT(out,1,2) );
616      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
617			MAT(in,1,3) * MAT(out,2,1) +
618			MAT(in,2,3) * MAT(out,2,2) );
619   }
620   else {
621      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
622   }
623
624   return GL_TRUE;
625}
626
627/**
628 * Compute inverse of an identity transformation matrix.
629 *
630 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
631 * stored in the GLmatrix::inv attribute.
632 *
633 * \return always GL_TRUE.
634 *
635 * Simply copies Identity into GLmatrix::inv.
636 */
637static GLboolean invert_matrix_identity( GLmatrix *mat )
638{
639   memcpy( mat->inv, Identity, sizeof(Identity) );
640   return GL_TRUE;
641}
642
643/**
644 * Compute inverse of a no-rotation 3d transformation matrix.
645 *
646 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
647 * stored in the GLmatrix::inv attribute.
648 *
649 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
650 *
651 * Calculates the
652 */
653static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
654{
655   const GLfloat *in = mat->m;
656   GLfloat *out = mat->inv;
657
658   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
659      return GL_FALSE;
660
661   memcpy( out, Identity, 16 * sizeof(GLfloat) );
662   MAT(out,0,0) = 1.0F / MAT(in,0,0);
663   MAT(out,1,1) = 1.0F / MAT(in,1,1);
664   MAT(out,2,2) = 1.0F / MAT(in,2,2);
665
666   if (mat->flags & MAT_FLAG_TRANSLATION) {
667      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
668      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
669      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
670   }
671
672   return GL_TRUE;
673}
674
675/**
676 * Compute inverse of a no-rotation 2d transformation matrix.
677 *
678 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
679 * stored in the GLmatrix::inv attribute.
680 *
681 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
682 *
683 * Calculates the inverse matrix by applying the inverse scaling and
684 * translation to the identity matrix.
685 */
686static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
687{
688   const GLfloat *in = mat->m;
689   GLfloat *out = mat->inv;
690
691   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
692      return GL_FALSE;
693
694   memcpy( out, Identity, 16 * sizeof(GLfloat) );
695   MAT(out,0,0) = 1.0F / MAT(in,0,0);
696   MAT(out,1,1) = 1.0F / MAT(in,1,1);
697
698   if (mat->flags & MAT_FLAG_TRANSLATION) {
699      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
700      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
701   }
702
703   return GL_TRUE;
704}
705
706#if 0
707/* broken */
708static GLboolean invert_matrix_perspective( GLmatrix *mat )
709{
710   const GLfloat *in = mat->m;
711   GLfloat *out = mat->inv;
712
713   if (MAT(in,2,3) == 0)
714      return GL_FALSE;
715
716   memcpy( out, Identity, 16 * sizeof(GLfloat) );
717
718   MAT(out,0,0) = 1.0F / MAT(in,0,0);
719   MAT(out,1,1) = 1.0F / MAT(in,1,1);
720
721   MAT(out,0,3) = MAT(in,0,2);
722   MAT(out,1,3) = MAT(in,1,2);
723
724   MAT(out,2,2) = 0;
725   MAT(out,2,3) = -1;
726
727   MAT(out,3,2) = 1.0F / MAT(in,2,3);
728   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
729
730   return GL_TRUE;
731}
732#endif
733
734/**
735 * Matrix inversion function pointer type.
736 */
737typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
738
739/**
740 * Table of the matrix inversion functions according to the matrix type.
741 */
742static inv_mat_func inv_mat_tab[7] = {
743   invert_matrix_general,
744   invert_matrix_identity,
745   invert_matrix_3d_no_rot,
746#if 0
747   /* Don't use this function for now - it fails when the projection matrix
748    * is premultiplied by a translation (ala Chromium's tilesort SPU).
749    */
750   invert_matrix_perspective,
751#else
752   invert_matrix_general,
753#endif
754   invert_matrix_3d,		/* lazy! */
755   invert_matrix_2d_no_rot,
756   invert_matrix_3d
757};
758
759/**
760 * Compute inverse of a transformation matrix.
761 *
762 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
763 * stored in the GLmatrix::inv attribute.
764 *
765 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
766 *
767 * Calls the matrix inversion function in inv_mat_tab corresponding to the
768 * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
769 * and copies the identity matrix into GLmatrix::inv.
770 */
771static GLboolean matrix_invert( GLmatrix *mat )
772{
773   if (inv_mat_tab[mat->type](mat)) {
774      mat->flags &= ~MAT_FLAG_SINGULAR;
775      return GL_TRUE;
776   } else {
777      mat->flags |= MAT_FLAG_SINGULAR;
778      memcpy( mat->inv, Identity, sizeof(Identity) );
779      return GL_FALSE;
780   }
781}
782
783/*@}*/
784
785
786/**********************************************************************/
787/** \name Matrix generation */
788/*@{*/
789
790/**
791 * Generate a 4x4 transformation matrix from glRotate parameters, and
792 * post-multiply the input matrix by it.
793 *
794 * \author
795 * This function was contributed by Erich Boleyn (erich@uruk.org).
796 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
797 */
798void
799_math_matrix_rotate( GLmatrix *mat,
800		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
801{
802   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
803   GLfloat m[16];
804   GLboolean optimized;
805
806   s = (GLfloat) sin( angle * DEG2RAD );
807   c = (GLfloat) cos( angle * DEG2RAD );
808
809   memcpy(m, Identity, sizeof(GLfloat)*16);
810   optimized = GL_FALSE;
811
812#define M(row,col)  m[col*4+row]
813
814   if (x == 0.0F) {
815      if (y == 0.0F) {
816         if (z != 0.0F) {
817            optimized = GL_TRUE;
818            /* rotate only around z-axis */
819            M(0,0) = c;
820            M(1,1) = c;
821            if (z < 0.0F) {
822               M(0,1) = s;
823               M(1,0) = -s;
824            }
825            else {
826               M(0,1) = -s;
827               M(1,0) = s;
828            }
829         }
830      }
831      else if (z == 0.0F) {
832         optimized = GL_TRUE;
833         /* rotate only around y-axis */
834         M(0,0) = c;
835         M(2,2) = c;
836         if (y < 0.0F) {
837            M(0,2) = -s;
838            M(2,0) = s;
839         }
840         else {
841            M(0,2) = s;
842            M(2,0) = -s;
843         }
844      }
845   }
846   else if (y == 0.0F) {
847      if (z == 0.0F) {
848         optimized = GL_TRUE;
849         /* rotate only around x-axis */
850         M(1,1) = c;
851         M(2,2) = c;
852         if (x < 0.0F) {
853            M(1,2) = s;
854            M(2,1) = -s;
855         }
856         else {
857            M(1,2) = -s;
858            M(2,1) = s;
859         }
860      }
861   }
862
863   if (!optimized) {
864      const GLfloat mag = SQRTF(x * x + y * y + z * z);
865
866      if (mag <= 1.0e-4) {
867         /* no rotation, leave mat as-is */
868         return;
869      }
870
871      x /= mag;
872      y /= mag;
873      z /= mag;
874
875
876      /*
877       *     Arbitrary axis rotation matrix.
878       *
879       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
880       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
881       *  (which is about the X-axis), and the two composite transforms
882       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
883       *  from the arbitrary axis to the X-axis then back.  They are
884       *  all elementary rotations.
885       *
886       *  Rz' is a rotation about the Z-axis, to bring the axis vector
887       *  into the x-z plane.  Then Ry' is applied, rotating about the
888       *  Y-axis to bring the axis vector parallel with the X-axis.  The
889       *  rotation about the X-axis is then performed.  Ry and Rz are
890       *  simply the respective inverse transforms to bring the arbitrary
891       *  axis back to its original orientation.  The first transforms
892       *  Rz' and Ry' are considered inverses, since the data from the
893       *  arbitrary axis gives you info on how to get to it, not how
894       *  to get away from it, and an inverse must be applied.
895       *
896       *  The basic calculation used is to recognize that the arbitrary
897       *  axis vector (x, y, z), since it is of unit length, actually
898       *  represents the sines and cosines of the angles to rotate the
899       *  X-axis to the same orientation, with theta being the angle about
900       *  Z and phi the angle about Y (in the order described above)
901       *  as follows:
902       *
903       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
904       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
905       *
906       *  cos ( phi ) = sqrt ( 1 - z^2 )
907       *  sin ( phi ) = z
908       *
909       *  Note that cos ( phi ) can further be inserted to the above
910       *  formulas:
911       *
912       *  cos ( theta ) = x / cos ( phi )
913       *  sin ( theta ) = y / sin ( phi )
914       *
915       *  ...etc.  Because of those relations and the standard trigonometric
916       *  relations, it is pssible to reduce the transforms down to what
917       *  is used below.  It may be that any primary axis chosen will give the
918       *  same results (modulo a sign convention) using thie method.
919       *
920       *  Particularly nice is to notice that all divisions that might
921       *  have caused trouble when parallel to certain planes or
922       *  axis go away with care paid to reducing the expressions.
923       *  After checking, it does perform correctly under all cases, since
924       *  in all the cases of division where the denominator would have
925       *  been zero, the numerator would have been zero as well, giving
926       *  the expected result.
927       */
928
929      xx = x * x;
930      yy = y * y;
931      zz = z * z;
932      xy = x * y;
933      yz = y * z;
934      zx = z * x;
935      xs = x * s;
936      ys = y * s;
937      zs = z * s;
938      one_c = 1.0F - c;
939
940      /* We already hold the identity-matrix so we can skip some statements */
941      M(0,0) = (one_c * xx) + c;
942      M(0,1) = (one_c * xy) - zs;
943      M(0,2) = (one_c * zx) + ys;
944/*    M(0,3) = 0.0F; */
945
946      M(1,0) = (one_c * xy) + zs;
947      M(1,1) = (one_c * yy) + c;
948      M(1,2) = (one_c * yz) - xs;
949/*    M(1,3) = 0.0F; */
950
951      M(2,0) = (one_c * zx) - ys;
952      M(2,1) = (one_c * yz) + xs;
953      M(2,2) = (one_c * zz) + c;
954/*    M(2,3) = 0.0F; */
955
956/*
957      M(3,0) = 0.0F;
958      M(3,1) = 0.0F;
959      M(3,2) = 0.0F;
960      M(3,3) = 1.0F;
961*/
962   }
963#undef M
964
965   matrix_multf( mat, m, MAT_FLAG_ROTATION );
966}
967
968/**
969 * Apply a perspective projection matrix.
970 *
971 * \param mat matrix to apply the projection.
972 * \param left left clipping plane coordinate.
973 * \param right right clipping plane coordinate.
974 * \param bottom bottom clipping plane coordinate.
975 * \param top top clipping plane coordinate.
976 * \param nearval distance to the near clipping plane.
977 * \param farval distance to the far clipping plane.
978 *
979 * Creates the projection matrix and multiplies it with \p mat, marking the
980 * MAT_FLAG_PERSPECTIVE flag.
981 */
982void
983_math_matrix_frustum( GLmatrix *mat,
984		      GLfloat left, GLfloat right,
985		      GLfloat bottom, GLfloat top,
986		      GLfloat nearval, GLfloat farval )
987{
988   GLfloat x, y, a, b, c, d;
989   GLfloat m[16];
990
991   x = (2.0F*nearval) / (right-left);
992   y = (2.0F*nearval) / (top-bottom);
993   a = (right+left) / (right-left);
994   b = (top+bottom) / (top-bottom);
995   c = -(farval+nearval) / ( farval-nearval);
996   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
997
998#define M(row,col)  m[col*4+row]
999   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
1000   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
1001   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
1002   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
1003#undef M
1004
1005   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1006}
1007
1008/**
1009 * Apply an orthographic projection matrix.
1010 *
1011 * \param mat matrix to apply the projection.
1012 * \param left left clipping plane coordinate.
1013 * \param right right clipping plane coordinate.
1014 * \param bottom bottom clipping plane coordinate.
1015 * \param top top clipping plane coordinate.
1016 * \param nearval distance to the near clipping plane.
1017 * \param farval distance to the far clipping plane.
1018 *
1019 * Creates the projection matrix and multiplies it with \p mat, marking the
1020 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1021 */
1022void
1023_math_matrix_ortho( GLmatrix *mat,
1024		    GLfloat left, GLfloat right,
1025		    GLfloat bottom, GLfloat top,
1026		    GLfloat nearval, GLfloat farval )
1027{
1028   GLfloat m[16];
1029
1030#define M(row,col)  m[col*4+row]
1031   M(0,0) = 2.0F / (right-left);
1032   M(0,1) = 0.0F;
1033   M(0,2) = 0.0F;
1034   M(0,3) = -(right+left) / (right-left);
1035
1036   M(1,0) = 0.0F;
1037   M(1,1) = 2.0F / (top-bottom);
1038   M(1,2) = 0.0F;
1039   M(1,3) = -(top+bottom) / (top-bottom);
1040
1041   M(2,0) = 0.0F;
1042   M(2,1) = 0.0F;
1043   M(2,2) = -2.0F / (farval-nearval);
1044   M(2,3) = -(farval+nearval) / (farval-nearval);
1045
1046   M(3,0) = 0.0F;
1047   M(3,1) = 0.0F;
1048   M(3,2) = 0.0F;
1049   M(3,3) = 1.0F;
1050#undef M
1051
1052   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1053}
1054
1055/**
1056 * Multiply a matrix with a general scaling matrix.
1057 *
1058 * \param mat matrix.
1059 * \param x x axis scale factor.
1060 * \param y y axis scale factor.
1061 * \param z z axis scale factor.
1062 *
1063 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1064 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1065 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1066 * MAT_DIRTY_INVERSE dirty flags.
1067 */
1068void
1069_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1070{
1071   GLfloat *m = mat->m;
1072   m[0] *= x;   m[4] *= y;   m[8]  *= z;
1073   m[1] *= x;   m[5] *= y;   m[9]  *= z;
1074   m[2] *= x;   m[6] *= y;   m[10] *= z;
1075   m[3] *= x;   m[7] *= y;   m[11] *= z;
1076
1077   if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8)
1078      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1079   else
1080      mat->flags |= MAT_FLAG_GENERAL_SCALE;
1081
1082   mat->flags |= (MAT_DIRTY_TYPE |
1083		  MAT_DIRTY_INVERSE);
1084}
1085
1086/**
1087 * Multiply a matrix with a translation matrix.
1088 *
1089 * \param mat matrix.
1090 * \param x translation vector x coordinate.
1091 * \param y translation vector y coordinate.
1092 * \param z translation vector z coordinate.
1093 *
1094 * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1095 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1096 * dirty flags.
1097 */
1098void
1099_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1100{
1101   GLfloat *m = mat->m;
1102   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1103   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1104   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1105   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1106
1107   mat->flags |= (MAT_FLAG_TRANSLATION |
1108		  MAT_DIRTY_TYPE |
1109		  MAT_DIRTY_INVERSE);
1110}
1111
1112
1113/**
1114 * Set matrix to do viewport and depthrange mapping.
1115 * Transforms Normalized Device Coords to window/Z values.
1116 */
1117void
1118_math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
1119                      GLfloat zNear, GLfloat zFar, GLfloat depthMax)
1120{
1121   m->m[MAT_SX] = (GLfloat) width / 2.0F;
1122   m->m[MAT_TX] = m->m[MAT_SX] + x;
1123   m->m[MAT_SY] = (GLfloat) height / 2.0F;
1124   m->m[MAT_TY] = m->m[MAT_SY] + y;
1125   m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F);
1126   m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear);
1127   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1128   m->type = MATRIX_3D_NO_ROT;
1129}
1130
1131
1132/**
1133 * Set a matrix to the identity matrix.
1134 *
1135 * \param mat matrix.
1136 *
1137 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1138 * Sets the matrix type to identity, and clear the dirty flags.
1139 */
1140void
1141_math_matrix_set_identity( GLmatrix *mat )
1142{
1143   memcpy( mat->m, Identity, 16*sizeof(GLfloat) );
1144
1145   if (mat->inv)
1146      memcpy( mat->inv, Identity, 16*sizeof(GLfloat) );
1147
1148   mat->type = MATRIX_IDENTITY;
1149   mat->flags &= ~(MAT_DIRTY_FLAGS|
1150		   MAT_DIRTY_TYPE|
1151		   MAT_DIRTY_INVERSE);
1152}
1153
1154/*@}*/
1155
1156
1157/**********************************************************************/
1158/** \name Matrix analysis */
1159/*@{*/
1160
1161#define ZERO(x) (1<<x)
1162#define ONE(x)  (1<<(x+16))
1163
1164#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1165#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1166
1167#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1168			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1169			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1170			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1171
1172#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1173			  ZERO(1)  |            ZERO(9)  |           \
1174			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1175			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1176
1177#define MASK_2D          (                      ZERO(8)  |           \
1178			                        ZERO(9)  |           \
1179			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1180			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1181
1182
1183#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1184			  ZERO(1)  |            ZERO(9)  |           \
1185			  ZERO(2)  | ZERO(6)  |                      \
1186			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1187
1188#define MASK_3D          (                                           \
1189			                                             \
1190			                                             \
1191			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1192
1193
1194#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1195			  ZERO(1)  |                       ZERO(13) |\
1196			  ZERO(2)  | ZERO(6)  |                      \
1197			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1198
1199#define SQ(x) ((x)*(x))
1200
1201/**
1202 * Determine type and flags from scratch.
1203 *
1204 * \param mat matrix.
1205 *
1206 * This is expensive enough to only want to do it once.
1207 */
1208static void analyse_from_scratch( GLmatrix *mat )
1209{
1210   const GLfloat *m = mat->m;
1211   GLuint mask = 0;
1212   GLuint i;
1213
1214   for (i = 0 ; i < 16 ; i++) {
1215      if (m[i] == 0.0) mask |= (1<<i);
1216   }
1217
1218   if (m[0] == 1.0F) mask |= (1<<16);
1219   if (m[5] == 1.0F) mask |= (1<<21);
1220   if (m[10] == 1.0F) mask |= (1<<26);
1221   if (m[15] == 1.0F) mask |= (1<<31);
1222
1223   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1224
1225   /* Check for translation - no-one really cares
1226    */
1227   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1228      mat->flags |= MAT_FLAG_TRANSLATION;
1229
1230   /* Do the real work
1231    */
1232   if (mask == (GLuint) MASK_IDENTITY) {
1233      mat->type = MATRIX_IDENTITY;
1234   }
1235   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1236      mat->type = MATRIX_2D_NO_ROT;
1237
1238      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1239	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1240   }
1241   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1242      GLfloat mm = DOT2(m, m);
1243      GLfloat m4m4 = DOT2(m+4,m+4);
1244      GLfloat mm4 = DOT2(m,m+4);
1245
1246      mat->type = MATRIX_2D;
1247
1248      /* Check for scale */
1249      if (SQ(mm-1) > SQ(1e-6) ||
1250	  SQ(m4m4-1) > SQ(1e-6))
1251	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1252
1253      /* Check for rotation */
1254      if (SQ(mm4) > SQ(1e-6))
1255	 mat->flags |= MAT_FLAG_GENERAL_3D;
1256      else
1257	 mat->flags |= MAT_FLAG_ROTATION;
1258
1259   }
1260   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1261      mat->type = MATRIX_3D_NO_ROT;
1262
1263      /* Check for scale */
1264      if (SQ(m[0]-m[5]) < SQ(1e-6) &&
1265	  SQ(m[0]-m[10]) < SQ(1e-6)) {
1266	 if (SQ(m[0]-1.0) > SQ(1e-6)) {
1267	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1268         }
1269      }
1270      else {
1271	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1272      }
1273   }
1274   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1275      GLfloat c1 = DOT3(m,m);
1276      GLfloat c2 = DOT3(m+4,m+4);
1277      GLfloat c3 = DOT3(m+8,m+8);
1278      GLfloat d1 = DOT3(m, m+4);
1279      GLfloat cp[3];
1280
1281      mat->type = MATRIX_3D;
1282
1283      /* Check for scale */
1284      if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
1285	 if (SQ(c1-1.0) > SQ(1e-6))
1286	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1287	 /* else no scale at all */
1288      }
1289      else {
1290	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1291      }
1292
1293      /* Check for rotation */
1294      if (SQ(d1) < SQ(1e-6)) {
1295	 CROSS3( cp, m, m+4 );
1296	 SUB_3V( cp, cp, (m+8) );
1297	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
1298	    mat->flags |= MAT_FLAG_ROTATION;
1299	 else
1300	    mat->flags |= MAT_FLAG_GENERAL_3D;
1301      }
1302      else {
1303	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1304      }
1305   }
1306   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1307      mat->type = MATRIX_PERSPECTIVE;
1308      mat->flags |= MAT_FLAG_GENERAL;
1309   }
1310   else {
1311      mat->type = MATRIX_GENERAL;
1312      mat->flags |= MAT_FLAG_GENERAL;
1313   }
1314}
1315
1316/**
1317 * Analyze a matrix given that its flags are accurate.
1318 *
1319 * This is the more common operation, hopefully.
1320 */
1321static void analyse_from_flags( GLmatrix *mat )
1322{
1323   const GLfloat *m = mat->m;
1324
1325   if (TEST_MAT_FLAGS(mat, 0)) {
1326      mat->type = MATRIX_IDENTITY;
1327   }
1328   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1329				 MAT_FLAG_UNIFORM_SCALE |
1330				 MAT_FLAG_GENERAL_SCALE))) {
1331      if ( m[10]==1.0F && m[14]==0.0F ) {
1332	 mat->type = MATRIX_2D_NO_ROT;
1333      }
1334      else {
1335	 mat->type = MATRIX_3D_NO_ROT;
1336      }
1337   }
1338   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1339      if (                                 m[ 8]==0.0F
1340            &&                             m[ 9]==0.0F
1341            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1342	 mat->type = MATRIX_2D;
1343      }
1344      else {
1345	 mat->type = MATRIX_3D;
1346      }
1347   }
1348   else if (                 m[4]==0.0F                 && m[12]==0.0F
1349            && m[1]==0.0F                               && m[13]==0.0F
1350            && m[2]==0.0F && m[6]==0.0F
1351            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1352      mat->type = MATRIX_PERSPECTIVE;
1353   }
1354   else {
1355      mat->type = MATRIX_GENERAL;
1356   }
1357}
1358
1359/**
1360 * Analyze and update a matrix.
1361 *
1362 * \param mat matrix.
1363 *
1364 * If the matrix type is dirty then calls either analyse_from_scratch() or
1365 * analyse_from_flags() to determine its type, according to whether the flags
1366 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1367 * then calls matrix_invert(). Finally clears the dirty flags.
1368 */
1369void
1370_math_matrix_analyse( GLmatrix *mat )
1371{
1372   if (mat->flags & MAT_DIRTY_TYPE) {
1373      if (mat->flags & MAT_DIRTY_FLAGS)
1374	 analyse_from_scratch( mat );
1375      else
1376	 analyse_from_flags( mat );
1377   }
1378
1379   if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1380      matrix_invert( mat );
1381      mat->flags &= ~MAT_DIRTY_INVERSE;
1382   }
1383
1384   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1385}
1386
1387/*@}*/
1388
1389
1390/**
1391 * Test if the given matrix preserves vector lengths.
1392 */
1393GLboolean
1394_math_matrix_is_length_preserving( const GLmatrix *m )
1395{
1396   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1397}
1398
1399
1400/**
1401 * Test if the given matrix does any rotation.
1402 * (or perhaps if the upper-left 3x3 is non-identity)
1403 */
1404GLboolean
1405_math_matrix_has_rotation( const GLmatrix *m )
1406{
1407   if (m->flags & (MAT_FLAG_GENERAL |
1408                   MAT_FLAG_ROTATION |
1409                   MAT_FLAG_GENERAL_3D |
1410                   MAT_FLAG_PERSPECTIVE))
1411      return GL_TRUE;
1412   else
1413      return GL_FALSE;
1414}
1415
1416
1417GLboolean
1418_math_matrix_is_general_scale( const GLmatrix *m )
1419{
1420   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1421}
1422
1423
1424GLboolean
1425_math_matrix_is_dirty( const GLmatrix *m )
1426{
1427   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1428}
1429
1430
1431/**********************************************************************/
1432/** \name Matrix setup */
1433/*@{*/
1434
1435/**
1436 * Copy a matrix.
1437 *
1438 * \param to destination matrix.
1439 * \param from source matrix.
1440 *
1441 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1442 */
1443void
1444_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1445{
1446   memcpy( to->m, from->m, sizeof(Identity) );
1447   to->flags = from->flags;
1448   to->type = from->type;
1449
1450   if (to->inv != 0) {
1451      if (from->inv == 0) {
1452	 matrix_invert( to );
1453      }
1454      else {
1455	 memcpy(to->inv, from->inv, sizeof(GLfloat)*16);
1456      }
1457   }
1458}
1459
1460/**
1461 * Loads a matrix array into GLmatrix.
1462 *
1463 * \param m matrix array.
1464 * \param mat matrix.
1465 *
1466 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1467 * flags.
1468 */
1469void
1470_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1471{
1472   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1473   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1474}
1475
1476/**
1477 * Matrix constructor.
1478 *
1479 * \param m matrix.
1480 *
1481 * Initialize the GLmatrix fields.
1482 */
1483void
1484_math_matrix_ctr( GLmatrix *m )
1485{
1486   m->m = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1487   if (m->m)
1488      memcpy( m->m, Identity, sizeof(Identity) );
1489   m->inv = NULL;
1490   m->type = MATRIX_IDENTITY;
1491   m->flags = 0;
1492}
1493
1494/**
1495 * Matrix destructor.
1496 *
1497 * \param m matrix.
1498 *
1499 * Frees the data in a GLmatrix.
1500 */
1501void
1502_math_matrix_dtr( GLmatrix *m )
1503{
1504   if (m->m) {
1505      _mesa_align_free( m->m );
1506      m->m = NULL;
1507   }
1508   if (m->inv) {
1509      _mesa_align_free( m->inv );
1510      m->inv = NULL;
1511   }
1512}
1513
1514/**
1515 * Allocate a matrix inverse.
1516 *
1517 * \param m matrix.
1518 *
1519 * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity.
1520 */
1521void
1522_math_matrix_alloc_inv( GLmatrix *m )
1523{
1524   if (!m->inv) {
1525      m->inv = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1526      if (m->inv)
1527         memcpy( m->inv, Identity, 16 * sizeof(GLfloat) );
1528   }
1529}
1530
1531/*@}*/
1532
1533
1534/**********************************************************************/
1535/** \name Matrix transpose */
1536/*@{*/
1537
1538/**
1539 * Transpose a GLfloat matrix.
1540 *
1541 * \param to destination array.
1542 * \param from source array.
1543 */
1544void
1545_math_transposef( GLfloat to[16], const GLfloat from[16] )
1546{
1547   to[0] = from[0];
1548   to[1] = from[4];
1549   to[2] = from[8];
1550   to[3] = from[12];
1551   to[4] = from[1];
1552   to[5] = from[5];
1553   to[6] = from[9];
1554   to[7] = from[13];
1555   to[8] = from[2];
1556   to[9] = from[6];
1557   to[10] = from[10];
1558   to[11] = from[14];
1559   to[12] = from[3];
1560   to[13] = from[7];
1561   to[14] = from[11];
1562   to[15] = from[15];
1563}
1564
1565/**
1566 * Transpose a GLdouble matrix.
1567 *
1568 * \param to destination array.
1569 * \param from source array.
1570 */
1571void
1572_math_transposed( GLdouble to[16], const GLdouble from[16] )
1573{
1574   to[0] = from[0];
1575   to[1] = from[4];
1576   to[2] = from[8];
1577   to[3] = from[12];
1578   to[4] = from[1];
1579   to[5] = from[5];
1580   to[6] = from[9];
1581   to[7] = from[13];
1582   to[8] = from[2];
1583   to[9] = from[6];
1584   to[10] = from[10];
1585   to[11] = from[14];
1586   to[12] = from[3];
1587   to[13] = from[7];
1588   to[14] = from[11];
1589   to[15] = from[15];
1590}
1591
1592/**
1593 * Transpose a GLdouble matrix and convert to GLfloat.
1594 *
1595 * \param to destination array.
1596 * \param from source array.
1597 */
1598void
1599_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1600{
1601   to[0] = (GLfloat) from[0];
1602   to[1] = (GLfloat) from[4];
1603   to[2] = (GLfloat) from[8];
1604   to[3] = (GLfloat) from[12];
1605   to[4] = (GLfloat) from[1];
1606   to[5] = (GLfloat) from[5];
1607   to[6] = (GLfloat) from[9];
1608   to[7] = (GLfloat) from[13];
1609   to[8] = (GLfloat) from[2];
1610   to[9] = (GLfloat) from[6];
1611   to[10] = (GLfloat) from[10];
1612   to[11] = (GLfloat) from[14];
1613   to[12] = (GLfloat) from[3];
1614   to[13] = (GLfloat) from[7];
1615   to[14] = (GLfloat) from[11];
1616   to[15] = (GLfloat) from[15];
1617}
1618
1619/*@}*/
1620
1621
1622/**
1623 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1624 * function is used for transforming clipping plane equations and spotlight
1625 * directions.
1626 * Mathematically,  u = v * m.
1627 * Input:  v - input vector
1628 *         m - transformation matrix
1629 * Output:  u - transformed vector
1630 */
1631void
1632_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1633{
1634   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1635#define M(row,col)  m[row + col*4]
1636   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1637   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1638   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1639   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1640#undef M
1641}
1642