m_matrix.c revision e197de56cdb86835f1437688a9161cd909792d80
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3
4 *
5 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37#include "main/glheader.h"
38#include "main/imports.h"
39#include "main/macros.h"
40#include "main/imports.h"
41
42#include "m_matrix.h"
43
44
45/**
46 * \defgroup MatFlags MAT_FLAG_XXX-flags
47 *
48 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
49 * It would be nice to make all these flags private to m_matrix.c
50 */
51/*@{*/
52#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
53                                       *   (Not actually used - the identity
54                                       *   matrix is identified by the absense
55                                       *   of all other flags.)
56                                       */
57#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
58#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
59#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
60#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
61#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
62#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
63#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
64#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
65#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
66#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
67#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
68
69/** angle preserving matrix flags mask */
70#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
71				    MAT_FLAG_TRANSLATION | \
72				    MAT_FLAG_UNIFORM_SCALE)
73
74/** geometry related matrix flags mask */
75#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
76			    MAT_FLAG_ROTATION | \
77			    MAT_FLAG_TRANSLATION | \
78			    MAT_FLAG_UNIFORM_SCALE | \
79			    MAT_FLAG_GENERAL_SCALE | \
80			    MAT_FLAG_GENERAL_3D | \
81			    MAT_FLAG_PERSPECTIVE | \
82	                    MAT_FLAG_SINGULAR)
83
84/** length preserving matrix flags mask */
85#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
86				     MAT_FLAG_TRANSLATION)
87
88
89/** 3D (non-perspective) matrix flags mask */
90#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
91		      MAT_FLAG_TRANSLATION | \
92		      MAT_FLAG_UNIFORM_SCALE | \
93		      MAT_FLAG_GENERAL_SCALE | \
94		      MAT_FLAG_GENERAL_3D)
95
96/** dirty matrix flags mask */
97#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
98			    MAT_DIRTY_FLAGS | \
99			    MAT_DIRTY_INVERSE)
100
101/*@}*/
102
103
104/**
105 * Test geometry related matrix flags.
106 *
107 * \param mat a pointer to a GLmatrix structure.
108 * \param a flags mask.
109 *
110 * \returns non-zero if all geometry related matrix flags are contained within
111 * the mask, or zero otherwise.
112 */
113#define TEST_MAT_FLAGS(mat, a)  \
114    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
115
116
117
118/**
119 * Names of the corresponding GLmatrixtype values.
120 */
121static const char *types[] = {
122   "MATRIX_GENERAL",
123   "MATRIX_IDENTITY",
124   "MATRIX_3D_NO_ROT",
125   "MATRIX_PERSPECTIVE",
126   "MATRIX_2D",
127   "MATRIX_2D_NO_ROT",
128   "MATRIX_3D"
129};
130
131
132/**
133 * Identity matrix.
134 */
135static GLfloat Identity[16] = {
136   1.0, 0.0, 0.0, 0.0,
137   0.0, 1.0, 0.0, 0.0,
138   0.0, 0.0, 1.0, 0.0,
139   0.0, 0.0, 0.0, 1.0
140};
141
142
143
144/**********************************************************************/
145/** \name Matrix multiplication */
146/*@{*/
147
148#define A(row,col)  a[(col<<2)+row]
149#define B(row,col)  b[(col<<2)+row]
150#define P(row,col)  product[(col<<2)+row]
151
152/**
153 * Perform a full 4x4 matrix multiplication.
154 *
155 * \param a matrix.
156 * \param b matrix.
157 * \param product will receive the product of \p a and \p b.
158 *
159 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
160 *
161 * \note KW: 4*16 = 64 multiplications
162 *
163 * \author This \c matmul was contributed by Thomas Malik
164 */
165static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
166{
167   GLint i;
168   for (i = 0; i < 4; i++) {
169      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
170      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
171      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
172      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
173      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
174   }
175}
176
177/**
178 * Multiply two matrices known to occupy only the top three rows, such
179 * as typical model matrices, and orthogonal matrices.
180 *
181 * \param a matrix.
182 * \param b matrix.
183 * \param product will receive the product of \p a and \p b.
184 */
185static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
186{
187   GLint i;
188   for (i = 0; i < 3; i++) {
189      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
190      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
191      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
192      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
193      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
194   }
195   P(3,0) = 0;
196   P(3,1) = 0;
197   P(3,2) = 0;
198   P(3,3) = 1;
199}
200
201#undef A
202#undef B
203#undef P
204
205/**
206 * Multiply a matrix by an array of floats with known properties.
207 *
208 * \param mat pointer to a GLmatrix structure containing the left multiplication
209 * matrix, and that will receive the product result.
210 * \param m right multiplication matrix array.
211 * \param flags flags of the matrix \p m.
212 *
213 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
214 * if both matrices are 3D, or matmul4() otherwise.
215 */
216static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
217{
218   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
219
220   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
221      matmul34( mat->m, mat->m, m );
222   else
223      matmul4( mat->m, mat->m, m );
224}
225
226/**
227 * Matrix multiplication.
228 *
229 * \param dest destination matrix.
230 * \param a left matrix.
231 * \param b right matrix.
232 *
233 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
234 * if both matrices are 3D, or matmul4() otherwise.
235 */
236void
237_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
238{
239   dest->flags = (a->flags |
240		  b->flags |
241		  MAT_DIRTY_TYPE |
242		  MAT_DIRTY_INVERSE);
243
244   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
245      matmul34( dest->m, a->m, b->m );
246   else
247      matmul4( dest->m, a->m, b->m );
248}
249
250/**
251 * Matrix multiplication.
252 *
253 * \param dest left and destination matrix.
254 * \param m right matrix array.
255 *
256 * Marks the matrix flags with general flag, and type and inverse dirty flags.
257 * Calls matmul4() for the multiplication.
258 */
259void
260_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
261{
262   dest->flags |= (MAT_FLAG_GENERAL |
263		   MAT_DIRTY_TYPE |
264		   MAT_DIRTY_INVERSE |
265                   MAT_DIRTY_FLAGS);
266
267   matmul4( dest->m, dest->m, m );
268}
269
270/*@}*/
271
272
273/**********************************************************************/
274/** \name Matrix output */
275/*@{*/
276
277/**
278 * Print a matrix array.
279 *
280 * \param m matrix array.
281 *
282 * Called by _math_matrix_print() to print a matrix or its inverse.
283 */
284static void print_matrix_floats( const GLfloat m[16] )
285{
286   int i;
287   for (i=0;i<4;i++) {
288      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
289   }
290}
291
292/**
293 * Dumps the contents of a GLmatrix structure.
294 *
295 * \param m pointer to the GLmatrix structure.
296 */
297void
298_math_matrix_print( const GLmatrix *m )
299{
300   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
301   print_matrix_floats(m->m);
302   _mesa_debug(NULL, "Inverse: \n");
303   if (m->inv) {
304      GLfloat prod[16];
305      print_matrix_floats(m->inv);
306      matmul4(prod, m->m, m->inv);
307      _mesa_debug(NULL, "Mat * Inverse:\n");
308      print_matrix_floats(prod);
309   }
310   else {
311      _mesa_debug(NULL, "  - not available\n");
312   }
313}
314
315/*@}*/
316
317
318/**
319 * References an element of 4x4 matrix.
320 *
321 * \param m matrix array.
322 * \param c column of the desired element.
323 * \param r row of the desired element.
324 *
325 * \return value of the desired element.
326 *
327 * Calculate the linear storage index of the element and references it.
328 */
329#define MAT(m,r,c) (m)[(c)*4+(r)]
330
331
332/**********************************************************************/
333/** \name Matrix inversion */
334/*@{*/
335
336/**
337 * Swaps the values of two floating pointer variables.
338 *
339 * Used by invert_matrix_general() to swap the row pointers.
340 */
341#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
342
343/**
344 * Compute inverse of 4x4 transformation matrix.
345 *
346 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
347 * stored in the GLmatrix::inv attribute.
348 *
349 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
350 *
351 * \author
352 * Code contributed by Jacques Leroy jle@star.be
353 *
354 * Calculates the inverse matrix by performing the gaussian matrix reduction
355 * with partial pivoting followed by back/substitution with the loops manually
356 * unrolled.
357 */
358static GLboolean invert_matrix_general( GLmatrix *mat )
359{
360   const GLfloat *m = mat->m;
361   GLfloat *out = mat->inv;
362   GLfloat wtmp[4][8];
363   GLfloat m0, m1, m2, m3, s;
364   GLfloat *r0, *r1, *r2, *r3;
365
366   r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
367
368   r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
369   r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
370   r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
371
372   r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
373   r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
374   r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
375
376   r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
377   r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
378   r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
379
380   r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
381   r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
382   r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
383
384   /* choose pivot - or die */
385   if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2);
386   if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1);
387   if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0);
388   if (0.0 == r0[0])  return GL_FALSE;
389
390   /* eliminate first variable     */
391   m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
392   s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
393   s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
394   s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
395   s = r0[4];
396   if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
397   s = r0[5];
398   if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
399   s = r0[6];
400   if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
401   s = r0[7];
402   if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
403
404   /* choose pivot - or die */
405   if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2);
406   if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1);
407   if (0.0 == r1[1])  return GL_FALSE;
408
409   /* eliminate second variable */
410   m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
411   r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
412   r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
413   s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
414   s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
415   s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
416   s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
417
418   /* choose pivot - or die */
419   if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2);
420   if (0.0 == r2[2])  return GL_FALSE;
421
422   /* eliminate third variable */
423   m3 = r3[2]/r2[2];
424   r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
425   r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
426   r3[7] -= m3 * r2[7];
427
428   /* last check */
429   if (0.0 == r3[3]) return GL_FALSE;
430
431   s = 1.0F/r3[3];             /* now back substitute row 3 */
432   r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
433
434   m2 = r2[3];                 /* now back substitute row 2 */
435   s  = 1.0F/r2[2];
436   r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
437   r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
438   m1 = r1[3];
439   r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
440   r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
441   m0 = r0[3];
442   r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
443   r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
444
445   m1 = r1[2];                 /* now back substitute row 1 */
446   s  = 1.0F/r1[1];
447   r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
448   r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
449   m0 = r0[2];
450   r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
451   r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
452
453   m0 = r0[1];                 /* now back substitute row 0 */
454   s  = 1.0F/r0[0];
455   r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
456   r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
457
458   MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
459   MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
460   MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
461   MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
462   MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
463   MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
464   MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
465   MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
466
467   return GL_TRUE;
468}
469#undef SWAP_ROWS
470
471/**
472 * Compute inverse of a general 3d transformation matrix.
473 *
474 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
475 * stored in the GLmatrix::inv attribute.
476 *
477 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
478 *
479 * \author Adapted from graphics gems II.
480 *
481 * Calculates the inverse of the upper left by first calculating its
482 * determinant and multiplying it to the symmetric adjust matrix of each
483 * element. Finally deals with the translation part by transforming the
484 * original translation vector using by the calculated submatrix inverse.
485 */
486static GLboolean invert_matrix_3d_general( GLmatrix *mat )
487{
488   const GLfloat *in = mat->m;
489   GLfloat *out = mat->inv;
490   GLfloat pos, neg, t;
491   GLfloat det;
492
493   /* Calculate the determinant of upper left 3x3 submatrix and
494    * determine if the matrix is singular.
495    */
496   pos = neg = 0.0;
497   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
498   if (t >= 0.0) pos += t; else neg += t;
499
500   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
501   if (t >= 0.0) pos += t; else neg += t;
502
503   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
504   if (t >= 0.0) pos += t; else neg += t;
505
506   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
507   if (t >= 0.0) pos += t; else neg += t;
508
509   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
510   if (t >= 0.0) pos += t; else neg += t;
511
512   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
513   if (t >= 0.0) pos += t; else neg += t;
514
515   det = pos + neg;
516
517   if (det*det < 1e-25)
518      return GL_FALSE;
519
520   det = 1.0F / det;
521   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
522   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
523   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
524   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
525   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
526   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
527   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
528   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
529   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
530
531   /* Do the translation part */
532   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
533		     MAT(in,1,3) * MAT(out,0,1) +
534		     MAT(in,2,3) * MAT(out,0,2) );
535   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
536		     MAT(in,1,3) * MAT(out,1,1) +
537		     MAT(in,2,3) * MAT(out,1,2) );
538   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
539		     MAT(in,1,3) * MAT(out,2,1) +
540		     MAT(in,2,3) * MAT(out,2,2) );
541
542   return GL_TRUE;
543}
544
545/**
546 * Compute inverse of a 3d transformation matrix.
547 *
548 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
549 * stored in the GLmatrix::inv attribute.
550 *
551 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
552 *
553 * If the matrix is not an angle preserving matrix then calls
554 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
555 * the inverse matrix analyzing and inverting each of the scaling, rotation and
556 * translation parts.
557 */
558static GLboolean invert_matrix_3d( GLmatrix *mat )
559{
560   const GLfloat *in = mat->m;
561   GLfloat *out = mat->inv;
562
563   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
564      return invert_matrix_3d_general( mat );
565   }
566
567   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
568      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
569                       MAT(in,0,1) * MAT(in,0,1) +
570                       MAT(in,0,2) * MAT(in,0,2));
571
572      if (scale == 0.0)
573         return GL_FALSE;
574
575      scale = 1.0F / scale;
576
577      /* Transpose and scale the 3 by 3 upper-left submatrix. */
578      MAT(out,0,0) = scale * MAT(in,0,0);
579      MAT(out,1,0) = scale * MAT(in,0,1);
580      MAT(out,2,0) = scale * MAT(in,0,2);
581      MAT(out,0,1) = scale * MAT(in,1,0);
582      MAT(out,1,1) = scale * MAT(in,1,1);
583      MAT(out,2,1) = scale * MAT(in,1,2);
584      MAT(out,0,2) = scale * MAT(in,2,0);
585      MAT(out,1,2) = scale * MAT(in,2,1);
586      MAT(out,2,2) = scale * MAT(in,2,2);
587   }
588   else if (mat->flags & MAT_FLAG_ROTATION) {
589      /* Transpose the 3 by 3 upper-left submatrix. */
590      MAT(out,0,0) = MAT(in,0,0);
591      MAT(out,1,0) = MAT(in,0,1);
592      MAT(out,2,0) = MAT(in,0,2);
593      MAT(out,0,1) = MAT(in,1,0);
594      MAT(out,1,1) = MAT(in,1,1);
595      MAT(out,2,1) = MAT(in,1,2);
596      MAT(out,0,2) = MAT(in,2,0);
597      MAT(out,1,2) = MAT(in,2,1);
598      MAT(out,2,2) = MAT(in,2,2);
599   }
600   else {
601      /* pure translation */
602      memcpy( out, Identity, sizeof(Identity) );
603      MAT(out,0,3) = - MAT(in,0,3);
604      MAT(out,1,3) = - MAT(in,1,3);
605      MAT(out,2,3) = - MAT(in,2,3);
606      return GL_TRUE;
607   }
608
609   if (mat->flags & MAT_FLAG_TRANSLATION) {
610      /* Do the translation part */
611      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
612			MAT(in,1,3) * MAT(out,0,1) +
613			MAT(in,2,3) * MAT(out,0,2) );
614      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
615			MAT(in,1,3) * MAT(out,1,1) +
616			MAT(in,2,3) * MAT(out,1,2) );
617      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
618			MAT(in,1,3) * MAT(out,2,1) +
619			MAT(in,2,3) * MAT(out,2,2) );
620   }
621   else {
622      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
623   }
624
625   return GL_TRUE;
626}
627
628/**
629 * Compute inverse of an identity transformation matrix.
630 *
631 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
632 * stored in the GLmatrix::inv attribute.
633 *
634 * \return always GL_TRUE.
635 *
636 * Simply copies Identity into GLmatrix::inv.
637 */
638static GLboolean invert_matrix_identity( GLmatrix *mat )
639{
640   memcpy( mat->inv, Identity, sizeof(Identity) );
641   return GL_TRUE;
642}
643
644/**
645 * Compute inverse of a no-rotation 3d transformation matrix.
646 *
647 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
648 * stored in the GLmatrix::inv attribute.
649 *
650 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
651 *
652 * Calculates the
653 */
654static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
655{
656   const GLfloat *in = mat->m;
657   GLfloat *out = mat->inv;
658
659   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
660      return GL_FALSE;
661
662   memcpy( out, Identity, 16 * sizeof(GLfloat) );
663   MAT(out,0,0) = 1.0F / MAT(in,0,0);
664   MAT(out,1,1) = 1.0F / MAT(in,1,1);
665   MAT(out,2,2) = 1.0F / MAT(in,2,2);
666
667   if (mat->flags & MAT_FLAG_TRANSLATION) {
668      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
669      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
670      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
671   }
672
673   return GL_TRUE;
674}
675
676/**
677 * Compute inverse of a no-rotation 2d transformation matrix.
678 *
679 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
680 * stored in the GLmatrix::inv attribute.
681 *
682 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
683 *
684 * Calculates the inverse matrix by applying the inverse scaling and
685 * translation to the identity matrix.
686 */
687static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
688{
689   const GLfloat *in = mat->m;
690   GLfloat *out = mat->inv;
691
692   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
693      return GL_FALSE;
694
695   memcpy( out, Identity, 16 * sizeof(GLfloat) );
696   MAT(out,0,0) = 1.0F / MAT(in,0,0);
697   MAT(out,1,1) = 1.0F / MAT(in,1,1);
698
699   if (mat->flags & MAT_FLAG_TRANSLATION) {
700      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
701      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
702   }
703
704   return GL_TRUE;
705}
706
707#if 0
708/* broken */
709static GLboolean invert_matrix_perspective( GLmatrix *mat )
710{
711   const GLfloat *in = mat->m;
712   GLfloat *out = mat->inv;
713
714   if (MAT(in,2,3) == 0)
715      return GL_FALSE;
716
717   memcpy( out, Identity, 16 * sizeof(GLfloat) );
718
719   MAT(out,0,0) = 1.0F / MAT(in,0,0);
720   MAT(out,1,1) = 1.0F / MAT(in,1,1);
721
722   MAT(out,0,3) = MAT(in,0,2);
723   MAT(out,1,3) = MAT(in,1,2);
724
725   MAT(out,2,2) = 0;
726   MAT(out,2,3) = -1;
727
728   MAT(out,3,2) = 1.0F / MAT(in,2,3);
729   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
730
731   return GL_TRUE;
732}
733#endif
734
735/**
736 * Matrix inversion function pointer type.
737 */
738typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
739
740/**
741 * Table of the matrix inversion functions according to the matrix type.
742 */
743static inv_mat_func inv_mat_tab[7] = {
744   invert_matrix_general,
745   invert_matrix_identity,
746   invert_matrix_3d_no_rot,
747#if 0
748   /* Don't use this function for now - it fails when the projection matrix
749    * is premultiplied by a translation (ala Chromium's tilesort SPU).
750    */
751   invert_matrix_perspective,
752#else
753   invert_matrix_general,
754#endif
755   invert_matrix_3d,		/* lazy! */
756   invert_matrix_2d_no_rot,
757   invert_matrix_3d
758};
759
760/**
761 * Compute inverse of a transformation matrix.
762 *
763 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
764 * stored in the GLmatrix::inv attribute.
765 *
766 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
767 *
768 * Calls the matrix inversion function in inv_mat_tab corresponding to the
769 * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
770 * and copies the identity matrix into GLmatrix::inv.
771 */
772static GLboolean matrix_invert( GLmatrix *mat )
773{
774   if (inv_mat_tab[mat->type](mat)) {
775      mat->flags &= ~MAT_FLAG_SINGULAR;
776      return GL_TRUE;
777   } else {
778      mat->flags |= MAT_FLAG_SINGULAR;
779      memcpy( mat->inv, Identity, sizeof(Identity) );
780      return GL_FALSE;
781   }
782}
783
784/*@}*/
785
786
787/**********************************************************************/
788/** \name Matrix generation */
789/*@{*/
790
791/**
792 * Generate a 4x4 transformation matrix from glRotate parameters, and
793 * post-multiply the input matrix by it.
794 *
795 * \author
796 * This function was contributed by Erich Boleyn (erich@uruk.org).
797 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
798 */
799void
800_math_matrix_rotate( GLmatrix *mat,
801		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
802{
803   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
804   GLfloat m[16];
805   GLboolean optimized;
806
807   s = (GLfloat) _mesa_sin( angle * DEG2RAD );
808   c = (GLfloat) _mesa_cos( angle * DEG2RAD );
809
810   memcpy(m, Identity, sizeof(GLfloat)*16);
811   optimized = GL_FALSE;
812
813#define M(row,col)  m[col*4+row]
814
815   if (x == 0.0F) {
816      if (y == 0.0F) {
817         if (z != 0.0F) {
818            optimized = GL_TRUE;
819            /* rotate only around z-axis */
820            M(0,0) = c;
821            M(1,1) = c;
822            if (z < 0.0F) {
823               M(0,1) = s;
824               M(1,0) = -s;
825            }
826            else {
827               M(0,1) = -s;
828               M(1,0) = s;
829            }
830         }
831      }
832      else if (z == 0.0F) {
833         optimized = GL_TRUE;
834         /* rotate only around y-axis */
835         M(0,0) = c;
836         M(2,2) = c;
837         if (y < 0.0F) {
838            M(0,2) = -s;
839            M(2,0) = s;
840         }
841         else {
842            M(0,2) = s;
843            M(2,0) = -s;
844         }
845      }
846   }
847   else if (y == 0.0F) {
848      if (z == 0.0F) {
849         optimized = GL_TRUE;
850         /* rotate only around x-axis */
851         M(1,1) = c;
852         M(2,2) = c;
853         if (x < 0.0F) {
854            M(1,2) = s;
855            M(2,1) = -s;
856         }
857         else {
858            M(1,2) = -s;
859            M(2,1) = s;
860         }
861      }
862   }
863
864   if (!optimized) {
865      const GLfloat mag = SQRTF(x * x + y * y + z * z);
866
867      if (mag <= 1.0e-4) {
868         /* no rotation, leave mat as-is */
869         return;
870      }
871
872      x /= mag;
873      y /= mag;
874      z /= mag;
875
876
877      /*
878       *     Arbitrary axis rotation matrix.
879       *
880       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
881       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
882       *  (which is about the X-axis), and the two composite transforms
883       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
884       *  from the arbitrary axis to the X-axis then back.  They are
885       *  all elementary rotations.
886       *
887       *  Rz' is a rotation about the Z-axis, to bring the axis vector
888       *  into the x-z plane.  Then Ry' is applied, rotating about the
889       *  Y-axis to bring the axis vector parallel with the X-axis.  The
890       *  rotation about the X-axis is then performed.  Ry and Rz are
891       *  simply the respective inverse transforms to bring the arbitrary
892       *  axis back to it's original orientation.  The first transforms
893       *  Rz' and Ry' are considered inverses, since the data from the
894       *  arbitrary axis gives you info on how to get to it, not how
895       *  to get away from it, and an inverse must be applied.
896       *
897       *  The basic calculation used is to recognize that the arbitrary
898       *  axis vector (x, y, z), since it is of unit length, actually
899       *  represents the sines and cosines of the angles to rotate the
900       *  X-axis to the same orientation, with theta being the angle about
901       *  Z and phi the angle about Y (in the order described above)
902       *  as follows:
903       *
904       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
905       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
906       *
907       *  cos ( phi ) = sqrt ( 1 - z^2 )
908       *  sin ( phi ) = z
909       *
910       *  Note that cos ( phi ) can further be inserted to the above
911       *  formulas:
912       *
913       *  cos ( theta ) = x / cos ( phi )
914       *  sin ( theta ) = y / sin ( phi )
915       *
916       *  ...etc.  Because of those relations and the standard trigonometric
917       *  relations, it is pssible to reduce the transforms down to what
918       *  is used below.  It may be that any primary axis chosen will give the
919       *  same results (modulo a sign convention) using thie method.
920       *
921       *  Particularly nice is to notice that all divisions that might
922       *  have caused trouble when parallel to certain planes or
923       *  axis go away with care paid to reducing the expressions.
924       *  After checking, it does perform correctly under all cases, since
925       *  in all the cases of division where the denominator would have
926       *  been zero, the numerator would have been zero as well, giving
927       *  the expected result.
928       */
929
930      xx = x * x;
931      yy = y * y;
932      zz = z * z;
933      xy = x * y;
934      yz = y * z;
935      zx = z * x;
936      xs = x * s;
937      ys = y * s;
938      zs = z * s;
939      one_c = 1.0F - c;
940
941      /* We already hold the identity-matrix so we can skip some statements */
942      M(0,0) = (one_c * xx) + c;
943      M(0,1) = (one_c * xy) - zs;
944      M(0,2) = (one_c * zx) + ys;
945/*    M(0,3) = 0.0F; */
946
947      M(1,0) = (one_c * xy) + zs;
948      M(1,1) = (one_c * yy) + c;
949      M(1,2) = (one_c * yz) - xs;
950/*    M(1,3) = 0.0F; */
951
952      M(2,0) = (one_c * zx) - ys;
953      M(2,1) = (one_c * yz) + xs;
954      M(2,2) = (one_c * zz) + c;
955/*    M(2,3) = 0.0F; */
956
957/*
958      M(3,0) = 0.0F;
959      M(3,1) = 0.0F;
960      M(3,2) = 0.0F;
961      M(3,3) = 1.0F;
962*/
963   }
964#undef M
965
966   matrix_multf( mat, m, MAT_FLAG_ROTATION );
967}
968
969/**
970 * Apply a perspective projection matrix.
971 *
972 * \param mat matrix to apply the projection.
973 * \param left left clipping plane coordinate.
974 * \param right right clipping plane coordinate.
975 * \param bottom bottom clipping plane coordinate.
976 * \param top top clipping plane coordinate.
977 * \param nearval distance to the near clipping plane.
978 * \param farval distance to the far clipping plane.
979 *
980 * Creates the projection matrix and multiplies it with \p mat, marking the
981 * MAT_FLAG_PERSPECTIVE flag.
982 */
983void
984_math_matrix_frustum( GLmatrix *mat,
985		      GLfloat left, GLfloat right,
986		      GLfloat bottom, GLfloat top,
987		      GLfloat nearval, GLfloat farval )
988{
989   GLfloat x, y, a, b, c, d;
990   GLfloat m[16];
991
992   x = (2.0F*nearval) / (right-left);
993   y = (2.0F*nearval) / (top-bottom);
994   a = (right+left) / (right-left);
995   b = (top+bottom) / (top-bottom);
996   c = -(farval+nearval) / ( farval-nearval);
997   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
998
999#define M(row,col)  m[col*4+row]
1000   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
1001   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
1002   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
1003   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
1004#undef M
1005
1006   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1007}
1008
1009/**
1010 * Apply an orthographic projection matrix.
1011 *
1012 * \param mat matrix to apply the projection.
1013 * \param left left clipping plane coordinate.
1014 * \param right right clipping plane coordinate.
1015 * \param bottom bottom clipping plane coordinate.
1016 * \param top top clipping plane coordinate.
1017 * \param nearval distance to the near clipping plane.
1018 * \param farval distance to the far clipping plane.
1019 *
1020 * Creates the projection matrix and multiplies it with \p mat, marking the
1021 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1022 */
1023void
1024_math_matrix_ortho( GLmatrix *mat,
1025		    GLfloat left, GLfloat right,
1026		    GLfloat bottom, GLfloat top,
1027		    GLfloat nearval, GLfloat farval )
1028{
1029   GLfloat m[16];
1030
1031#define M(row,col)  m[col*4+row]
1032   M(0,0) = 2.0F / (right-left);
1033   M(0,1) = 0.0F;
1034   M(0,2) = 0.0F;
1035   M(0,3) = -(right+left) / (right-left);
1036
1037   M(1,0) = 0.0F;
1038   M(1,1) = 2.0F / (top-bottom);
1039   M(1,2) = 0.0F;
1040   M(1,3) = -(top+bottom) / (top-bottom);
1041
1042   M(2,0) = 0.0F;
1043   M(2,1) = 0.0F;
1044   M(2,2) = -2.0F / (farval-nearval);
1045   M(2,3) = -(farval+nearval) / (farval-nearval);
1046
1047   M(3,0) = 0.0F;
1048   M(3,1) = 0.0F;
1049   M(3,2) = 0.0F;
1050   M(3,3) = 1.0F;
1051#undef M
1052
1053   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1054}
1055
1056/**
1057 * Multiply a matrix with a general scaling matrix.
1058 *
1059 * \param mat matrix.
1060 * \param x x axis scale factor.
1061 * \param y y axis scale factor.
1062 * \param z z axis scale factor.
1063 *
1064 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1065 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1066 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1067 * MAT_DIRTY_INVERSE dirty flags.
1068 */
1069void
1070_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1071{
1072   GLfloat *m = mat->m;
1073   m[0] *= x;   m[4] *= y;   m[8]  *= z;
1074   m[1] *= x;   m[5] *= y;   m[9]  *= z;
1075   m[2] *= x;   m[6] *= y;   m[10] *= z;
1076   m[3] *= x;   m[7] *= y;   m[11] *= z;
1077
1078   if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8)
1079      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1080   else
1081      mat->flags |= MAT_FLAG_GENERAL_SCALE;
1082
1083   mat->flags |= (MAT_DIRTY_TYPE |
1084		  MAT_DIRTY_INVERSE);
1085}
1086
1087/**
1088 * Multiply a matrix with a translation matrix.
1089 *
1090 * \param mat matrix.
1091 * \param x translation vector x coordinate.
1092 * \param y translation vector y coordinate.
1093 * \param z translation vector z coordinate.
1094 *
1095 * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1096 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1097 * dirty flags.
1098 */
1099void
1100_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1101{
1102   GLfloat *m = mat->m;
1103   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1104   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1105   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1106   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1107
1108   mat->flags |= (MAT_FLAG_TRANSLATION |
1109		  MAT_DIRTY_TYPE |
1110		  MAT_DIRTY_INVERSE);
1111}
1112
1113
1114/**
1115 * Set matrix to do viewport and depthrange mapping.
1116 * Transforms Normalized Device Coords to window/Z values.
1117 */
1118void
1119_math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
1120                      GLfloat zNear, GLfloat zFar, GLfloat depthMax)
1121{
1122   m->m[MAT_SX] = (GLfloat) width / 2.0F;
1123   m->m[MAT_TX] = m->m[MAT_SX] + x;
1124   m->m[MAT_SY] = (GLfloat) height / 2.0F;
1125   m->m[MAT_TY] = m->m[MAT_SY] + y;
1126   m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F);
1127   m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear);
1128   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1129   m->type = MATRIX_3D_NO_ROT;
1130}
1131
1132
1133/**
1134 * Set a matrix to the identity matrix.
1135 *
1136 * \param mat matrix.
1137 *
1138 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1139 * Sets the matrix type to identity, and clear the dirty flags.
1140 */
1141void
1142_math_matrix_set_identity( GLmatrix *mat )
1143{
1144   memcpy( mat->m, Identity, 16*sizeof(GLfloat) );
1145
1146   if (mat->inv)
1147      memcpy( mat->inv, Identity, 16*sizeof(GLfloat) );
1148
1149   mat->type = MATRIX_IDENTITY;
1150   mat->flags &= ~(MAT_DIRTY_FLAGS|
1151		   MAT_DIRTY_TYPE|
1152		   MAT_DIRTY_INVERSE);
1153}
1154
1155/*@}*/
1156
1157
1158/**********************************************************************/
1159/** \name Matrix analysis */
1160/*@{*/
1161
1162#define ZERO(x) (1<<x)
1163#define ONE(x)  (1<<(x+16))
1164
1165#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1166#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1167
1168#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1169			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1170			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1171			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1172
1173#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1174			  ZERO(1)  |            ZERO(9)  |           \
1175			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1176			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1177
1178#define MASK_2D          (                      ZERO(8)  |           \
1179			                        ZERO(9)  |           \
1180			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1181			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1182
1183
1184#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1185			  ZERO(1)  |            ZERO(9)  |           \
1186			  ZERO(2)  | ZERO(6)  |                      \
1187			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1188
1189#define MASK_3D          (                                           \
1190			                                             \
1191			                                             \
1192			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1193
1194
1195#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1196			  ZERO(1)  |                       ZERO(13) |\
1197			  ZERO(2)  | ZERO(6)  |                      \
1198			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1199
1200#define SQ(x) ((x)*(x))
1201
1202/**
1203 * Determine type and flags from scratch.
1204 *
1205 * \param mat matrix.
1206 *
1207 * This is expensive enough to only want to do it once.
1208 */
1209static void analyse_from_scratch( GLmatrix *mat )
1210{
1211   const GLfloat *m = mat->m;
1212   GLuint mask = 0;
1213   GLuint i;
1214
1215   for (i = 0 ; i < 16 ; i++) {
1216      if (m[i] == 0.0) mask |= (1<<i);
1217   }
1218
1219   if (m[0] == 1.0F) mask |= (1<<16);
1220   if (m[5] == 1.0F) mask |= (1<<21);
1221   if (m[10] == 1.0F) mask |= (1<<26);
1222   if (m[15] == 1.0F) mask |= (1<<31);
1223
1224   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1225
1226   /* Check for translation - no-one really cares
1227    */
1228   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1229      mat->flags |= MAT_FLAG_TRANSLATION;
1230
1231   /* Do the real work
1232    */
1233   if (mask == (GLuint) MASK_IDENTITY) {
1234      mat->type = MATRIX_IDENTITY;
1235   }
1236   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1237      mat->type = MATRIX_2D_NO_ROT;
1238
1239      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1240	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1241   }
1242   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1243      GLfloat mm = DOT2(m, m);
1244      GLfloat m4m4 = DOT2(m+4,m+4);
1245      GLfloat mm4 = DOT2(m,m+4);
1246
1247      mat->type = MATRIX_2D;
1248
1249      /* Check for scale */
1250      if (SQ(mm-1) > SQ(1e-6) ||
1251	  SQ(m4m4-1) > SQ(1e-6))
1252	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1253
1254      /* Check for rotation */
1255      if (SQ(mm4) > SQ(1e-6))
1256	 mat->flags |= MAT_FLAG_GENERAL_3D;
1257      else
1258	 mat->flags |= MAT_FLAG_ROTATION;
1259
1260   }
1261   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1262      mat->type = MATRIX_3D_NO_ROT;
1263
1264      /* Check for scale */
1265      if (SQ(m[0]-m[5]) < SQ(1e-6) &&
1266	  SQ(m[0]-m[10]) < SQ(1e-6)) {
1267	 if (SQ(m[0]-1.0) > SQ(1e-6)) {
1268	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1269         }
1270      }
1271      else {
1272	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1273      }
1274   }
1275   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1276      GLfloat c1 = DOT3(m,m);
1277      GLfloat c2 = DOT3(m+4,m+4);
1278      GLfloat c3 = DOT3(m+8,m+8);
1279      GLfloat d1 = DOT3(m, m+4);
1280      GLfloat cp[3];
1281
1282      mat->type = MATRIX_3D;
1283
1284      /* Check for scale */
1285      if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
1286	 if (SQ(c1-1.0) > SQ(1e-6))
1287	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1288	 /* else no scale at all */
1289      }
1290      else {
1291	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1292      }
1293
1294      /* Check for rotation */
1295      if (SQ(d1) < SQ(1e-6)) {
1296	 CROSS3( cp, m, m+4 );
1297	 SUB_3V( cp, cp, (m+8) );
1298	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
1299	    mat->flags |= MAT_FLAG_ROTATION;
1300	 else
1301	    mat->flags |= MAT_FLAG_GENERAL_3D;
1302      }
1303      else {
1304	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1305      }
1306   }
1307   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1308      mat->type = MATRIX_PERSPECTIVE;
1309      mat->flags |= MAT_FLAG_GENERAL;
1310   }
1311   else {
1312      mat->type = MATRIX_GENERAL;
1313      mat->flags |= MAT_FLAG_GENERAL;
1314   }
1315}
1316
1317/**
1318 * Analyze a matrix given that its flags are accurate.
1319 *
1320 * This is the more common operation, hopefully.
1321 */
1322static void analyse_from_flags( GLmatrix *mat )
1323{
1324   const GLfloat *m = mat->m;
1325
1326   if (TEST_MAT_FLAGS(mat, 0)) {
1327      mat->type = MATRIX_IDENTITY;
1328   }
1329   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1330				 MAT_FLAG_UNIFORM_SCALE |
1331				 MAT_FLAG_GENERAL_SCALE))) {
1332      if ( m[10]==1.0F && m[14]==0.0F ) {
1333	 mat->type = MATRIX_2D_NO_ROT;
1334      }
1335      else {
1336	 mat->type = MATRIX_3D_NO_ROT;
1337      }
1338   }
1339   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1340      if (                                 m[ 8]==0.0F
1341            &&                             m[ 9]==0.0F
1342            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1343	 mat->type = MATRIX_2D;
1344      }
1345      else {
1346	 mat->type = MATRIX_3D;
1347      }
1348   }
1349   else if (                 m[4]==0.0F                 && m[12]==0.0F
1350            && m[1]==0.0F                               && m[13]==0.0F
1351            && m[2]==0.0F && m[6]==0.0F
1352            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1353      mat->type = MATRIX_PERSPECTIVE;
1354   }
1355   else {
1356      mat->type = MATRIX_GENERAL;
1357   }
1358}
1359
1360/**
1361 * Analyze and update a matrix.
1362 *
1363 * \param mat matrix.
1364 *
1365 * If the matrix type is dirty then calls either analyse_from_scratch() or
1366 * analyse_from_flags() to determine its type, according to whether the flags
1367 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1368 * then calls matrix_invert(). Finally clears the dirty flags.
1369 */
1370void
1371_math_matrix_analyse( GLmatrix *mat )
1372{
1373   if (mat->flags & MAT_DIRTY_TYPE) {
1374      if (mat->flags & MAT_DIRTY_FLAGS)
1375	 analyse_from_scratch( mat );
1376      else
1377	 analyse_from_flags( mat );
1378   }
1379
1380   if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1381      matrix_invert( mat );
1382      mat->flags &= ~MAT_DIRTY_INVERSE;
1383   }
1384
1385   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1386}
1387
1388/*@}*/
1389
1390
1391/**
1392 * Test if the given matrix preserves vector lengths.
1393 */
1394GLboolean
1395_math_matrix_is_length_preserving( const GLmatrix *m )
1396{
1397   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1398}
1399
1400
1401/**
1402 * Test if the given matrix does any rotation.
1403 * (or perhaps if the upper-left 3x3 is non-identity)
1404 */
1405GLboolean
1406_math_matrix_has_rotation( const GLmatrix *m )
1407{
1408   if (m->flags & (MAT_FLAG_GENERAL |
1409                   MAT_FLAG_ROTATION |
1410                   MAT_FLAG_GENERAL_3D |
1411                   MAT_FLAG_PERSPECTIVE))
1412      return GL_TRUE;
1413   else
1414      return GL_FALSE;
1415}
1416
1417
1418GLboolean
1419_math_matrix_is_general_scale( const GLmatrix *m )
1420{
1421   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1422}
1423
1424
1425GLboolean
1426_math_matrix_is_dirty( const GLmatrix *m )
1427{
1428   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1429}
1430
1431
1432/**********************************************************************/
1433/** \name Matrix setup */
1434/*@{*/
1435
1436/**
1437 * Copy a matrix.
1438 *
1439 * \param to destination matrix.
1440 * \param from source matrix.
1441 *
1442 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1443 */
1444void
1445_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1446{
1447   memcpy( to->m, from->m, sizeof(Identity) );
1448   to->flags = from->flags;
1449   to->type = from->type;
1450
1451   if (to->inv != 0) {
1452      if (from->inv == 0) {
1453	 matrix_invert( to );
1454      }
1455      else {
1456	 memcpy(to->inv, from->inv, sizeof(GLfloat)*16);
1457      }
1458   }
1459}
1460
1461/**
1462 * Loads a matrix array into GLmatrix.
1463 *
1464 * \param m matrix array.
1465 * \param mat matrix.
1466 *
1467 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1468 * flags.
1469 */
1470void
1471_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1472{
1473   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1474   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1475}
1476
1477/**
1478 * Matrix constructor.
1479 *
1480 * \param m matrix.
1481 *
1482 * Initialize the GLmatrix fields.
1483 */
1484void
1485_math_matrix_ctr( GLmatrix *m )
1486{
1487   m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
1488   if (m->m)
1489      memcpy( m->m, Identity, sizeof(Identity) );
1490   m->inv = NULL;
1491   m->type = MATRIX_IDENTITY;
1492   m->flags = 0;
1493}
1494
1495/**
1496 * Matrix destructor.
1497 *
1498 * \param m matrix.
1499 *
1500 * Frees the data in a GLmatrix.
1501 */
1502void
1503_math_matrix_dtr( GLmatrix *m )
1504{
1505   if (m->m) {
1506      ALIGN_FREE( m->m );
1507      m->m = NULL;
1508   }
1509   if (m->inv) {
1510      ALIGN_FREE( m->inv );
1511      m->inv = NULL;
1512   }
1513}
1514
1515/**
1516 * Allocate a matrix inverse.
1517 *
1518 * \param m matrix.
1519 *
1520 * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity.
1521 */
1522void
1523_math_matrix_alloc_inv( GLmatrix *m )
1524{
1525   if (!m->inv) {
1526      m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
1527      if (m->inv)
1528         memcpy( m->inv, Identity, 16 * sizeof(GLfloat) );
1529   }
1530}
1531
1532/*@}*/
1533
1534
1535/**********************************************************************/
1536/** \name Matrix transpose */
1537/*@{*/
1538
1539/**
1540 * Transpose a GLfloat matrix.
1541 *
1542 * \param to destination array.
1543 * \param from source array.
1544 */
1545void
1546_math_transposef( GLfloat to[16], const GLfloat from[16] )
1547{
1548   to[0] = from[0];
1549   to[1] = from[4];
1550   to[2] = from[8];
1551   to[3] = from[12];
1552   to[4] = from[1];
1553   to[5] = from[5];
1554   to[6] = from[9];
1555   to[7] = from[13];
1556   to[8] = from[2];
1557   to[9] = from[6];
1558   to[10] = from[10];
1559   to[11] = from[14];
1560   to[12] = from[3];
1561   to[13] = from[7];
1562   to[14] = from[11];
1563   to[15] = from[15];
1564}
1565
1566/**
1567 * Transpose a GLdouble matrix.
1568 *
1569 * \param to destination array.
1570 * \param from source array.
1571 */
1572void
1573_math_transposed( GLdouble to[16], const GLdouble from[16] )
1574{
1575   to[0] = from[0];
1576   to[1] = from[4];
1577   to[2] = from[8];
1578   to[3] = from[12];
1579   to[4] = from[1];
1580   to[5] = from[5];
1581   to[6] = from[9];
1582   to[7] = from[13];
1583   to[8] = from[2];
1584   to[9] = from[6];
1585   to[10] = from[10];
1586   to[11] = from[14];
1587   to[12] = from[3];
1588   to[13] = from[7];
1589   to[14] = from[11];
1590   to[15] = from[15];
1591}
1592
1593/**
1594 * Transpose a GLdouble matrix and convert to GLfloat.
1595 *
1596 * \param to destination array.
1597 * \param from source array.
1598 */
1599void
1600_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1601{
1602   to[0] = (GLfloat) from[0];
1603   to[1] = (GLfloat) from[4];
1604   to[2] = (GLfloat) from[8];
1605   to[3] = (GLfloat) from[12];
1606   to[4] = (GLfloat) from[1];
1607   to[5] = (GLfloat) from[5];
1608   to[6] = (GLfloat) from[9];
1609   to[7] = (GLfloat) from[13];
1610   to[8] = (GLfloat) from[2];
1611   to[9] = (GLfloat) from[6];
1612   to[10] = (GLfloat) from[10];
1613   to[11] = (GLfloat) from[14];
1614   to[12] = (GLfloat) from[3];
1615   to[13] = (GLfloat) from[7];
1616   to[14] = (GLfloat) from[11];
1617   to[15] = (GLfloat) from[15];
1618}
1619
1620/*@}*/
1621
1622
1623/**
1624 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1625 * function is used for transforming clipping plane equations and spotlight
1626 * directions.
1627 * Mathematically,  u = v * m.
1628 * Input:  v - input vector
1629 *         m - transformation matrix
1630 * Output:  u - transformed vector
1631 */
1632void
1633_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1634{
1635   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1636#define M(row,col)  m[row + col*4]
1637   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1638   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1639   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1640   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1641#undef M
1642}
1643