st_glsl_to_tgsi.cpp revision f7665ca4fc2a7bba8378d44d38059fc5dd536223
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45#include "main/mtypes.h"
46#include "main/shaderobj.h"
47#include "program/hash_table.h"
48
49extern "C" {
50#include "main/shaderapi.h"
51#include "main/uniforms.h"
52#include "program/prog_instruction.h"
53#include "program/prog_optimize.h"
54#include "program/prog_print.h"
55#include "program/program.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
75                           (1 << PROGRAM_ENV_PARAM) |    \
76                           (1 << PROGRAM_STATE_VAR) |    \
77                           (1 << PROGRAM_NAMED_PARAM) |  \
78                           (1 << PROGRAM_CONSTANT) |     \
79                           (1 << PROGRAM_UNIFORM))
80
81/**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87#define MAX_TEMPS         4096
88
89/* will be 4 for GLSL 4.00 */
90#define MAX_GLSL_TEXTURE_OFFSET 1
91
92class st_src_reg;
93class st_dst_reg;
94
95static int swizzle_for_size(int size);
96
97/**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100class st_src_reg {
101public:
102   st_src_reg(gl_register_file file, int index, const glsl_type *type)
103   {
104      this->file = file;
105      this->index = index;
106      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107         this->swizzle = swizzle_for_size(type->vector_elements);
108      else
109         this->swizzle = SWIZZLE_XYZW;
110      this->negate = 0;
111      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112      this->reladdr = NULL;
113   }
114
115   st_src_reg(gl_register_file file, int index, int type)
116   {
117      this->type = type;
118      this->file = file;
119      this->index = index;
120      this->swizzle = SWIZZLE_XYZW;
121      this->negate = 0;
122      this->reladdr = NULL;
123   }
124
125   st_src_reg()
126   {
127      this->type = GLSL_TYPE_ERROR;
128      this->file = PROGRAM_UNDEFINED;
129      this->index = 0;
130      this->swizzle = 0;
131      this->negate = 0;
132      this->reladdr = NULL;
133   }
134
135   explicit st_src_reg(st_dst_reg reg);
136
137   gl_register_file file; /**< PROGRAM_* from Mesa */
138   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140   int negate; /**< NEGATE_XYZW mask from mesa */
141   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142   /** Register index should be offset by the integer in this reg. */
143   st_src_reg *reladdr;
144};
145
146class st_dst_reg {
147public:
148   st_dst_reg(gl_register_file file, int writemask, int type)
149   {
150      this->file = file;
151      this->index = 0;
152      this->writemask = writemask;
153      this->cond_mask = COND_TR;
154      this->reladdr = NULL;
155      this->type = type;
156   }
157
158   st_dst_reg()
159   {
160      this->type = GLSL_TYPE_ERROR;
161      this->file = PROGRAM_UNDEFINED;
162      this->index = 0;
163      this->writemask = 0;
164      this->cond_mask = COND_TR;
165      this->reladdr = NULL;
166   }
167
168   explicit st_dst_reg(st_src_reg reg);
169
170   gl_register_file file; /**< PROGRAM_* from Mesa */
171   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173   GLuint cond_mask:4;
174   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175   /** Register index should be offset by the integer in this reg. */
176   st_src_reg *reladdr;
177};
178
179st_src_reg::st_src_reg(st_dst_reg reg)
180{
181   this->type = reg.type;
182   this->file = reg.file;
183   this->index = reg.index;
184   this->swizzle = SWIZZLE_XYZW;
185   this->negate = 0;
186   this->reladdr = reg.reladdr;
187}
188
189st_dst_reg::st_dst_reg(st_src_reg reg)
190{
191   this->type = reg.type;
192   this->file = reg.file;
193   this->index = reg.index;
194   this->writemask = WRITEMASK_XYZW;
195   this->cond_mask = COND_TR;
196   this->reladdr = reg.reladdr;
197}
198
199class glsl_to_tgsi_instruction : public exec_node {
200public:
201   /* Callers of this ralloc-based new need not call delete. It's
202    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203   static void* operator new(size_t size, void *ctx)
204   {
205      void *node;
206
207      node = rzalloc_size(ctx, size);
208      assert(node != NULL);
209
210      return node;
211   }
212
213   unsigned op;
214   st_dst_reg dst;
215   st_src_reg src[3];
216   /** Pointer to the ir source this tree came from for debugging */
217   ir_instruction *ir;
218   GLboolean cond_update;
219   bool saturate;
220   int sampler; /**< sampler index */
221   int tex_target; /**< One of TEXTURE_*_INDEX */
222   GLboolean tex_shadow;
223   struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224   unsigned tex_offset_num_offset;
225   int dead_mask; /**< Used in dead code elimination */
226
227   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228};
229
230class variable_storage : public exec_node {
231public:
232   variable_storage(ir_variable *var, gl_register_file file, int index)
233      : file(file), index(index), var(var)
234   {
235      /* empty */
236   }
237
238   gl_register_file file;
239   int index;
240   ir_variable *var; /* variable that maps to this, if any */
241};
242
243class immediate_storage : public exec_node {
244public:
245   immediate_storage(gl_constant_value *values, int size, int type)
246   {
247      memcpy(this->values, values, size * sizeof(gl_constant_value));
248      this->size = size;
249      this->type = type;
250   }
251
252   gl_constant_value values[4];
253   int size; /**< Number of components (1-4) */
254   int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255};
256
257class function_entry : public exec_node {
258public:
259   ir_function_signature *sig;
260
261   /**
262    * identifier of this function signature used by the program.
263    *
264    * At the point that TGSI instructions for function calls are
265    * generated, we don't know the address of the first instruction of
266    * the function body.  So we make the BranchTarget that is called a
267    * small integer and rewrite them during set_branchtargets().
268    */
269   int sig_id;
270
271   /**
272    * Pointer to first instruction of the function body.
273    *
274    * Set during function body emits after main() is processed.
275    */
276   glsl_to_tgsi_instruction *bgn_inst;
277
278   /**
279    * Index of the first instruction of the function body in actual TGSI.
280    *
281    * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282    */
283   int inst;
284
285   /** Storage for the return value. */
286   st_src_reg return_reg;
287};
288
289class glsl_to_tgsi_visitor : public ir_visitor {
290public:
291   glsl_to_tgsi_visitor();
292   ~glsl_to_tgsi_visitor();
293
294   function_entry *current_function;
295
296   struct gl_context *ctx;
297   struct gl_program *prog;
298   struct gl_shader_program *shader_program;
299   struct gl_shader_compiler_options *options;
300
301   int next_temp;
302
303   int num_address_regs;
304   int samplers_used;
305   bool indirect_addr_temps;
306   bool indirect_addr_consts;
307   int num_clip_distances;
308
309   int glsl_version;
310   bool native_integers;
311
312   variable_storage *find_variable_storage(ir_variable *var);
313
314   int add_constant(gl_register_file file, gl_constant_value values[4],
315                    int size, int datatype, GLuint *swizzle_out);
316
317   function_entry *get_function_signature(ir_function_signature *sig);
318
319   st_src_reg get_temp(const glsl_type *type);
320   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
321
322   st_src_reg st_src_reg_for_float(float val);
323   st_src_reg st_src_reg_for_int(int val);
324   st_src_reg st_src_reg_for_type(int type, int val);
325
326   /**
327    * \name Visit methods
328    *
329    * As typical for the visitor pattern, there must be one \c visit method for
330    * each concrete subclass of \c ir_instruction.  Virtual base classes within
331    * the hierarchy should not have \c visit methods.
332    */
333   /*@{*/
334   virtual void visit(ir_variable *);
335   virtual void visit(ir_loop *);
336   virtual void visit(ir_loop_jump *);
337   virtual void visit(ir_function_signature *);
338   virtual void visit(ir_function *);
339   virtual void visit(ir_expression *);
340   virtual void visit(ir_swizzle *);
341   virtual void visit(ir_dereference_variable  *);
342   virtual void visit(ir_dereference_array *);
343   virtual void visit(ir_dereference_record *);
344   virtual void visit(ir_assignment *);
345   virtual void visit(ir_constant *);
346   virtual void visit(ir_call *);
347   virtual void visit(ir_return *);
348   virtual void visit(ir_discard *);
349   virtual void visit(ir_texture *);
350   virtual void visit(ir_if *);
351   /*@}*/
352
353   st_src_reg result;
354
355   /** List of variable_storage */
356   exec_list variables;
357
358   /** List of immediate_storage */
359   exec_list immediates;
360   unsigned num_immediates;
361
362   /** List of function_entry */
363   exec_list function_signatures;
364   int next_signature_id;
365
366   /** List of glsl_to_tgsi_instruction */
367   exec_list instructions;
368
369   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
370
371   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
372        		        st_dst_reg dst, st_src_reg src0);
373
374   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
375        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
376
377   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
378        		        st_dst_reg dst,
379        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
380
381   unsigned get_opcode(ir_instruction *ir, unsigned op,
382                    st_dst_reg dst,
383                    st_src_reg src0, st_src_reg src1);
384
385   /**
386    * Emit the correct dot-product instruction for the type of arguments
387    */
388   glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
389                                     st_dst_reg dst,
390                                     st_src_reg src0,
391                                     st_src_reg src1,
392                                     unsigned elements);
393
394   void emit_scalar(ir_instruction *ir, unsigned op,
395        	    st_dst_reg dst, st_src_reg src0);
396
397   void emit_scalar(ir_instruction *ir, unsigned op,
398        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
399
400   void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
401
402   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
403
404   void emit_scs(ir_instruction *ir, unsigned op,
405        	 st_dst_reg dst, const st_src_reg &src);
406
407   bool try_emit_mad(ir_expression *ir,
408              int mul_operand);
409   bool try_emit_mad_for_and_not(ir_expression *ir,
410              int mul_operand);
411   bool try_emit_sat(ir_expression *ir);
412
413   void emit_swz(ir_expression *ir);
414
415   bool process_move_condition(ir_rvalue *ir);
416
417   void simplify_cmp(void);
418
419   void rename_temp_register(int index, int new_index);
420   int get_first_temp_read(int index);
421   int get_first_temp_write(int index);
422   int get_last_temp_read(int index);
423   int get_last_temp_write(int index);
424
425   void copy_propagate(void);
426   void eliminate_dead_code(void);
427   int eliminate_dead_code_advanced(void);
428   void merge_registers(void);
429   void renumber_registers(void);
430
431   void *mem_ctx;
432};
433
434static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
435
436static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
437
438static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
439
440static void
441fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
442
443static void
444fail_link(struct gl_shader_program *prog, const char *fmt, ...)
445{
446   va_list args;
447   va_start(args, fmt);
448   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
449   va_end(args);
450
451   prog->LinkStatus = GL_FALSE;
452}
453
454static int
455swizzle_for_size(int size)
456{
457   int size_swizzles[4] = {
458      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
459      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
460      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
461      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
462   };
463
464   assert((size >= 1) && (size <= 4));
465   return size_swizzles[size - 1];
466}
467
468static bool
469is_tex_instruction(unsigned opcode)
470{
471   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
472   return info->is_tex;
473}
474
475static unsigned
476num_inst_dst_regs(unsigned opcode)
477{
478   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
479   return info->num_dst;
480}
481
482static unsigned
483num_inst_src_regs(unsigned opcode)
484{
485   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486   return info->is_tex ? info->num_src - 1 : info->num_src;
487}
488
489glsl_to_tgsi_instruction *
490glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
491        		 st_dst_reg dst,
492        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
493{
494   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
495   int num_reladdr = 0, i;
496
497   op = get_opcode(ir, op, dst, src0, src1);
498
499   /* If we have to do relative addressing, we want to load the ARL
500    * reg directly for one of the regs, and preload the other reladdr
501    * sources into temps.
502    */
503   num_reladdr += dst.reladdr != NULL;
504   num_reladdr += src0.reladdr != NULL;
505   num_reladdr += src1.reladdr != NULL;
506   num_reladdr += src2.reladdr != NULL;
507
508   reladdr_to_temp(ir, &src2, &num_reladdr);
509   reladdr_to_temp(ir, &src1, &num_reladdr);
510   reladdr_to_temp(ir, &src0, &num_reladdr);
511
512   if (dst.reladdr) {
513      emit_arl(ir, address_reg, *dst.reladdr);
514      num_reladdr--;
515   }
516   assert(num_reladdr == 0);
517
518   inst->op = op;
519   inst->dst = dst;
520   inst->src[0] = src0;
521   inst->src[1] = src1;
522   inst->src[2] = src2;
523   inst->ir = ir;
524   inst->dead_mask = 0;
525
526   inst->function = NULL;
527
528   if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
529      this->num_address_regs = 1;
530
531   /* Update indirect addressing status used by TGSI */
532   if (dst.reladdr) {
533      switch(dst.file) {
534      case PROGRAM_TEMPORARY:
535         this->indirect_addr_temps = true;
536         break;
537      case PROGRAM_LOCAL_PARAM:
538      case PROGRAM_ENV_PARAM:
539      case PROGRAM_STATE_VAR:
540      case PROGRAM_NAMED_PARAM:
541      case PROGRAM_CONSTANT:
542      case PROGRAM_UNIFORM:
543         this->indirect_addr_consts = true;
544         break;
545      case PROGRAM_IMMEDIATE:
546         assert(!"immediates should not have indirect addressing");
547         break;
548      default:
549         break;
550      }
551   }
552   else {
553      for (i=0; i<3; i++) {
554         if(inst->src[i].reladdr) {
555            switch(inst->src[i].file) {
556            case PROGRAM_TEMPORARY:
557               this->indirect_addr_temps = true;
558               break;
559            case PROGRAM_LOCAL_PARAM:
560            case PROGRAM_ENV_PARAM:
561            case PROGRAM_STATE_VAR:
562            case PROGRAM_NAMED_PARAM:
563            case PROGRAM_CONSTANT:
564            case PROGRAM_UNIFORM:
565               this->indirect_addr_consts = true;
566               break;
567            case PROGRAM_IMMEDIATE:
568               assert(!"immediates should not have indirect addressing");
569               break;
570            default:
571               break;
572            }
573         }
574      }
575   }
576
577   this->instructions.push_tail(inst);
578
579   if (native_integers)
580      try_emit_float_set(ir, op, dst);
581
582   return inst;
583}
584
585
586glsl_to_tgsi_instruction *
587glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
588        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
589{
590   return emit(ir, op, dst, src0, src1, undef_src);
591}
592
593glsl_to_tgsi_instruction *
594glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
595        		 st_dst_reg dst, st_src_reg src0)
596{
597   assert(dst.writemask != 0);
598   return emit(ir, op, dst, src0, undef_src, undef_src);
599}
600
601glsl_to_tgsi_instruction *
602glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
603{
604   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
605}
606
607 /**
608 * Emits the code to convert the result of float SET instructions to integers.
609 */
610void
611glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
612        		 st_dst_reg dst)
613{
614   if ((op == TGSI_OPCODE_SEQ ||
615        op == TGSI_OPCODE_SNE ||
616        op == TGSI_OPCODE_SGE ||
617        op == TGSI_OPCODE_SLT))
618   {
619      st_src_reg src = st_src_reg(dst);
620      src.negate = ~src.negate;
621      dst.type = GLSL_TYPE_FLOAT;
622      emit(ir, TGSI_OPCODE_F2I, dst, src);
623   }
624}
625
626/**
627 * Determines whether to use an integer, unsigned integer, or float opcode
628 * based on the operands and input opcode, then emits the result.
629 */
630unsigned
631glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
632        		 st_dst_reg dst,
633        		 st_src_reg src0, st_src_reg src1)
634{
635   int type = GLSL_TYPE_FLOAT;
636
637   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
638      type = GLSL_TYPE_FLOAT;
639   else if (native_integers)
640      type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
641
642#define case4(c, f, i, u) \
643   case TGSI_OPCODE_##c: \
644      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
645      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
646      else op = TGSI_OPCODE_##f; \
647      break;
648#define case3(f, i, u)  case4(f, f, i, u)
649#define case2fi(f, i)   case4(f, f, i, i)
650#define case2iu(i, u)   case4(i, LAST, i, u)
651
652   switch(op) {
653      case2fi(ADD, UADD);
654      case2fi(MUL, UMUL);
655      case2fi(MAD, UMAD);
656      case3(DIV, IDIV, UDIV);
657      case3(MAX, IMAX, UMAX);
658      case3(MIN, IMIN, UMIN);
659      case2iu(MOD, UMOD);
660
661      case2fi(SEQ, USEQ);
662      case2fi(SNE, USNE);
663      case3(SGE, ISGE, USGE);
664      case3(SLT, ISLT, USLT);
665
666      case2iu(ISHR, USHR);
667
668      case2fi(SSG, ISSG);
669      case3(ABS, IABS, IABS);
670
671      default: break;
672   }
673
674   assert(op != TGSI_OPCODE_LAST);
675   return op;
676}
677
678glsl_to_tgsi_instruction *
679glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
680        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
681        		    unsigned elements)
682{
683   static const unsigned dot_opcodes[] = {
684      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
685   };
686
687   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
688}
689
690/**
691 * Emits TGSI scalar opcodes to produce unique answers across channels.
692 *
693 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
694 * channel determines the result across all channels.  So to do a vec4
695 * of this operation, we want to emit a scalar per source channel used
696 * to produce dest channels.
697 */
698void
699glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
700        		        st_dst_reg dst,
701        			st_src_reg orig_src0, st_src_reg orig_src1)
702{
703   int i, j;
704   int done_mask = ~dst.writemask;
705
706   /* TGSI RCP is a scalar operation splatting results to all channels,
707    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
708    * dst channels.
709    */
710   for (i = 0; i < 4; i++) {
711      GLuint this_mask = (1 << i);
712      glsl_to_tgsi_instruction *inst;
713      st_src_reg src0 = orig_src0;
714      st_src_reg src1 = orig_src1;
715
716      if (done_mask & this_mask)
717         continue;
718
719      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
720      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
721      for (j = i + 1; j < 4; j++) {
722         /* If there is another enabled component in the destination that is
723          * derived from the same inputs, generate its value on this pass as
724          * well.
725          */
726         if (!(done_mask & (1 << j)) &&
727             GET_SWZ(src0.swizzle, j) == src0_swiz &&
728             GET_SWZ(src1.swizzle, j) == src1_swiz) {
729            this_mask |= (1 << j);
730         }
731      }
732      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
733        			   src0_swiz, src0_swiz);
734      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
735        			  src1_swiz, src1_swiz);
736
737      inst = emit(ir, op, dst, src0, src1);
738      inst->dst.writemask = this_mask;
739      done_mask |= this_mask;
740   }
741}
742
743void
744glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
745        		        st_dst_reg dst, st_src_reg src0)
746{
747   st_src_reg undef = undef_src;
748
749   undef.swizzle = SWIZZLE_XXXX;
750
751   emit_scalar(ir, op, dst, src0, undef);
752}
753
754void
755glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
756        		        st_dst_reg dst, st_src_reg src0)
757{
758   int op = TGSI_OPCODE_ARL;
759
760   if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
761      op = TGSI_OPCODE_UARL;
762
763   emit(NULL, op, dst, src0);
764}
765
766/**
767 * Emit an TGSI_OPCODE_SCS instruction
768 *
769 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
770 * Instead of splatting its result across all four components of the
771 * destination, it writes one value to the \c x component and another value to
772 * the \c y component.
773 *
774 * \param ir        IR instruction being processed
775 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
776 *                  on which value is desired.
777 * \param dst       Destination register
778 * \param src       Source register
779 */
780void
781glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
782        		     st_dst_reg dst,
783        		     const st_src_reg &src)
784{
785   /* Vertex programs cannot use the SCS opcode.
786    */
787   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
788      emit_scalar(ir, op, dst, src);
789      return;
790   }
791
792   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
793   const unsigned scs_mask = (1U << component);
794   int done_mask = ~dst.writemask;
795   st_src_reg tmp;
796
797   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
798
799   /* If there are compnents in the destination that differ from the component
800    * that will be written by the SCS instrution, we'll need a temporary.
801    */
802   if (scs_mask != unsigned(dst.writemask)) {
803      tmp = get_temp(glsl_type::vec4_type);
804   }
805
806   for (unsigned i = 0; i < 4; i++) {
807      unsigned this_mask = (1U << i);
808      st_src_reg src0 = src;
809
810      if ((done_mask & this_mask) != 0)
811         continue;
812
813      /* The source swizzle specified which component of the source generates
814       * sine / cosine for the current component in the destination.  The SCS
815       * instruction requires that this value be swizzle to the X component.
816       * Replace the current swizzle with a swizzle that puts the source in
817       * the X component.
818       */
819      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
820
821      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
822        			   src0_swiz, src0_swiz);
823      for (unsigned j = i + 1; j < 4; j++) {
824         /* If there is another enabled component in the destination that is
825          * derived from the same inputs, generate its value on this pass as
826          * well.
827          */
828         if (!(done_mask & (1 << j)) &&
829             GET_SWZ(src0.swizzle, j) == src0_swiz) {
830            this_mask |= (1 << j);
831         }
832      }
833
834      if (this_mask != scs_mask) {
835         glsl_to_tgsi_instruction *inst;
836         st_dst_reg tmp_dst = st_dst_reg(tmp);
837
838         /* Emit the SCS instruction.
839          */
840         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
841         inst->dst.writemask = scs_mask;
842
843         /* Move the result of the SCS instruction to the desired location in
844          * the destination.
845          */
846         tmp.swizzle = MAKE_SWIZZLE4(component, component,
847        			     component, component);
848         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
849         inst->dst.writemask = this_mask;
850      } else {
851         /* Emit the SCS instruction to write directly to the destination.
852          */
853         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
854         inst->dst.writemask = scs_mask;
855      }
856
857      done_mask |= this_mask;
858   }
859}
860
861int
862glsl_to_tgsi_visitor::add_constant(gl_register_file file,
863        		     gl_constant_value values[4], int size, int datatype,
864        		     GLuint *swizzle_out)
865{
866   if (file == PROGRAM_CONSTANT) {
867      return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
868                                              size, datatype, swizzle_out);
869   } else {
870      int index = 0;
871      immediate_storage *entry;
872      assert(file == PROGRAM_IMMEDIATE);
873
874      /* Search immediate storage to see if we already have an identical
875       * immediate that we can use instead of adding a duplicate entry.
876       */
877      foreach_iter(exec_list_iterator, iter, this->immediates) {
878         entry = (immediate_storage *)iter.get();
879
880         if (entry->size == size &&
881             entry->type == datatype &&
882             !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
883             return index;
884         }
885         index++;
886      }
887
888      /* Add this immediate to the list. */
889      entry = new(mem_ctx) immediate_storage(values, size, datatype);
890      this->immediates.push_tail(entry);
891      this->num_immediates++;
892      return index;
893   }
894}
895
896st_src_reg
897glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
898{
899   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
900   union gl_constant_value uval;
901
902   uval.f = val;
903   src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
904
905   return src;
906}
907
908st_src_reg
909glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
910{
911   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
912   union gl_constant_value uval;
913
914   assert(native_integers);
915
916   uval.i = val;
917   src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
918
919   return src;
920}
921
922st_src_reg
923glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
924{
925   if (native_integers)
926      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
927                                       st_src_reg_for_int(val);
928   else
929      return st_src_reg_for_float(val);
930}
931
932static int
933type_size(const struct glsl_type *type)
934{
935   unsigned int i;
936   int size;
937
938   switch (type->base_type) {
939   case GLSL_TYPE_UINT:
940   case GLSL_TYPE_INT:
941   case GLSL_TYPE_FLOAT:
942   case GLSL_TYPE_BOOL:
943      if (type->is_matrix()) {
944         return type->matrix_columns;
945      } else {
946         /* Regardless of size of vector, it gets a vec4. This is bad
947          * packing for things like floats, but otherwise arrays become a
948          * mess.  Hopefully a later pass over the code can pack scalars
949          * down if appropriate.
950          */
951         return 1;
952      }
953   case GLSL_TYPE_ARRAY:
954      assert(type->length > 0);
955      return type_size(type->fields.array) * type->length;
956   case GLSL_TYPE_STRUCT:
957      size = 0;
958      for (i = 0; i < type->length; i++) {
959         size += type_size(type->fields.structure[i].type);
960      }
961      return size;
962   case GLSL_TYPE_SAMPLER:
963      /* Samplers take up one slot in UNIFORMS[], but they're baked in
964       * at link time.
965       */
966      return 1;
967   default:
968      assert(0);
969      return 0;
970   }
971}
972
973/**
974 * In the initial pass of codegen, we assign temporary numbers to
975 * intermediate results.  (not SSA -- variable assignments will reuse
976 * storage).
977 */
978st_src_reg
979glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
980{
981   st_src_reg src;
982
983   src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
984   src.file = PROGRAM_TEMPORARY;
985   src.index = next_temp;
986   src.reladdr = NULL;
987   next_temp += type_size(type);
988
989   if (type->is_array() || type->is_record()) {
990      src.swizzle = SWIZZLE_NOOP;
991   } else {
992      src.swizzle = swizzle_for_size(type->vector_elements);
993   }
994   src.negate = 0;
995
996   return src;
997}
998
999variable_storage *
1000glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1001{
1002
1003   variable_storage *entry;
1004
1005   foreach_iter(exec_list_iterator, iter, this->variables) {
1006      entry = (variable_storage *)iter.get();
1007
1008      if (entry->var == var)
1009         return entry;
1010   }
1011
1012   return NULL;
1013}
1014
1015void
1016glsl_to_tgsi_visitor::visit(ir_variable *ir)
1017{
1018   if (strcmp(ir->name, "gl_FragCoord") == 0) {
1019      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1020
1021      fp->OriginUpperLeft = ir->origin_upper_left;
1022      fp->PixelCenterInteger = ir->pixel_center_integer;
1023   }
1024
1025   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1026      unsigned int i;
1027      const ir_state_slot *const slots = ir->state_slots;
1028      assert(ir->state_slots != NULL);
1029
1030      /* Check if this statevar's setup in the STATE file exactly
1031       * matches how we'll want to reference it as a
1032       * struct/array/whatever.  If not, then we need to move it into
1033       * temporary storage and hope that it'll get copy-propagated
1034       * out.
1035       */
1036      for (i = 0; i < ir->num_state_slots; i++) {
1037         if (slots[i].swizzle != SWIZZLE_XYZW) {
1038            break;
1039         }
1040      }
1041
1042      variable_storage *storage;
1043      st_dst_reg dst;
1044      if (i == ir->num_state_slots) {
1045         /* We'll set the index later. */
1046         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1047         this->variables.push_tail(storage);
1048
1049         dst = undef_dst;
1050      } else {
1051         /* The variable_storage constructor allocates slots based on the size
1052          * of the type.  However, this had better match the number of state
1053          * elements that we're going to copy into the new temporary.
1054          */
1055         assert((int) ir->num_state_slots == type_size(ir->type));
1056
1057         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1058        					 this->next_temp);
1059         this->variables.push_tail(storage);
1060         this->next_temp += type_size(ir->type);
1061
1062         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1063               native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1064      }
1065
1066
1067      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1068         int index = _mesa_add_state_reference(this->prog->Parameters,
1069        				       (gl_state_index *)slots[i].tokens);
1070
1071         if (storage->file == PROGRAM_STATE_VAR) {
1072            if (storage->index == -1) {
1073               storage->index = index;
1074            } else {
1075               assert(index == storage->index + (int)i);
1076            }
1077         } else {
1078            st_src_reg src(PROGRAM_STATE_VAR, index,
1079                  native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1080            src.swizzle = slots[i].swizzle;
1081            emit(ir, TGSI_OPCODE_MOV, dst, src);
1082            /* even a float takes up a whole vec4 reg in a struct/array. */
1083            dst.index++;
1084         }
1085      }
1086
1087      if (storage->file == PROGRAM_TEMPORARY &&
1088          dst.index != storage->index + (int) ir->num_state_slots) {
1089         fail_link(this->shader_program,
1090        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1091        	   ir->name, dst.index - storage->index,
1092        	   type_size(ir->type));
1093      }
1094   }
1095}
1096
1097void
1098glsl_to_tgsi_visitor::visit(ir_loop *ir)
1099{
1100   ir_dereference_variable *counter = NULL;
1101
1102   if (ir->counter != NULL)
1103      counter = new(ir) ir_dereference_variable(ir->counter);
1104
1105   if (ir->from != NULL) {
1106      assert(ir->counter != NULL);
1107
1108      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1109
1110      a->accept(this);
1111      delete a;
1112   }
1113
1114   emit(NULL, TGSI_OPCODE_BGNLOOP);
1115
1116   if (ir->to) {
1117      ir_expression *e =
1118         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1119        		       counter, ir->to);
1120      ir_if *if_stmt =  new(ir) ir_if(e);
1121
1122      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1123
1124      if_stmt->then_instructions.push_tail(brk);
1125
1126      if_stmt->accept(this);
1127
1128      delete if_stmt;
1129      delete e;
1130      delete brk;
1131   }
1132
1133   visit_exec_list(&ir->body_instructions, this);
1134
1135   if (ir->increment) {
1136      ir_expression *e =
1137         new(ir) ir_expression(ir_binop_add, counter->type,
1138        		       counter, ir->increment);
1139
1140      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1141
1142      a->accept(this);
1143      delete a;
1144      delete e;
1145   }
1146
1147   emit(NULL, TGSI_OPCODE_ENDLOOP);
1148}
1149
1150void
1151glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1152{
1153   switch (ir->mode) {
1154   case ir_loop_jump::jump_break:
1155      emit(NULL, TGSI_OPCODE_BRK);
1156      break;
1157   case ir_loop_jump::jump_continue:
1158      emit(NULL, TGSI_OPCODE_CONT);
1159      break;
1160   }
1161}
1162
1163
1164void
1165glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1166{
1167   assert(0);
1168   (void)ir;
1169}
1170
1171void
1172glsl_to_tgsi_visitor::visit(ir_function *ir)
1173{
1174   /* Ignore function bodies other than main() -- we shouldn't see calls to
1175    * them since they should all be inlined before we get to glsl_to_tgsi.
1176    */
1177   if (strcmp(ir->name, "main") == 0) {
1178      const ir_function_signature *sig;
1179      exec_list empty;
1180
1181      sig = ir->matching_signature(&empty);
1182
1183      assert(sig);
1184
1185      foreach_iter(exec_list_iterator, iter, sig->body) {
1186         ir_instruction *ir = (ir_instruction *)iter.get();
1187
1188         ir->accept(this);
1189      }
1190   }
1191}
1192
1193bool
1194glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1195{
1196   int nonmul_operand = 1 - mul_operand;
1197   st_src_reg a, b, c;
1198   st_dst_reg result_dst;
1199
1200   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1201   if (!expr || expr->operation != ir_binop_mul)
1202      return false;
1203
1204   expr->operands[0]->accept(this);
1205   a = this->result;
1206   expr->operands[1]->accept(this);
1207   b = this->result;
1208   ir->operands[nonmul_operand]->accept(this);
1209   c = this->result;
1210
1211   this->result = get_temp(ir->type);
1212   result_dst = st_dst_reg(this->result);
1213   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1214   emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1215
1216   return true;
1217}
1218
1219/**
1220 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1221 *
1222 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1223 * implemented using multiplication, and logical-or is implemented using
1224 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1225 * As result, the logical expression (a & !b) can be rewritten as:
1226 *
1227 *     - a * !b
1228 *     - a * (1 - b)
1229 *     - (a * 1) - (a * b)
1230 *     - a + -(a * b)
1231 *     - a + (a * -b)
1232 *
1233 * This final expression can be implemented as a single MAD(a, -b, a)
1234 * instruction.
1235 */
1236bool
1237glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1238{
1239   const int other_operand = 1 - try_operand;
1240   st_src_reg a, b;
1241
1242   ir_expression *expr = ir->operands[try_operand]->as_expression();
1243   if (!expr || expr->operation != ir_unop_logic_not)
1244      return false;
1245
1246   ir->operands[other_operand]->accept(this);
1247   a = this->result;
1248   expr->operands[0]->accept(this);
1249   b = this->result;
1250
1251   b.negate = ~b.negate;
1252
1253   this->result = get_temp(ir->type);
1254   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1255
1256   return true;
1257}
1258
1259bool
1260glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1261{
1262   /* Saturates were only introduced to vertex programs in
1263    * NV_vertex_program3, so don't give them to drivers in the VP.
1264    */
1265   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1266      return false;
1267
1268   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1269   if (!sat_src)
1270      return false;
1271
1272   sat_src->accept(this);
1273   st_src_reg src = this->result;
1274
1275   /* If we generated an expression instruction into a temporary in
1276    * processing the saturate's operand, apply the saturate to that
1277    * instruction.  Otherwise, generate a MOV to do the saturate.
1278    *
1279    * Note that we have to be careful to only do this optimization if
1280    * the instruction in question was what generated src->result.  For
1281    * example, ir_dereference_array might generate a MUL instruction
1282    * to create the reladdr, and return us a src reg using that
1283    * reladdr.  That MUL result is not the value we're trying to
1284    * saturate.
1285    */
1286   ir_expression *sat_src_expr = sat_src->as_expression();
1287   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1288			sat_src_expr->operation == ir_binop_add ||
1289			sat_src_expr->operation == ir_binop_dot)) {
1290      glsl_to_tgsi_instruction *new_inst;
1291      new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1292      new_inst->saturate = true;
1293   } else {
1294      this->result = get_temp(ir->type);
1295      st_dst_reg result_dst = st_dst_reg(this->result);
1296      result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1297      glsl_to_tgsi_instruction *inst;
1298      inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1299      inst->saturate = true;
1300   }
1301
1302   return true;
1303}
1304
1305void
1306glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1307        			    st_src_reg *reg, int *num_reladdr)
1308{
1309   if (!reg->reladdr)
1310      return;
1311
1312   emit_arl(ir, address_reg, *reg->reladdr);
1313
1314   if (*num_reladdr != 1) {
1315      st_src_reg temp = get_temp(glsl_type::vec4_type);
1316
1317      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1318      *reg = temp;
1319   }
1320
1321   (*num_reladdr)--;
1322}
1323
1324void
1325glsl_to_tgsi_visitor::visit(ir_expression *ir)
1326{
1327   unsigned int operand;
1328   st_src_reg op[Elements(ir->operands)];
1329   st_src_reg result_src;
1330   st_dst_reg result_dst;
1331
1332   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1333    */
1334   if (ir->operation == ir_binop_add) {
1335      if (try_emit_mad(ir, 1))
1336         return;
1337      if (try_emit_mad(ir, 0))
1338         return;
1339   }
1340
1341   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1342    */
1343   if (ir->operation == ir_binop_logic_and) {
1344      if (try_emit_mad_for_and_not(ir, 1))
1345	 return;
1346      if (try_emit_mad_for_and_not(ir, 0))
1347	 return;
1348   }
1349
1350   if (try_emit_sat(ir))
1351      return;
1352
1353   if (ir->operation == ir_quadop_vector)
1354      assert(!"ir_quadop_vector should have been lowered");
1355
1356   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1357      this->result.file = PROGRAM_UNDEFINED;
1358      ir->operands[operand]->accept(this);
1359      if (this->result.file == PROGRAM_UNDEFINED) {
1360         ir_print_visitor v;
1361         printf("Failed to get tree for expression operand:\n");
1362         ir->operands[operand]->accept(&v);
1363         exit(1);
1364      }
1365      op[operand] = this->result;
1366
1367      /* Matrix expression operands should have been broken down to vector
1368       * operations already.
1369       */
1370      assert(!ir->operands[operand]->type->is_matrix());
1371   }
1372
1373   int vector_elements = ir->operands[0]->type->vector_elements;
1374   if (ir->operands[1]) {
1375      vector_elements = MAX2(vector_elements,
1376        		     ir->operands[1]->type->vector_elements);
1377   }
1378
1379   this->result.file = PROGRAM_UNDEFINED;
1380
1381   /* Storage for our result.  Ideally for an assignment we'd be using
1382    * the actual storage for the result here, instead.
1383    */
1384   result_src = get_temp(ir->type);
1385   /* convenience for the emit functions below. */
1386   result_dst = st_dst_reg(result_src);
1387   /* Limit writes to the channels that will be used by result_src later.
1388    * This does limit this temp's use as a temporary for multi-instruction
1389    * sequences.
1390    */
1391   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1392
1393   switch (ir->operation) {
1394   case ir_unop_logic_not:
1395      if (result_dst.type != GLSL_TYPE_FLOAT)
1396         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1397      else {
1398         /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1399          * older GPUs implement SEQ using multiple instructions (i915 uses two
1400          * SGE instructions and a MUL instruction).  Since our logic values are
1401          * 0.0 and 1.0, 1-x also implements !x.
1402          */
1403         op[0].negate = ~op[0].negate;
1404         emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1405      }
1406      break;
1407   case ir_unop_neg:
1408      if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1409         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1410      else {
1411         op[0].negate = ~op[0].negate;
1412         result_src = op[0];
1413      }
1414      break;
1415   case ir_unop_abs:
1416      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1417      break;
1418   case ir_unop_sign:
1419      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1420      break;
1421   case ir_unop_rcp:
1422      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1423      break;
1424
1425   case ir_unop_exp2:
1426      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1427      break;
1428   case ir_unop_exp:
1429   case ir_unop_log:
1430      assert(!"not reached: should be handled by ir_explog_to_explog2");
1431      break;
1432   case ir_unop_log2:
1433      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1434      break;
1435   case ir_unop_sin:
1436      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1437      break;
1438   case ir_unop_cos:
1439      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1440      break;
1441   case ir_unop_sin_reduced:
1442      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1443      break;
1444   case ir_unop_cos_reduced:
1445      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1446      break;
1447
1448   case ir_unop_dFdx:
1449      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1450      break;
1451   case ir_unop_dFdy:
1452      op[0].negate = ~op[0].negate;
1453      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1454      break;
1455
1456   case ir_unop_noise: {
1457      /* At some point, a motivated person could add a better
1458       * implementation of noise.  Currently not even the nvidia
1459       * binary drivers do anything more than this.  In any case, the
1460       * place to do this is in the GL state tracker, not the poor
1461       * driver.
1462       */
1463      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1464      break;
1465   }
1466
1467   case ir_binop_add:
1468      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1469      break;
1470   case ir_binop_sub:
1471      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1472      break;
1473
1474   case ir_binop_mul:
1475      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1476      break;
1477   case ir_binop_div:
1478      if (result_dst.type == GLSL_TYPE_FLOAT)
1479         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1480      else
1481         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1482      break;
1483   case ir_binop_mod:
1484      if (result_dst.type == GLSL_TYPE_FLOAT)
1485         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1486      else
1487         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1488      break;
1489
1490   case ir_binop_less:
1491      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1492      break;
1493   case ir_binop_greater:
1494      emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1495      break;
1496   case ir_binop_lequal:
1497      emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1498      break;
1499   case ir_binop_gequal:
1500      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1501      break;
1502   case ir_binop_equal:
1503      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1504      break;
1505   case ir_binop_nequal:
1506      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1507      break;
1508   case ir_binop_all_equal:
1509      /* "==" operator producing a scalar boolean. */
1510      if (ir->operands[0]->type->is_vector() ||
1511          ir->operands[1]->type->is_vector()) {
1512         st_src_reg temp = get_temp(native_integers ?
1513               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1514               glsl_type::vec4_type);
1515
1516         if (native_integers) {
1517            st_dst_reg temp_dst = st_dst_reg(temp);
1518            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1519
1520            emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1521
1522            /* Emit 1-3 AND operations to combine the SEQ results. */
1523            switch (ir->operands[0]->type->vector_elements) {
1524            case 2:
1525               break;
1526            case 3:
1527               temp_dst.writemask = WRITEMASK_Y;
1528               temp1.swizzle = SWIZZLE_YYYY;
1529               temp2.swizzle = SWIZZLE_ZZZZ;
1530               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1531               break;
1532            case 4:
1533               temp_dst.writemask = WRITEMASK_X;
1534               temp1.swizzle = SWIZZLE_XXXX;
1535               temp2.swizzle = SWIZZLE_YYYY;
1536               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1537               temp_dst.writemask = WRITEMASK_Y;
1538               temp1.swizzle = SWIZZLE_ZZZZ;
1539               temp2.swizzle = SWIZZLE_WWWW;
1540               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1541            }
1542
1543            temp1.swizzle = SWIZZLE_XXXX;
1544            temp2.swizzle = SWIZZLE_YYYY;
1545            emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1546         } else {
1547            emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1548
1549            /* After the dot-product, the value will be an integer on the
1550             * range [0,4].  Zero becomes 1.0, and positive values become zero.
1551             */
1552            emit_dp(ir, result_dst, temp, temp, vector_elements);
1553
1554            /* Negating the result of the dot-product gives values on the range
1555             * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1556             * This is achieved using SGE.
1557             */
1558            st_src_reg sge_src = result_src;
1559            sge_src.negate = ~sge_src.negate;
1560            emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1561         }
1562      } else {
1563         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1564      }
1565      break;
1566   case ir_binop_any_nequal:
1567      /* "!=" operator producing a scalar boolean. */
1568      if (ir->operands[0]->type->is_vector() ||
1569          ir->operands[1]->type->is_vector()) {
1570         st_src_reg temp = get_temp(native_integers ?
1571               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1572               glsl_type::vec4_type);
1573         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1574
1575         if (native_integers) {
1576            st_dst_reg temp_dst = st_dst_reg(temp);
1577            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1578
1579            /* Emit 1-3 OR operations to combine the SNE results. */
1580            switch (ir->operands[0]->type->vector_elements) {
1581            case 2:
1582               break;
1583            case 3:
1584               temp_dst.writemask = WRITEMASK_Y;
1585               temp1.swizzle = SWIZZLE_YYYY;
1586               temp2.swizzle = SWIZZLE_ZZZZ;
1587               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1588               break;
1589            case 4:
1590               temp_dst.writemask = WRITEMASK_X;
1591               temp1.swizzle = SWIZZLE_XXXX;
1592               temp2.swizzle = SWIZZLE_YYYY;
1593               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1594               temp_dst.writemask = WRITEMASK_Y;
1595               temp1.swizzle = SWIZZLE_ZZZZ;
1596               temp2.swizzle = SWIZZLE_WWWW;
1597               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1598            }
1599
1600            temp1.swizzle = SWIZZLE_XXXX;
1601            temp2.swizzle = SWIZZLE_YYYY;
1602            emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1603         } else {
1604            /* After the dot-product, the value will be an integer on the
1605             * range [0,4].  Zero stays zero, and positive values become 1.0.
1606             */
1607            glsl_to_tgsi_instruction *const dp =
1608                  emit_dp(ir, result_dst, temp, temp, vector_elements);
1609            if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1610               /* The clamping to [0,1] can be done for free in the fragment
1611                * shader with a saturate.
1612                */
1613               dp->saturate = true;
1614            } else {
1615               /* Negating the result of the dot-product gives values on the range
1616                * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1617                * achieved using SLT.
1618                */
1619               st_src_reg slt_src = result_src;
1620               slt_src.negate = ~slt_src.negate;
1621               emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1622            }
1623         }
1624      } else {
1625         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1626      }
1627      break;
1628
1629   case ir_unop_any: {
1630      assert(ir->operands[0]->type->is_vector());
1631
1632      /* After the dot-product, the value will be an integer on the
1633       * range [0,4].  Zero stays zero, and positive values become 1.0.
1634       */
1635      glsl_to_tgsi_instruction *const dp =
1636         emit_dp(ir, result_dst, op[0], op[0],
1637                 ir->operands[0]->type->vector_elements);
1638      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1639          result_dst.type == GLSL_TYPE_FLOAT) {
1640	      /* The clamping to [0,1] can be done for free in the fragment
1641	       * shader with a saturate.
1642	       */
1643	      dp->saturate = true;
1644      } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1645	      /* Negating the result of the dot-product gives values on the range
1646	       * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1647	       * is achieved using SLT.
1648	       */
1649	      st_src_reg slt_src = result_src;
1650	      slt_src.negate = ~slt_src.negate;
1651	      emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1652      }
1653      else {
1654         /* Use SNE 0 if integers are being used as boolean values. */
1655         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1656      }
1657      break;
1658   }
1659
1660   case ir_binop_logic_xor:
1661      if (native_integers)
1662         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1663      else
1664         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1665      break;
1666
1667   case ir_binop_logic_or: {
1668      if (native_integers) {
1669         /* If integers are used as booleans, we can use an actual "or"
1670          * instruction.
1671          */
1672         assert(native_integers);
1673         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1674      } else {
1675         /* After the addition, the value will be an integer on the
1676          * range [0,2].  Zero stays zero, and positive values become 1.0.
1677          */
1678         glsl_to_tgsi_instruction *add =
1679            emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1680         if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1681            /* The clamping to [0,1] can be done for free in the fragment
1682             * shader with a saturate if floats are being used as boolean values.
1683             */
1684            add->saturate = true;
1685         } else {
1686            /* Negating the result of the addition gives values on the range
1687             * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1688             * is achieved using SLT.
1689             */
1690            st_src_reg slt_src = result_src;
1691            slt_src.negate = ~slt_src.negate;
1692            emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1693         }
1694      }
1695      break;
1696   }
1697
1698   case ir_binop_logic_and:
1699      /* If native integers are disabled, the bool args are stored as float 0.0
1700       * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1701       * actual AND opcode.
1702       */
1703      if (native_integers)
1704         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1705      else
1706         emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1707      break;
1708
1709   case ir_binop_dot:
1710      assert(ir->operands[0]->type->is_vector());
1711      assert(ir->operands[0]->type == ir->operands[1]->type);
1712      emit_dp(ir, result_dst, op[0], op[1],
1713              ir->operands[0]->type->vector_elements);
1714      break;
1715
1716   case ir_unop_sqrt:
1717      /* sqrt(x) = x * rsq(x). */
1718      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1719      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1720      /* For incoming channels <= 0, set the result to 0. */
1721      op[0].negate = ~op[0].negate;
1722      emit(ir, TGSI_OPCODE_CMP, result_dst,
1723        		  op[0], result_src, st_src_reg_for_float(0.0));
1724      break;
1725   case ir_unop_rsq:
1726      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1727      break;
1728   case ir_unop_i2f:
1729      if (native_integers) {
1730         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1731         break;
1732      }
1733      /* fallthrough to next case otherwise */
1734   case ir_unop_b2f:
1735      if (native_integers) {
1736         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1737         break;
1738      }
1739      /* fallthrough to next case otherwise */
1740   case ir_unop_i2u:
1741   case ir_unop_u2i:
1742      /* Converting between signed and unsigned integers is a no-op. */
1743      result_src = op[0];
1744      break;
1745   case ir_unop_b2i:
1746      if (native_integers) {
1747         /* Booleans are stored as integers using ~0 for true and 0 for false.
1748          * GLSL requires that int(bool) return 1 for true and 0 for false.
1749          * This conversion is done with AND, but it could be done with NEG.
1750          */
1751         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1752      } else {
1753         /* Booleans and integers are both stored as floats when native
1754          * integers are disabled.
1755          */
1756         result_src = op[0];
1757      }
1758      break;
1759   case ir_unop_f2i:
1760      if (native_integers)
1761         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1762      else
1763         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1764      break;
1765   case ir_unop_f2b:
1766      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1767      break;
1768   case ir_unop_i2b:
1769      if (native_integers)
1770         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1771      else
1772         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1773      break;
1774   case ir_unop_trunc:
1775      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1776      break;
1777   case ir_unop_ceil:
1778      emit(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1779      break;
1780   case ir_unop_floor:
1781      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1782      break;
1783   case ir_unop_round_even:
1784      emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1785      break;
1786   case ir_unop_fract:
1787      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1788      break;
1789
1790   case ir_binop_min:
1791      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1792      break;
1793   case ir_binop_max:
1794      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1795      break;
1796   case ir_binop_pow:
1797      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1798      break;
1799
1800   case ir_unop_bit_not:
1801      if (native_integers) {
1802         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1803         break;
1804      }
1805   case ir_unop_u2f:
1806      if (native_integers) {
1807         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1808         break;
1809      }
1810   case ir_binop_lshift:
1811      if (native_integers) {
1812         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1813         break;
1814      }
1815   case ir_binop_rshift:
1816      if (native_integers) {
1817         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1818         break;
1819      }
1820   case ir_binop_bit_and:
1821      if (native_integers) {
1822         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1823         break;
1824      }
1825   case ir_binop_bit_xor:
1826      if (native_integers) {
1827         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1828         break;
1829      }
1830   case ir_binop_bit_or:
1831      if (native_integers) {
1832         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1833         break;
1834      }
1835
1836      assert(!"GLSL 1.30 features unsupported");
1837      break;
1838
1839   case ir_quadop_vector:
1840      /* This operation should have already been handled.
1841       */
1842      assert(!"Should not get here.");
1843      break;
1844   }
1845
1846   this->result = result_src;
1847}
1848
1849
1850void
1851glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1852{
1853   st_src_reg src;
1854   int i;
1855   int swizzle[4];
1856
1857   /* Note that this is only swizzles in expressions, not those on the left
1858    * hand side of an assignment, which do write masking.  See ir_assignment
1859    * for that.
1860    */
1861
1862   ir->val->accept(this);
1863   src = this->result;
1864   assert(src.file != PROGRAM_UNDEFINED);
1865
1866   for (i = 0; i < 4; i++) {
1867      if (i < ir->type->vector_elements) {
1868         switch (i) {
1869         case 0:
1870            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1871            break;
1872         case 1:
1873            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1874            break;
1875         case 2:
1876            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1877            break;
1878         case 3:
1879            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1880            break;
1881         }
1882      } else {
1883         /* If the type is smaller than a vec4, replicate the last
1884          * channel out.
1885          */
1886         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1887      }
1888   }
1889
1890   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1891
1892   this->result = src;
1893}
1894
1895void
1896glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1897{
1898   variable_storage *entry = find_variable_storage(ir->var);
1899   ir_variable *var = ir->var;
1900
1901   if (!entry) {
1902      switch (var->mode) {
1903      case ir_var_uniform:
1904         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1905        				       var->location);
1906         this->variables.push_tail(entry);
1907         break;
1908      case ir_var_in:
1909      case ir_var_inout:
1910         /* The linker assigns locations for varyings and attributes,
1911          * including deprecated builtins (like gl_Color), user-assign
1912          * generic attributes (glBindVertexLocation), and
1913          * user-defined varyings.
1914          *
1915          * FINISHME: We would hit this path for function arguments.  Fix!
1916          */
1917         assert(var->location != -1);
1918         entry = new(mem_ctx) variable_storage(var,
1919                                               PROGRAM_INPUT,
1920                                               var->location);
1921         break;
1922      case ir_var_out:
1923         assert(var->location != -1);
1924         entry = new(mem_ctx) variable_storage(var,
1925                                               PROGRAM_OUTPUT,
1926                                               var->location + var->index);
1927         break;
1928      case ir_var_system_value:
1929         entry = new(mem_ctx) variable_storage(var,
1930                                               PROGRAM_SYSTEM_VALUE,
1931                                               var->location);
1932         break;
1933      case ir_var_auto:
1934      case ir_var_temporary:
1935         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1936        				       this->next_temp);
1937         this->variables.push_tail(entry);
1938
1939         next_temp += type_size(var->type);
1940         break;
1941      }
1942
1943      if (!entry) {
1944         printf("Failed to make storage for %s\n", var->name);
1945         exit(1);
1946      }
1947   }
1948
1949   this->result = st_src_reg(entry->file, entry->index, var->type);
1950   if (!native_integers)
1951      this->result.type = GLSL_TYPE_FLOAT;
1952}
1953
1954void
1955glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1956{
1957   ir_constant *index;
1958   st_src_reg src;
1959   int element_size = type_size(ir->type);
1960
1961   index = ir->array_index->constant_expression_value();
1962
1963   ir->array->accept(this);
1964   src = this->result;
1965
1966   if (index) {
1967      src.index += index->value.i[0] * element_size;
1968   } else {
1969      /* Variable index array dereference.  It eats the "vec4" of the
1970       * base of the array and an index that offsets the TGSI register
1971       * index.
1972       */
1973      ir->array_index->accept(this);
1974
1975      st_src_reg index_reg;
1976
1977      if (element_size == 1) {
1978         index_reg = this->result;
1979      } else {
1980         index_reg = get_temp(native_integers ?
1981                              glsl_type::int_type : glsl_type::float_type);
1982
1983         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1984              this->result, st_src_reg_for_type(index_reg.type, element_size));
1985      }
1986
1987      /* If there was already a relative address register involved, add the
1988       * new and the old together to get the new offset.
1989       */
1990      if (src.reladdr != NULL) {
1991         st_src_reg accum_reg = get_temp(native_integers ?
1992                                glsl_type::int_type : glsl_type::float_type);
1993
1994         emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1995              index_reg, *src.reladdr);
1996
1997         index_reg = accum_reg;
1998      }
1999
2000      src.reladdr = ralloc(mem_ctx, st_src_reg);
2001      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2002   }
2003
2004   /* If the type is smaller than a vec4, replicate the last channel out. */
2005   if (ir->type->is_scalar() || ir->type->is_vector())
2006      src.swizzle = swizzle_for_size(ir->type->vector_elements);
2007   else
2008      src.swizzle = SWIZZLE_NOOP;
2009
2010   this->result = src;
2011}
2012
2013void
2014glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2015{
2016   unsigned int i;
2017   const glsl_type *struct_type = ir->record->type;
2018   int offset = 0;
2019
2020   ir->record->accept(this);
2021
2022   for (i = 0; i < struct_type->length; i++) {
2023      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2024         break;
2025      offset += type_size(struct_type->fields.structure[i].type);
2026   }
2027
2028   /* If the type is smaller than a vec4, replicate the last channel out. */
2029   if (ir->type->is_scalar() || ir->type->is_vector())
2030      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2031   else
2032      this->result.swizzle = SWIZZLE_NOOP;
2033
2034   this->result.index += offset;
2035}
2036
2037/**
2038 * We want to be careful in assignment setup to hit the actual storage
2039 * instead of potentially using a temporary like we might with the
2040 * ir_dereference handler.
2041 */
2042static st_dst_reg
2043get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2044{
2045   /* The LHS must be a dereference.  If the LHS is a variable indexed array
2046    * access of a vector, it must be separated into a series conditional moves
2047    * before reaching this point (see ir_vec_index_to_cond_assign).
2048    */
2049   assert(ir->as_dereference());
2050   ir_dereference_array *deref_array = ir->as_dereference_array();
2051   if (deref_array) {
2052      assert(!deref_array->array->type->is_vector());
2053   }
2054
2055   /* Use the rvalue deref handler for the most part.  We'll ignore
2056    * swizzles in it and write swizzles using writemask, though.
2057    */
2058   ir->accept(v);
2059   return st_dst_reg(v->result);
2060}
2061
2062/**
2063 * Process the condition of a conditional assignment
2064 *
2065 * Examines the condition of a conditional assignment to generate the optimal
2066 * first operand of a \c CMP instruction.  If the condition is a relational
2067 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2068 * used as the source for the \c CMP instruction.  Otherwise the comparison
2069 * is processed to a boolean result, and the boolean result is used as the
2070 * operand to the CMP instruction.
2071 */
2072bool
2073glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2074{
2075   ir_rvalue *src_ir = ir;
2076   bool negate = true;
2077   bool switch_order = false;
2078
2079   ir_expression *const expr = ir->as_expression();
2080   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2081      bool zero_on_left = false;
2082
2083      if (expr->operands[0]->is_zero()) {
2084         src_ir = expr->operands[1];
2085         zero_on_left = true;
2086      } else if (expr->operands[1]->is_zero()) {
2087         src_ir = expr->operands[0];
2088         zero_on_left = false;
2089      }
2090
2091      /*      a is -  0  +            -  0  +
2092       * (a <  0)  T  F  F  ( a < 0)  T  F  F
2093       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2094       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2095       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2096       * (a >  0)  F  F  T  (-a < 0)  F  F  T
2097       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2098       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2099       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2100       *
2101       * Note that exchanging the order of 0 and 'a' in the comparison simply
2102       * means that the value of 'a' should be negated.
2103       */
2104      if (src_ir != ir) {
2105         switch (expr->operation) {
2106         case ir_binop_less:
2107            switch_order = false;
2108            negate = zero_on_left;
2109            break;
2110
2111         case ir_binop_greater:
2112            switch_order = false;
2113            negate = !zero_on_left;
2114            break;
2115
2116         case ir_binop_lequal:
2117            switch_order = true;
2118            negate = !zero_on_left;
2119            break;
2120
2121         case ir_binop_gequal:
2122            switch_order = true;
2123            negate = zero_on_left;
2124            break;
2125
2126         default:
2127            /* This isn't the right kind of comparison afterall, so make sure
2128             * the whole condition is visited.
2129             */
2130            src_ir = ir;
2131            break;
2132         }
2133      }
2134   }
2135
2136   src_ir->accept(this);
2137
2138   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2139    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2140    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2141    * computing the condition.
2142    */
2143   if (negate)
2144      this->result.negate = ~this->result.negate;
2145
2146   return switch_order;
2147}
2148
2149void
2150glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2151{
2152   st_dst_reg l;
2153   st_src_reg r;
2154   int i;
2155
2156   ir->rhs->accept(this);
2157   r = this->result;
2158
2159   l = get_assignment_lhs(ir->lhs, this);
2160
2161   /* FINISHME: This should really set to the correct maximal writemask for each
2162    * FINISHME: component written (in the loops below).  This case can only
2163    * FINISHME: occur for matrices, arrays, and structures.
2164    */
2165   if (ir->write_mask == 0) {
2166      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2167      l.writemask = WRITEMASK_XYZW;
2168   } else if (ir->lhs->type->is_scalar() &&
2169              ir->lhs->variable_referenced()->mode == ir_var_out) {
2170      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2171       * FINISHME: W component of fragment shader output zero, work correctly.
2172       */
2173      l.writemask = WRITEMASK_XYZW;
2174   } else {
2175      int swizzles[4];
2176      int first_enabled_chan = 0;
2177      int rhs_chan = 0;
2178
2179      l.writemask = ir->write_mask;
2180
2181      for (int i = 0; i < 4; i++) {
2182         if (l.writemask & (1 << i)) {
2183            first_enabled_chan = GET_SWZ(r.swizzle, i);
2184            break;
2185         }
2186      }
2187
2188      /* Swizzle a small RHS vector into the channels being written.
2189       *
2190       * glsl ir treats write_mask as dictating how many channels are
2191       * present on the RHS while TGSI treats write_mask as just
2192       * showing which channels of the vec4 RHS get written.
2193       */
2194      for (int i = 0; i < 4; i++) {
2195         if (l.writemask & (1 << i))
2196            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2197         else
2198            swizzles[i] = first_enabled_chan;
2199      }
2200      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2201        			swizzles[2], swizzles[3]);
2202   }
2203
2204   assert(l.file != PROGRAM_UNDEFINED);
2205   assert(r.file != PROGRAM_UNDEFINED);
2206
2207   if (ir->condition) {
2208      const bool switch_order = this->process_move_condition(ir->condition);
2209      st_src_reg condition = this->result;
2210
2211      for (i = 0; i < type_size(ir->lhs->type); i++) {
2212         st_src_reg l_src = st_src_reg(l);
2213         st_src_reg condition_temp = condition;
2214         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2215
2216         if (native_integers) {
2217            /* This is necessary because TGSI's CMP instruction expects the
2218             * condition to be a float, and we store booleans as integers.
2219             * If TGSI had a UCMP instruction or similar, this extra
2220             * instruction would not be necessary.
2221             */
2222            condition_temp = get_temp(glsl_type::vec4_type);
2223            condition.negate = 0;
2224            emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2225            condition_temp.swizzle = condition.swizzle;
2226         }
2227
2228         if (switch_order) {
2229            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2230         } else {
2231            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2232         }
2233
2234         l.index++;
2235         r.index++;
2236      }
2237   } else if (ir->rhs->as_expression() &&
2238              this->instructions.get_tail() &&
2239              ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2240              type_size(ir->lhs->type) == 1 &&
2241              l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2242      /* To avoid emitting an extra MOV when assigning an expression to a
2243       * variable, emit the last instruction of the expression again, but
2244       * replace the destination register with the target of the assignment.
2245       * Dead code elimination will remove the original instruction.
2246       */
2247      glsl_to_tgsi_instruction *inst, *new_inst;
2248      inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2249      new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2250      new_inst->saturate = inst->saturate;
2251      inst->dead_mask = inst->dst.writemask;
2252   } else {
2253      for (i = 0; i < type_size(ir->lhs->type); i++) {
2254         emit(ir, TGSI_OPCODE_MOV, l, r);
2255         l.index++;
2256         r.index++;
2257      }
2258   }
2259}
2260
2261
2262void
2263glsl_to_tgsi_visitor::visit(ir_constant *ir)
2264{
2265   st_src_reg src;
2266   GLfloat stack_vals[4] = { 0 };
2267   gl_constant_value *values = (gl_constant_value *) stack_vals;
2268   GLenum gl_type = GL_NONE;
2269   unsigned int i;
2270   static int in_array = 0;
2271   gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2272
2273   /* Unfortunately, 4 floats is all we can get into
2274    * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
2275    * aggregate constant and move each constant value into it.  If we
2276    * get lucky, copy propagation will eliminate the extra moves.
2277    */
2278   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2279      st_src_reg temp_base = get_temp(ir->type);
2280      st_dst_reg temp = st_dst_reg(temp_base);
2281
2282      foreach_iter(exec_list_iterator, iter, ir->components) {
2283         ir_constant *field_value = (ir_constant *)iter.get();
2284         int size = type_size(field_value->type);
2285
2286         assert(size > 0);
2287
2288         field_value->accept(this);
2289         src = this->result;
2290
2291         for (i = 0; i < (unsigned int)size; i++) {
2292            emit(ir, TGSI_OPCODE_MOV, temp, src);
2293
2294            src.index++;
2295            temp.index++;
2296         }
2297      }
2298      this->result = temp_base;
2299      return;
2300   }
2301
2302   if (ir->type->is_array()) {
2303      st_src_reg temp_base = get_temp(ir->type);
2304      st_dst_reg temp = st_dst_reg(temp_base);
2305      int size = type_size(ir->type->fields.array);
2306
2307      assert(size > 0);
2308      in_array++;
2309
2310      for (i = 0; i < ir->type->length; i++) {
2311         ir->array_elements[i]->accept(this);
2312         src = this->result;
2313         for (int j = 0; j < size; j++) {
2314            emit(ir, TGSI_OPCODE_MOV, temp, src);
2315
2316            src.index++;
2317            temp.index++;
2318         }
2319      }
2320      this->result = temp_base;
2321      in_array--;
2322      return;
2323   }
2324
2325   if (ir->type->is_matrix()) {
2326      st_src_reg mat = get_temp(ir->type);
2327      st_dst_reg mat_column = st_dst_reg(mat);
2328
2329      for (i = 0; i < ir->type->matrix_columns; i++) {
2330         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2331         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2332
2333         src = st_src_reg(file, -1, ir->type->base_type);
2334         src.index = add_constant(file,
2335                                  values,
2336                                  ir->type->vector_elements,
2337                                  GL_FLOAT,
2338                                  &src.swizzle);
2339         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2340
2341         mat_column.index++;
2342      }
2343
2344      this->result = mat;
2345      return;
2346   }
2347
2348   switch (ir->type->base_type) {
2349   case GLSL_TYPE_FLOAT:
2350      gl_type = GL_FLOAT;
2351      for (i = 0; i < ir->type->vector_elements; i++) {
2352         values[i].f = ir->value.f[i];
2353      }
2354      break;
2355   case GLSL_TYPE_UINT:
2356      gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2357      for (i = 0; i < ir->type->vector_elements; i++) {
2358         if (native_integers)
2359            values[i].u = ir->value.u[i];
2360         else
2361            values[i].f = ir->value.u[i];
2362      }
2363      break;
2364   case GLSL_TYPE_INT:
2365      gl_type = native_integers ? GL_INT : GL_FLOAT;
2366      for (i = 0; i < ir->type->vector_elements; i++) {
2367         if (native_integers)
2368            values[i].i = ir->value.i[i];
2369         else
2370            values[i].f = ir->value.i[i];
2371      }
2372      break;
2373   case GLSL_TYPE_BOOL:
2374      gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2375      for (i = 0; i < ir->type->vector_elements; i++) {
2376         if (native_integers)
2377            values[i].u = ir->value.b[i] ? ~0 : 0;
2378         else
2379            values[i].f = ir->value.b[i];
2380      }
2381      break;
2382   default:
2383      assert(!"Non-float/uint/int/bool constant");
2384   }
2385
2386   this->result = st_src_reg(file, -1, ir->type);
2387   this->result.index = add_constant(file,
2388                                     values,
2389                                     ir->type->vector_elements,
2390                                     gl_type,
2391                                     &this->result.swizzle);
2392}
2393
2394function_entry *
2395glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2396{
2397   function_entry *entry;
2398
2399   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2400      entry = (function_entry *)iter.get();
2401
2402      if (entry->sig == sig)
2403         return entry;
2404   }
2405
2406   entry = ralloc(mem_ctx, function_entry);
2407   entry->sig = sig;
2408   entry->sig_id = this->next_signature_id++;
2409   entry->bgn_inst = NULL;
2410
2411   /* Allocate storage for all the parameters. */
2412   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2413      ir_variable *param = (ir_variable *)iter.get();
2414      variable_storage *storage;
2415
2416      storage = find_variable_storage(param);
2417      assert(!storage);
2418
2419      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2420        				      this->next_temp);
2421      this->variables.push_tail(storage);
2422
2423      this->next_temp += type_size(param->type);
2424   }
2425
2426   if (!sig->return_type->is_void()) {
2427      entry->return_reg = get_temp(sig->return_type);
2428   } else {
2429      entry->return_reg = undef_src;
2430   }
2431
2432   this->function_signatures.push_tail(entry);
2433   return entry;
2434}
2435
2436void
2437glsl_to_tgsi_visitor::visit(ir_call *ir)
2438{
2439   glsl_to_tgsi_instruction *call_inst;
2440   ir_function_signature *sig = ir->callee;
2441   function_entry *entry = get_function_signature(sig);
2442   int i;
2443
2444   /* Process in parameters. */
2445   exec_list_iterator sig_iter = sig->parameters.iterator();
2446   foreach_iter(exec_list_iterator, iter, *ir) {
2447      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2448      ir_variable *param = (ir_variable *)sig_iter.get();
2449
2450      if (param->mode == ir_var_in ||
2451          param->mode == ir_var_inout) {
2452         variable_storage *storage = find_variable_storage(param);
2453         assert(storage);
2454
2455         param_rval->accept(this);
2456         st_src_reg r = this->result;
2457
2458         st_dst_reg l;
2459         l.file = storage->file;
2460         l.index = storage->index;
2461         l.reladdr = NULL;
2462         l.writemask = WRITEMASK_XYZW;
2463         l.cond_mask = COND_TR;
2464
2465         for (i = 0; i < type_size(param->type); i++) {
2466            emit(ir, TGSI_OPCODE_MOV, l, r);
2467            l.index++;
2468            r.index++;
2469         }
2470      }
2471
2472      sig_iter.next();
2473   }
2474   assert(!sig_iter.has_next());
2475
2476   /* Emit call instruction */
2477   call_inst = emit(ir, TGSI_OPCODE_CAL);
2478   call_inst->function = entry;
2479
2480   /* Process out parameters. */
2481   sig_iter = sig->parameters.iterator();
2482   foreach_iter(exec_list_iterator, iter, *ir) {
2483      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2484      ir_variable *param = (ir_variable *)sig_iter.get();
2485
2486      if (param->mode == ir_var_out ||
2487          param->mode == ir_var_inout) {
2488         variable_storage *storage = find_variable_storage(param);
2489         assert(storage);
2490
2491         st_src_reg r;
2492         r.file = storage->file;
2493         r.index = storage->index;
2494         r.reladdr = NULL;
2495         r.swizzle = SWIZZLE_NOOP;
2496         r.negate = 0;
2497
2498         param_rval->accept(this);
2499         st_dst_reg l = st_dst_reg(this->result);
2500
2501         for (i = 0; i < type_size(param->type); i++) {
2502            emit(ir, TGSI_OPCODE_MOV, l, r);
2503            l.index++;
2504            r.index++;
2505         }
2506      }
2507
2508      sig_iter.next();
2509   }
2510   assert(!sig_iter.has_next());
2511
2512   /* Process return value. */
2513   this->result = entry->return_reg;
2514}
2515
2516void
2517glsl_to_tgsi_visitor::visit(ir_texture *ir)
2518{
2519   st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2520   st_dst_reg result_dst, coord_dst;
2521   glsl_to_tgsi_instruction *inst = NULL;
2522   unsigned opcode = TGSI_OPCODE_NOP;
2523
2524   if (ir->coordinate) {
2525      ir->coordinate->accept(this);
2526
2527      /* Put our coords in a temp.  We'll need to modify them for shadow,
2528       * projection, or LOD, so the only case we'd use it as is is if
2529       * we're doing plain old texturing.  The optimization passes on
2530       * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2531       */
2532      coord = get_temp(glsl_type::vec4_type);
2533      coord_dst = st_dst_reg(coord);
2534      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2535   }
2536
2537   if (ir->projector) {
2538      ir->projector->accept(this);
2539      projector = this->result;
2540   }
2541
2542   /* Storage for our result.  Ideally for an assignment we'd be using
2543    * the actual storage for the result here, instead.
2544    */
2545   result_src = get_temp(glsl_type::vec4_type);
2546   result_dst = st_dst_reg(result_src);
2547
2548   switch (ir->op) {
2549   case ir_tex:
2550      opcode = TGSI_OPCODE_TEX;
2551      break;
2552   case ir_txb:
2553      opcode = TGSI_OPCODE_TXB;
2554      ir->lod_info.bias->accept(this);
2555      lod_info = this->result;
2556      break;
2557   case ir_txl:
2558      opcode = TGSI_OPCODE_TXL;
2559      ir->lod_info.lod->accept(this);
2560      lod_info = this->result;
2561      break;
2562   case ir_txd:
2563      opcode = TGSI_OPCODE_TXD;
2564      ir->lod_info.grad.dPdx->accept(this);
2565      dx = this->result;
2566      ir->lod_info.grad.dPdy->accept(this);
2567      dy = this->result;
2568      break;
2569   case ir_txs:
2570      opcode = TGSI_OPCODE_TXQ;
2571      ir->lod_info.lod->accept(this);
2572      lod_info = this->result;
2573      break;
2574   case ir_txf:
2575      opcode = TGSI_OPCODE_TXF;
2576      ir->lod_info.lod->accept(this);
2577      lod_info = this->result;
2578      if (ir->offset) {
2579	 ir->offset->accept(this);
2580	 offset = this->result;
2581      }
2582      break;
2583   }
2584
2585   const glsl_type *sampler_type = ir->sampler->type;
2586
2587   if (ir->projector) {
2588      if (opcode == TGSI_OPCODE_TEX) {
2589         /* Slot the projector in as the last component of the coord. */
2590         coord_dst.writemask = WRITEMASK_W;
2591         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2592         coord_dst.writemask = WRITEMASK_XYZW;
2593         opcode = TGSI_OPCODE_TXP;
2594      } else {
2595         st_src_reg coord_w = coord;
2596         coord_w.swizzle = SWIZZLE_WWWW;
2597
2598         /* For the other TEX opcodes there's no projective version
2599          * since the last slot is taken up by LOD info.  Do the
2600          * projective divide now.
2601          */
2602         coord_dst.writemask = WRITEMASK_W;
2603         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2604
2605         /* In the case where we have to project the coordinates "by hand,"
2606          * the shadow comparator value must also be projected.
2607          */
2608         st_src_reg tmp_src = coord;
2609         if (ir->shadow_comparitor) {
2610            /* Slot the shadow value in as the second to last component of the
2611             * coord.
2612             */
2613            ir->shadow_comparitor->accept(this);
2614
2615            tmp_src = get_temp(glsl_type::vec4_type);
2616            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2617
2618	    /* Projective division not allowed for array samplers. */
2619	    assert(!sampler_type->sampler_array);
2620
2621            tmp_dst.writemask = WRITEMASK_Z;
2622            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2623
2624            tmp_dst.writemask = WRITEMASK_XY;
2625            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2626         }
2627
2628         coord_dst.writemask = WRITEMASK_XYZ;
2629         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2630
2631         coord_dst.writemask = WRITEMASK_XYZW;
2632         coord.swizzle = SWIZZLE_XYZW;
2633      }
2634   }
2635
2636   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2637    * comparator was put in the correct place (and projected) by the code,
2638    * above, that handles by-hand projection.
2639    */
2640   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2641      /* Slot the shadow value in as the second to last component of the
2642       * coord.
2643       */
2644      ir->shadow_comparitor->accept(this);
2645
2646      /* XXX This will need to be updated for cubemap array samplers. */
2647      if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2648	   sampler_type->sampler_array) ||
2649	  sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
2650         coord_dst.writemask = WRITEMASK_W;
2651      } else {
2652         coord_dst.writemask = WRITEMASK_Z;
2653      }
2654
2655      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2656      coord_dst.writemask = WRITEMASK_XYZW;
2657   }
2658
2659   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2660       opcode == TGSI_OPCODE_TXF) {
2661      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2662      coord_dst.writemask = WRITEMASK_W;
2663      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2664      coord_dst.writemask = WRITEMASK_XYZW;
2665   }
2666
2667   if (opcode == TGSI_OPCODE_TXD)
2668      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2669   else if (opcode == TGSI_OPCODE_TXQ)
2670      inst = emit(ir, opcode, result_dst, lod_info);
2671   else if (opcode == TGSI_OPCODE_TXF) {
2672      inst = emit(ir, opcode, result_dst, coord);
2673   } else
2674      inst = emit(ir, opcode, result_dst, coord);
2675
2676   if (ir->shadow_comparitor)
2677      inst->tex_shadow = GL_TRUE;
2678
2679   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2680        					   this->shader_program,
2681        					   this->prog);
2682
2683   if (ir->offset) {
2684       inst->tex_offset_num_offset = 1;
2685       inst->tex_offsets[0].Index = offset.index;
2686       inst->tex_offsets[0].File = offset.file;
2687       inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2688       inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2689       inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2690   }
2691
2692   switch (sampler_type->sampler_dimensionality) {
2693   case GLSL_SAMPLER_DIM_1D:
2694      inst->tex_target = (sampler_type->sampler_array)
2695         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2696      break;
2697   case GLSL_SAMPLER_DIM_2D:
2698      inst->tex_target = (sampler_type->sampler_array)
2699         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2700      break;
2701   case GLSL_SAMPLER_DIM_3D:
2702      inst->tex_target = TEXTURE_3D_INDEX;
2703      break;
2704   case GLSL_SAMPLER_DIM_CUBE:
2705      inst->tex_target = TEXTURE_CUBE_INDEX;
2706      break;
2707   case GLSL_SAMPLER_DIM_RECT:
2708      inst->tex_target = TEXTURE_RECT_INDEX;
2709      break;
2710   case GLSL_SAMPLER_DIM_BUF:
2711      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2712      break;
2713   case GLSL_SAMPLER_DIM_EXTERNAL:
2714      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2715      break;
2716   default:
2717      assert(!"Should not get here.");
2718   }
2719
2720   this->result = result_src;
2721}
2722
2723void
2724glsl_to_tgsi_visitor::visit(ir_return *ir)
2725{
2726   if (ir->get_value()) {
2727      st_dst_reg l;
2728      int i;
2729
2730      assert(current_function);
2731
2732      ir->get_value()->accept(this);
2733      st_src_reg r = this->result;
2734
2735      l = st_dst_reg(current_function->return_reg);
2736
2737      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2738         emit(ir, TGSI_OPCODE_MOV, l, r);
2739         l.index++;
2740         r.index++;
2741      }
2742   }
2743
2744   emit(ir, TGSI_OPCODE_RET);
2745}
2746
2747void
2748glsl_to_tgsi_visitor::visit(ir_discard *ir)
2749{
2750   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2751
2752   if (ir->condition) {
2753      ir->condition->accept(this);
2754      this->result.negate = ~this->result.negate;
2755      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2756   } else {
2757      emit(ir, TGSI_OPCODE_KILP);
2758   }
2759
2760   fp->UsesKill = GL_TRUE;
2761}
2762
2763void
2764glsl_to_tgsi_visitor::visit(ir_if *ir)
2765{
2766   glsl_to_tgsi_instruction *cond_inst, *if_inst;
2767   glsl_to_tgsi_instruction *prev_inst;
2768
2769   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2770
2771   ir->condition->accept(this);
2772   assert(this->result.file != PROGRAM_UNDEFINED);
2773
2774   if (this->options->EmitCondCodes) {
2775      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2776
2777      /* See if we actually generated any instruction for generating
2778       * the condition.  If not, then cook up a move to a temp so we
2779       * have something to set cond_update on.
2780       */
2781      if (cond_inst == prev_inst) {
2782         st_src_reg temp = get_temp(glsl_type::bool_type);
2783         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2784      }
2785      cond_inst->cond_update = GL_TRUE;
2786
2787      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2788      if_inst->dst.cond_mask = COND_NE;
2789   } else {
2790      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2791   }
2792
2793   this->instructions.push_tail(if_inst);
2794
2795   visit_exec_list(&ir->then_instructions, this);
2796
2797   if (!ir->else_instructions.is_empty()) {
2798      emit(ir->condition, TGSI_OPCODE_ELSE);
2799      visit_exec_list(&ir->else_instructions, this);
2800   }
2801
2802   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2803}
2804
2805glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2806{
2807   result.file = PROGRAM_UNDEFINED;
2808   next_temp = 1;
2809   next_signature_id = 1;
2810   num_immediates = 0;
2811   current_function = NULL;
2812   num_address_regs = 0;
2813   indirect_addr_temps = false;
2814   indirect_addr_consts = false;
2815   mem_ctx = ralloc_context(NULL);
2816   ctx = NULL;
2817   prog = NULL;
2818   shader_program = NULL;
2819   options = NULL;
2820}
2821
2822glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2823{
2824   ralloc_free(mem_ctx);
2825}
2826
2827extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2828{
2829   delete v;
2830}
2831
2832
2833/**
2834 * Count resources used by the given gpu program (number of texture
2835 * samplers, etc).
2836 */
2837static void
2838count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2839{
2840   v->samplers_used = 0;
2841
2842   foreach_iter(exec_list_iterator, iter, v->instructions) {
2843      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2844
2845      if (is_tex_instruction(inst->op)) {
2846         v->samplers_used |= 1 << inst->sampler;
2847
2848         if (inst->tex_shadow) {
2849            prog->ShadowSamplers |= 1 << inst->sampler;
2850         }
2851      }
2852   }
2853
2854   prog->SamplersUsed = v->samplers_used;
2855
2856   if (v->shader_program != NULL)
2857      _mesa_update_shader_textures_used(v->shader_program, prog);
2858}
2859
2860static void
2861set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2862        		struct gl_shader_program *shader_program,
2863        		const char *name, const glsl_type *type,
2864        		ir_constant *val)
2865{
2866   if (type->is_record()) {
2867      ir_constant *field_constant;
2868
2869      field_constant = (ir_constant *)val->components.get_head();
2870
2871      for (unsigned int i = 0; i < type->length; i++) {
2872         const glsl_type *field_type = type->fields.structure[i].type;
2873         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2874        				    type->fields.structure[i].name);
2875         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2876        			 field_type, field_constant);
2877         field_constant = (ir_constant *)field_constant->next;
2878      }
2879      return;
2880   }
2881
2882   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2883
2884   if (loc == -1) {
2885      fail_link(shader_program,
2886        	"Couldn't find uniform for initializer %s\n", name);
2887      return;
2888   }
2889
2890   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2891      ir_constant *element;
2892      const glsl_type *element_type;
2893      if (type->is_array()) {
2894         element = val->array_elements[i];
2895         element_type = type->fields.array;
2896      } else {
2897         element = val;
2898         element_type = type;
2899      }
2900
2901      void *values;
2902
2903      if (element_type->base_type == GLSL_TYPE_BOOL) {
2904         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2905         for (unsigned int j = 0; j < element_type->components(); j++) {
2906            conv[j] = element->value.b[j];
2907         }
2908         values = (void *)conv;
2909         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2910        					element_type->vector_elements,
2911        					1);
2912      } else {
2913         values = &element->value;
2914      }
2915
2916      if (element_type->is_matrix()) {
2917         _mesa_uniform_matrix(ctx, shader_program,
2918        		      element_type->matrix_columns,
2919        		      element_type->vector_elements,
2920        		      loc, 1, GL_FALSE, (GLfloat *)values);
2921      } else {
2922         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2923        	       values, element_type->gl_type);
2924      }
2925
2926      loc++;
2927   }
2928}
2929
2930/**
2931 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2932 * are read from the given src in this instruction
2933 */
2934static int
2935get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2936{
2937   int read_mask = 0, comp;
2938
2939   /* Now, given the src swizzle and the written channels, find which
2940    * components are actually read
2941    */
2942   for (comp = 0; comp < 4; ++comp) {
2943      const unsigned coord = GET_SWZ(src.swizzle, comp);
2944      ASSERT(coord < 4);
2945      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2946         read_mask |= 1 << coord;
2947   }
2948
2949   return read_mask;
2950}
2951
2952/**
2953 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2954 * instruction is the first instruction to write to register T0.  There are
2955 * several lowering passes done in GLSL IR (e.g. branches and
2956 * relative addressing) that create a large number of conditional assignments
2957 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2958 *
2959 * Here is why this conversion is safe:
2960 * CMP T0, T1 T2 T0 can be expanded to:
2961 * if (T1 < 0.0)
2962 * 	MOV T0, T2;
2963 * else
2964 * 	MOV T0, T0;
2965 *
2966 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2967 * as the original program.  If (T1 < 0.0) evaluates to false, executing
2968 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2969 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2970 * because any instruction that was going to read from T0 after this was going
2971 * to read a garbage value anyway.
2972 */
2973void
2974glsl_to_tgsi_visitor::simplify_cmp(void)
2975{
2976   unsigned *tempWrites;
2977   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2978
2979   tempWrites = new unsigned[MAX_TEMPS];
2980   if (!tempWrites) {
2981      return;
2982   }
2983   memset(tempWrites, 0, sizeof(unsigned) * MAX_TEMPS);
2984   memset(outputWrites, 0, sizeof(outputWrites));
2985
2986   foreach_iter(exec_list_iterator, iter, this->instructions) {
2987      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2988      unsigned prevWriteMask = 0;
2989
2990      /* Give up if we encounter relative addressing or flow control. */
2991      if (inst->dst.reladdr ||
2992          tgsi_get_opcode_info(inst->op)->is_branch ||
2993          inst->op == TGSI_OPCODE_BGNSUB ||
2994          inst->op == TGSI_OPCODE_CONT ||
2995          inst->op == TGSI_OPCODE_END ||
2996          inst->op == TGSI_OPCODE_ENDSUB ||
2997          inst->op == TGSI_OPCODE_RET) {
2998         break;
2999      }
3000
3001      if (inst->dst.file == PROGRAM_OUTPUT) {
3002         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3003         prevWriteMask = outputWrites[inst->dst.index];
3004         outputWrites[inst->dst.index] |= inst->dst.writemask;
3005      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3006         assert(inst->dst.index < MAX_TEMPS);
3007         prevWriteMask = tempWrites[inst->dst.index];
3008         tempWrites[inst->dst.index] |= inst->dst.writemask;
3009      }
3010
3011      /* For a CMP to be considered a conditional write, the destination
3012       * register and source register two must be the same. */
3013      if (inst->op == TGSI_OPCODE_CMP
3014          && !(inst->dst.writemask & prevWriteMask)
3015          && inst->src[2].file == inst->dst.file
3016          && inst->src[2].index == inst->dst.index
3017          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3018
3019         inst->op = TGSI_OPCODE_MOV;
3020         inst->src[0] = inst->src[1];
3021      }
3022   }
3023
3024   delete [] tempWrites;
3025}
3026
3027/* Replaces all references to a temporary register index with another index. */
3028void
3029glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3030{
3031   foreach_iter(exec_list_iterator, iter, this->instructions) {
3032      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3033      unsigned j;
3034
3035      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3036         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3037             inst->src[j].index == index) {
3038            inst->src[j].index = new_index;
3039         }
3040      }
3041
3042      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3043         inst->dst.index = new_index;
3044      }
3045   }
3046}
3047
3048int
3049glsl_to_tgsi_visitor::get_first_temp_read(int index)
3050{
3051   int depth = 0; /* loop depth */
3052   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3053   unsigned i = 0, j;
3054
3055   foreach_iter(exec_list_iterator, iter, this->instructions) {
3056      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3057
3058      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3059         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3060             inst->src[j].index == index) {
3061            return (depth == 0) ? i : loop_start;
3062         }
3063      }
3064
3065      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3066         if(depth++ == 0)
3067            loop_start = i;
3068      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3069         if (--depth == 0)
3070            loop_start = -1;
3071      }
3072      assert(depth >= 0);
3073
3074      i++;
3075   }
3076
3077   return -1;
3078}
3079
3080int
3081glsl_to_tgsi_visitor::get_first_temp_write(int index)
3082{
3083   int depth = 0; /* loop depth */
3084   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3085   int i = 0;
3086
3087   foreach_iter(exec_list_iterator, iter, this->instructions) {
3088      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3089
3090      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3091         return (depth == 0) ? i : loop_start;
3092      }
3093
3094      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3095         if(depth++ == 0)
3096            loop_start = i;
3097      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3098         if (--depth == 0)
3099            loop_start = -1;
3100      }
3101      assert(depth >= 0);
3102
3103      i++;
3104   }
3105
3106   return -1;
3107}
3108
3109int
3110glsl_to_tgsi_visitor::get_last_temp_read(int index)
3111{
3112   int depth = 0; /* loop depth */
3113   int last = -1; /* index of last instruction that reads the temporary */
3114   unsigned i = 0, j;
3115
3116   foreach_iter(exec_list_iterator, iter, this->instructions) {
3117      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3118
3119      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3120         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3121             inst->src[j].index == index) {
3122            last = (depth == 0) ? i : -2;
3123         }
3124      }
3125
3126      if (inst->op == TGSI_OPCODE_BGNLOOP)
3127         depth++;
3128      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3129         if (--depth == 0 && last == -2)
3130            last = i;
3131      assert(depth >= 0);
3132
3133      i++;
3134   }
3135
3136   assert(last >= -1);
3137   return last;
3138}
3139
3140int
3141glsl_to_tgsi_visitor::get_last_temp_write(int index)
3142{
3143   int depth = 0; /* loop depth */
3144   int last = -1; /* index of last instruction that writes to the temporary */
3145   int i = 0;
3146
3147   foreach_iter(exec_list_iterator, iter, this->instructions) {
3148      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3149
3150      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3151         last = (depth == 0) ? i : -2;
3152
3153      if (inst->op == TGSI_OPCODE_BGNLOOP)
3154         depth++;
3155      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3156         if (--depth == 0 && last == -2)
3157            last = i;
3158      assert(depth >= 0);
3159
3160      i++;
3161   }
3162
3163   assert(last >= -1);
3164   return last;
3165}
3166
3167/*
3168 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3169 * channels for copy propagation and updates following instructions to
3170 * use the original versions.
3171 *
3172 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3173 * will occur.  As an example, a TXP production before this pass:
3174 *
3175 * 0: MOV TEMP[1], INPUT[4].xyyy;
3176 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3177 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3178 *
3179 * and after:
3180 *
3181 * 0: MOV TEMP[1], INPUT[4].xyyy;
3182 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3183 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3184 *
3185 * which allows for dead code elimination on TEMP[1]'s writes.
3186 */
3187void
3188glsl_to_tgsi_visitor::copy_propagate(void)
3189{
3190   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3191        					    glsl_to_tgsi_instruction *,
3192        					    this->next_temp * 4);
3193   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3194   int level = 0;
3195
3196   foreach_iter(exec_list_iterator, iter, this->instructions) {
3197      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3198
3199      assert(inst->dst.file != PROGRAM_TEMPORARY
3200             || inst->dst.index < this->next_temp);
3201
3202      /* First, do any copy propagation possible into the src regs. */
3203      for (int r = 0; r < 3; r++) {
3204         glsl_to_tgsi_instruction *first = NULL;
3205         bool good = true;
3206         int acp_base = inst->src[r].index * 4;
3207
3208         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3209             inst->src[r].reladdr)
3210            continue;
3211
3212         /* See if we can find entries in the ACP consisting of MOVs
3213          * from the same src register for all the swizzled channels
3214          * of this src register reference.
3215          */
3216         for (int i = 0; i < 4; i++) {
3217            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3218            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3219
3220            if (!copy_chan) {
3221               good = false;
3222               break;
3223            }
3224
3225            assert(acp_level[acp_base + src_chan] <= level);
3226
3227            if (!first) {
3228               first = copy_chan;
3229            } else {
3230               if (first->src[0].file != copy_chan->src[0].file ||
3231        	   first->src[0].index != copy_chan->src[0].index) {
3232        	  good = false;
3233        	  break;
3234               }
3235            }
3236         }
3237
3238         if (good) {
3239            /* We've now validated that we can copy-propagate to
3240             * replace this src register reference.  Do it.
3241             */
3242            inst->src[r].file = first->src[0].file;
3243            inst->src[r].index = first->src[0].index;
3244
3245            int swizzle = 0;
3246            for (int i = 0; i < 4; i++) {
3247               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3248               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3249               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3250        		   (3 * i));
3251            }
3252            inst->src[r].swizzle = swizzle;
3253         }
3254      }
3255
3256      switch (inst->op) {
3257      case TGSI_OPCODE_BGNLOOP:
3258      case TGSI_OPCODE_ENDLOOP:
3259         /* End of a basic block, clear the ACP entirely. */
3260         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3261         break;
3262
3263      case TGSI_OPCODE_IF:
3264         ++level;
3265         break;
3266
3267      case TGSI_OPCODE_ENDIF:
3268      case TGSI_OPCODE_ELSE:
3269         /* Clear all channels written inside the block from the ACP, but
3270          * leaving those that were not touched.
3271          */
3272         for (int r = 0; r < this->next_temp; r++) {
3273            for (int c = 0; c < 4; c++) {
3274               if (!acp[4 * r + c])
3275        	  continue;
3276
3277               if (acp_level[4 * r + c] >= level)
3278        	  acp[4 * r + c] = NULL;
3279            }
3280         }
3281         if (inst->op == TGSI_OPCODE_ENDIF)
3282            --level;
3283         break;
3284
3285      default:
3286         /* Continuing the block, clear any written channels from
3287          * the ACP.
3288          */
3289         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3290            /* Any temporary might be written, so no copy propagation
3291             * across this instruction.
3292             */
3293            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3294         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3295        	    inst->dst.reladdr) {
3296            /* Any output might be written, so no copy propagation
3297             * from outputs across this instruction.
3298             */
3299            for (int r = 0; r < this->next_temp; r++) {
3300               for (int c = 0; c < 4; c++) {
3301        	  if (!acp[4 * r + c])
3302        	     continue;
3303
3304        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3305        	     acp[4 * r + c] = NULL;
3306               }
3307            }
3308         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3309        	    inst->dst.file == PROGRAM_OUTPUT) {
3310            /* Clear where it's used as dst. */
3311            if (inst->dst.file == PROGRAM_TEMPORARY) {
3312               for (int c = 0; c < 4; c++) {
3313        	  if (inst->dst.writemask & (1 << c)) {
3314        	     acp[4 * inst->dst.index + c] = NULL;
3315        	  }
3316               }
3317            }
3318
3319            /* Clear where it's used as src. */
3320            for (int r = 0; r < this->next_temp; r++) {
3321               for (int c = 0; c < 4; c++) {
3322        	  if (!acp[4 * r + c])
3323        	     continue;
3324
3325        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3326
3327        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3328        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3329        	      inst->dst.writemask & (1 << src_chan))
3330        	  {
3331        	     acp[4 * r + c] = NULL;
3332        	  }
3333               }
3334            }
3335         }
3336         break;
3337      }
3338
3339      /* If this is a copy, add it to the ACP. */
3340      if (inst->op == TGSI_OPCODE_MOV &&
3341          inst->dst.file == PROGRAM_TEMPORARY &&
3342          !inst->dst.reladdr &&
3343          !inst->saturate &&
3344          !inst->src[0].reladdr &&
3345          !inst->src[0].negate) {
3346         for (int i = 0; i < 4; i++) {
3347            if (inst->dst.writemask & (1 << i)) {
3348               acp[4 * inst->dst.index + i] = inst;
3349               acp_level[4 * inst->dst.index + i] = level;
3350            }
3351         }
3352      }
3353   }
3354
3355   ralloc_free(acp_level);
3356   ralloc_free(acp);
3357}
3358
3359/*
3360 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3361 *
3362 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3363 * will occur.  As an example, a TXP production after copy propagation but
3364 * before this pass:
3365 *
3366 * 0: MOV TEMP[1], INPUT[4].xyyy;
3367 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3368 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3369 *
3370 * and after this pass:
3371 *
3372 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3373 *
3374 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3375 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3376 */
3377void
3378glsl_to_tgsi_visitor::eliminate_dead_code(void)
3379{
3380   int i;
3381
3382   for (i=0; i < this->next_temp; i++) {
3383      int last_read = get_last_temp_read(i);
3384      int j = 0;
3385
3386      foreach_iter(exec_list_iterator, iter, this->instructions) {
3387         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3388
3389         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3390             j > last_read)
3391         {
3392            iter.remove();
3393            delete inst;
3394         }
3395
3396         j++;
3397      }
3398   }
3399}
3400
3401/*
3402 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3403 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3404 * is per-channel and can detect consecutive writes without a read between them
3405 * as dead code.  However, there is some dead code that can be eliminated by
3406 * eliminate_dead_code() but not this function - for example, this function
3407 * cannot eliminate an instruction writing to a register that is never read and
3408 * is the only instruction writing to that register.
3409 *
3410 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3411 * will occur.
3412 */
3413int
3414glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3415{
3416   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3417                                                     glsl_to_tgsi_instruction *,
3418                                                     this->next_temp * 4);
3419   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3420   int level = 0;
3421   int removed = 0;
3422
3423   foreach_iter(exec_list_iterator, iter, this->instructions) {
3424      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3425
3426      assert(inst->dst.file != PROGRAM_TEMPORARY
3427             || inst->dst.index < this->next_temp);
3428
3429      switch (inst->op) {
3430      case TGSI_OPCODE_BGNLOOP:
3431      case TGSI_OPCODE_ENDLOOP:
3432      case TGSI_OPCODE_CONT:
3433      case TGSI_OPCODE_BRK:
3434         /* End of a basic block, clear the write array entirely.
3435          *
3436          * This keeps us from killing dead code when the writes are
3437          * on either side of a loop, even when the register isn't touched
3438          * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
3439          * dead code of this type, so it shouldn't make a difference as long as
3440          * the dead code elimination pass in the GLSL compiler does its job.
3441          */
3442         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3443         break;
3444
3445      case TGSI_OPCODE_ENDIF:
3446      case TGSI_OPCODE_ELSE:
3447         /* Promote the recorded level of all channels written inside the
3448          * preceding if or else block to the level above the if/else block.
3449          */
3450         for (int r = 0; r < this->next_temp; r++) {
3451            for (int c = 0; c < 4; c++) {
3452               if (!writes[4 * r + c])
3453        	         continue;
3454
3455               if (write_level[4 * r + c] == level)
3456        	         write_level[4 * r + c] = level-1;
3457            }
3458         }
3459
3460         if(inst->op == TGSI_OPCODE_ENDIF)
3461            --level;
3462
3463         break;
3464
3465      case TGSI_OPCODE_IF:
3466         ++level;
3467         /* fallthrough to default case to mark the condition as read */
3468
3469      default:
3470         /* Continuing the block, clear any channels from the write array that
3471          * are read by this instruction.
3472          */
3473         for (unsigned i = 0; i < Elements(inst->src); i++) {
3474            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3475               /* Any temporary might be read, so no dead code elimination
3476                * across this instruction.
3477                */
3478               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3479            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3480               /* Clear where it's used as src. */
3481               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3482               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3483               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3484               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3485
3486               for (int c = 0; c < 4; c++) {
3487              	   if (src_chans & (1 << c)) {
3488              	      writes[4 * inst->src[i].index + c] = NULL;
3489              	   }
3490               }
3491            }
3492         }
3493         break;
3494      }
3495
3496      /* If this instruction writes to a temporary, add it to the write array.
3497       * If there is already an instruction in the write array for one or more
3498       * of the channels, flag that channel write as dead.
3499       */
3500      if (inst->dst.file == PROGRAM_TEMPORARY &&
3501          !inst->dst.reladdr &&
3502          !inst->saturate) {
3503         for (int c = 0; c < 4; c++) {
3504            if (inst->dst.writemask & (1 << c)) {
3505               if (writes[4 * inst->dst.index + c]) {
3506                  if (write_level[4 * inst->dst.index + c] < level)
3507                     continue;
3508                  else
3509                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3510               }
3511               writes[4 * inst->dst.index + c] = inst;
3512               write_level[4 * inst->dst.index + c] = level;
3513            }
3514         }
3515      }
3516   }
3517
3518   /* Anything still in the write array at this point is dead code. */
3519   for (int r = 0; r < this->next_temp; r++) {
3520      for (int c = 0; c < 4; c++) {
3521         glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3522         if (inst)
3523            inst->dead_mask |= (1 << c);
3524      }
3525   }
3526
3527   /* Now actually remove the instructions that are completely dead and update
3528    * the writemask of other instructions with dead channels.
3529    */
3530   foreach_iter(exec_list_iterator, iter, this->instructions) {
3531      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3532
3533      if (!inst->dead_mask || !inst->dst.writemask)
3534         continue;
3535      else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3536         iter.remove();
3537         delete inst;
3538         removed++;
3539      } else
3540         inst->dst.writemask &= ~(inst->dead_mask);
3541   }
3542
3543   ralloc_free(write_level);
3544   ralloc_free(writes);
3545
3546   return removed;
3547}
3548
3549/* Merges temporary registers together where possible to reduce the number of
3550 * registers needed to run a program.
3551 *
3552 * Produces optimal code only after copy propagation and dead code elimination
3553 * have been run. */
3554void
3555glsl_to_tgsi_visitor::merge_registers(void)
3556{
3557   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3558   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3559   int i, j;
3560
3561   /* Read the indices of the last read and first write to each temp register
3562    * into an array so that we don't have to traverse the instruction list as
3563    * much. */
3564   for (i=0; i < this->next_temp; i++) {
3565      last_reads[i] = get_last_temp_read(i);
3566      first_writes[i] = get_first_temp_write(i);
3567   }
3568
3569   /* Start looking for registers with non-overlapping usages that can be
3570    * merged together. */
3571   for (i=0; i < this->next_temp; i++) {
3572      /* Don't touch unused registers. */
3573      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3574
3575      for (j=0; j < this->next_temp; j++) {
3576         /* Don't touch unused registers. */
3577         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3578
3579         /* We can merge the two registers if the first write to j is after or
3580          * in the same instruction as the last read from i.  Note that the
3581          * register at index i will always be used earlier or at the same time
3582          * as the register at index j. */
3583         if (first_writes[i] <= first_writes[j] &&
3584             last_reads[i] <= first_writes[j])
3585         {
3586            rename_temp_register(j, i); /* Replace all references to j with i.*/
3587
3588            /* Update the first_writes and last_reads arrays with the new
3589             * values for the merged register index, and mark the newly unused
3590             * register index as such. */
3591            last_reads[i] = last_reads[j];
3592            first_writes[j] = -1;
3593            last_reads[j] = -1;
3594         }
3595      }
3596   }
3597
3598   ralloc_free(last_reads);
3599   ralloc_free(first_writes);
3600}
3601
3602/* Reassign indices to temporary registers by reusing unused indices created
3603 * by optimization passes. */
3604void
3605glsl_to_tgsi_visitor::renumber_registers(void)
3606{
3607   int i = 0;
3608   int new_index = 0;
3609
3610   for (i=0; i < this->next_temp; i++) {
3611      if (get_first_temp_read(i) < 0) continue;
3612      if (i != new_index)
3613         rename_temp_register(i, new_index);
3614      new_index++;
3615   }
3616
3617   this->next_temp = new_index;
3618}
3619
3620/**
3621 * Returns a fragment program which implements the current pixel transfer ops.
3622 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3623 */
3624extern "C" void
3625get_pixel_transfer_visitor(struct st_fragment_program *fp,
3626                           glsl_to_tgsi_visitor *original,
3627                           int scale_and_bias, int pixel_maps)
3628{
3629   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3630   struct st_context *st = st_context(original->ctx);
3631   struct gl_program *prog = &fp->Base.Base;
3632   struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3633   st_src_reg coord, src0;
3634   st_dst_reg dst0;
3635   glsl_to_tgsi_instruction *inst;
3636
3637   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3638   v->ctx = original->ctx;
3639   v->prog = prog;
3640   v->shader_program = NULL;
3641   v->glsl_version = original->glsl_version;
3642   v->native_integers = original->native_integers;
3643   v->options = original->options;
3644   v->next_temp = original->next_temp;
3645   v->num_address_regs = original->num_address_regs;
3646   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3647   v->indirect_addr_temps = original->indirect_addr_temps;
3648   v->indirect_addr_consts = original->indirect_addr_consts;
3649   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3650   v->num_immediates = original->num_immediates;
3651
3652   /*
3653    * Get initial pixel color from the texture.
3654    * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3655    */
3656   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3657   src0 = v->get_temp(glsl_type::vec4_type);
3658   dst0 = st_dst_reg(src0);
3659   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3660   inst->sampler = 0;
3661   inst->tex_target = TEXTURE_2D_INDEX;
3662
3663   prog->InputsRead |= FRAG_BIT_TEX0;
3664   prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3665   v->samplers_used |= (1 << 0);
3666
3667   if (scale_and_bias) {
3668      static const gl_state_index scale_state[STATE_LENGTH] =
3669         { STATE_INTERNAL, STATE_PT_SCALE,
3670           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3671      static const gl_state_index bias_state[STATE_LENGTH] =
3672         { STATE_INTERNAL, STATE_PT_BIAS,
3673           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3674      GLint scale_p, bias_p;
3675      st_src_reg scale, bias;
3676
3677      scale_p = _mesa_add_state_reference(params, scale_state);
3678      bias_p = _mesa_add_state_reference(params, bias_state);
3679
3680      /* MAD colorTemp, colorTemp, scale, bias; */
3681      scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3682      bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3683      inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3684   }
3685
3686   if (pixel_maps) {
3687      st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3688      st_dst_reg temp_dst = st_dst_reg(temp);
3689
3690      assert(st->pixel_xfer.pixelmap_texture);
3691
3692      /* With a little effort, we can do four pixel map look-ups with
3693       * two TEX instructions:
3694       */
3695
3696      /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3697      temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3698      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3699      inst->sampler = 1;
3700      inst->tex_target = TEXTURE_2D_INDEX;
3701
3702      /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3703      src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3704      temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3705      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3706      inst->sampler = 1;
3707      inst->tex_target = TEXTURE_2D_INDEX;
3708
3709      prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3710      v->samplers_used |= (1 << 1);
3711
3712      /* MOV colorTemp, temp; */
3713      inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3714   }
3715
3716   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3717    * new visitor. */
3718   foreach_iter(exec_list_iterator, iter, original->instructions) {
3719      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3720      glsl_to_tgsi_instruction *newinst;
3721      st_src_reg src_regs[3];
3722
3723      if (inst->dst.file == PROGRAM_OUTPUT)
3724         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3725
3726      for (int i=0; i<3; i++) {
3727         src_regs[i] = inst->src[i];
3728         if (src_regs[i].file == PROGRAM_INPUT &&
3729             src_regs[i].index == FRAG_ATTRIB_COL0)
3730         {
3731            src_regs[i].file = PROGRAM_TEMPORARY;
3732            src_regs[i].index = src0.index;
3733         }
3734         else if (src_regs[i].file == PROGRAM_INPUT)
3735            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3736      }
3737
3738      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3739      newinst->tex_target = inst->tex_target;
3740   }
3741
3742   /* Make modifications to fragment program info. */
3743   prog->Parameters = _mesa_combine_parameter_lists(params,
3744                                                    original->prog->Parameters);
3745   _mesa_free_parameter_list(params);
3746   count_resources(v, prog);
3747   fp->glsl_to_tgsi = v;
3748}
3749
3750/**
3751 * Make fragment program for glBitmap:
3752 *   Sample the texture and kill the fragment if the bit is 0.
3753 * This program will be combined with the user's fragment program.
3754 *
3755 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3756 */
3757extern "C" void
3758get_bitmap_visitor(struct st_fragment_program *fp,
3759                   glsl_to_tgsi_visitor *original, int samplerIndex)
3760{
3761   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3762   struct st_context *st = st_context(original->ctx);
3763   struct gl_program *prog = &fp->Base.Base;
3764   st_src_reg coord, src0;
3765   st_dst_reg dst0;
3766   glsl_to_tgsi_instruction *inst;
3767
3768   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3769   v->ctx = original->ctx;
3770   v->prog = prog;
3771   v->shader_program = NULL;
3772   v->glsl_version = original->glsl_version;
3773   v->native_integers = original->native_integers;
3774   v->options = original->options;
3775   v->next_temp = original->next_temp;
3776   v->num_address_regs = original->num_address_regs;
3777   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3778   v->indirect_addr_temps = original->indirect_addr_temps;
3779   v->indirect_addr_consts = original->indirect_addr_consts;
3780   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3781   v->num_immediates = original->num_immediates;
3782
3783   /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3784   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3785   src0 = v->get_temp(glsl_type::vec4_type);
3786   dst0 = st_dst_reg(src0);
3787   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3788   inst->sampler = samplerIndex;
3789   inst->tex_target = TEXTURE_2D_INDEX;
3790
3791   prog->InputsRead |= FRAG_BIT_TEX0;
3792   prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3793   v->samplers_used |= (1 << samplerIndex);
3794
3795   /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3796   src0.negate = NEGATE_XYZW;
3797   if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3798      src0.swizzle = SWIZZLE_XXXX;
3799   inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3800
3801   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3802    * new visitor. */
3803   foreach_iter(exec_list_iterator, iter, original->instructions) {
3804      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3805      glsl_to_tgsi_instruction *newinst;
3806      st_src_reg src_regs[3];
3807
3808      if (inst->dst.file == PROGRAM_OUTPUT)
3809         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3810
3811      for (int i=0; i<3; i++) {
3812         src_regs[i] = inst->src[i];
3813         if (src_regs[i].file == PROGRAM_INPUT)
3814            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3815      }
3816
3817      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3818      newinst->tex_target = inst->tex_target;
3819   }
3820
3821   /* Make modifications to fragment program info. */
3822   prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3823   count_resources(v, prog);
3824   fp->glsl_to_tgsi = v;
3825}
3826
3827/* ------------------------- TGSI conversion stuff -------------------------- */
3828struct label {
3829   unsigned branch_target;
3830   unsigned token;
3831};
3832
3833/**
3834 * Intermediate state used during shader translation.
3835 */
3836struct st_translate {
3837   struct ureg_program *ureg;
3838
3839   struct ureg_dst temps[MAX_TEMPS];
3840   struct ureg_src *constants;
3841   struct ureg_src *immediates;
3842   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3843   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3844   struct ureg_dst address[1];
3845   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3846   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3847
3848   const GLuint *inputMapping;
3849   const GLuint *outputMapping;
3850
3851   /* For every instruction that contains a label (eg CALL), keep
3852    * details so that we can go back afterwards and emit the correct
3853    * tgsi instruction number for each label.
3854    */
3855   struct label *labels;
3856   unsigned labels_size;
3857   unsigned labels_count;
3858
3859   /* Keep a record of the tgsi instruction number that each mesa
3860    * instruction starts at, will be used to fix up labels after
3861    * translation.
3862    */
3863   unsigned *insn;
3864   unsigned insn_size;
3865   unsigned insn_count;
3866
3867   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3868
3869   boolean error;
3870};
3871
3872/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3873static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3874   TGSI_SEMANTIC_FACE,
3875   TGSI_SEMANTIC_VERTEXID,
3876   TGSI_SEMANTIC_INSTANCEID
3877};
3878
3879/**
3880 * Make note of a branch to a label in the TGSI code.
3881 * After we've emitted all instructions, we'll go over the list
3882 * of labels built here and patch the TGSI code with the actual
3883 * location of each label.
3884 */
3885static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3886{
3887   unsigned i;
3888
3889   if (t->labels_count + 1 >= t->labels_size) {
3890      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3891      t->labels = (struct label *)realloc(t->labels,
3892                                          t->labels_size * sizeof(struct label));
3893      if (t->labels == NULL) {
3894         static unsigned dummy;
3895         t->error = TRUE;
3896         return &dummy;
3897      }
3898   }
3899
3900   i = t->labels_count++;
3901   t->labels[i].branch_target = branch_target;
3902   return &t->labels[i].token;
3903}
3904
3905/**
3906 * Called prior to emitting the TGSI code for each instruction.
3907 * Allocate additional space for instructions if needed.
3908 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3909 * the next TGSI instruction.
3910 */
3911static void set_insn_start(struct st_translate *t, unsigned start)
3912{
3913   if (t->insn_count + 1 >= t->insn_size) {
3914      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3915      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3916      if (t->insn == NULL) {
3917         t->error = TRUE;
3918         return;
3919      }
3920   }
3921
3922   t->insn[t->insn_count++] = start;
3923}
3924
3925/**
3926 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3927 */
3928static struct ureg_src
3929emit_immediate(struct st_translate *t,
3930               gl_constant_value values[4],
3931               int type, int size)
3932{
3933   struct ureg_program *ureg = t->ureg;
3934
3935   switch(type)
3936   {
3937   case GL_FLOAT:
3938      return ureg_DECL_immediate(ureg, &values[0].f, size);
3939   case GL_INT:
3940      return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3941   case GL_UNSIGNED_INT:
3942   case GL_BOOL:
3943      return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3944   default:
3945      assert(!"should not get here - type must be float, int, uint, or bool");
3946      return ureg_src_undef();
3947   }
3948}
3949
3950/**
3951 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3952 */
3953static struct ureg_dst
3954dst_register(struct st_translate *t,
3955             gl_register_file file,
3956             GLuint index)
3957{
3958   switch(file) {
3959   case PROGRAM_UNDEFINED:
3960      return ureg_dst_undef();
3961
3962   case PROGRAM_TEMPORARY:
3963      if (ureg_dst_is_undef(t->temps[index]))
3964         t->temps[index] = ureg_DECL_temporary(t->ureg);
3965
3966      return t->temps[index];
3967
3968   case PROGRAM_OUTPUT:
3969      if (t->procType == TGSI_PROCESSOR_VERTEX)
3970         assert(index < VERT_RESULT_MAX);
3971      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3972         assert(index < FRAG_RESULT_MAX);
3973      else
3974         assert(index < GEOM_RESULT_MAX);
3975
3976      assert(t->outputMapping[index] < Elements(t->outputs));
3977
3978      return t->outputs[t->outputMapping[index]];
3979
3980   case PROGRAM_ADDRESS:
3981      return t->address[index];
3982
3983   default:
3984      assert(!"unknown dst register file");
3985      return ureg_dst_undef();
3986   }
3987}
3988
3989/**
3990 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3991 */
3992static struct ureg_src
3993src_register(struct st_translate *t,
3994             gl_register_file file,
3995             GLuint index)
3996{
3997   switch(file) {
3998   case PROGRAM_UNDEFINED:
3999      return ureg_src_undef();
4000
4001   case PROGRAM_TEMPORARY:
4002      assert(index >= 0);
4003      assert(index < Elements(t->temps));
4004      if (ureg_dst_is_undef(t->temps[index]))
4005         t->temps[index] = ureg_DECL_temporary(t->ureg);
4006      return ureg_src(t->temps[index]);
4007
4008   case PROGRAM_NAMED_PARAM:
4009   case PROGRAM_ENV_PARAM:
4010   case PROGRAM_LOCAL_PARAM:
4011   case PROGRAM_UNIFORM:
4012      assert(index >= 0);
4013      return t->constants[index];
4014   case PROGRAM_STATE_VAR:
4015   case PROGRAM_CONSTANT:       /* ie, immediate */
4016      if (index < 0)
4017         return ureg_DECL_constant(t->ureg, 0);
4018      else
4019         return t->constants[index];
4020
4021   case PROGRAM_IMMEDIATE:
4022      return t->immediates[index];
4023
4024   case PROGRAM_INPUT:
4025      assert(t->inputMapping[index] < Elements(t->inputs));
4026      return t->inputs[t->inputMapping[index]];
4027
4028   case PROGRAM_OUTPUT:
4029      assert(t->outputMapping[index] < Elements(t->outputs));
4030      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4031
4032   case PROGRAM_ADDRESS:
4033      return ureg_src(t->address[index]);
4034
4035   case PROGRAM_SYSTEM_VALUE:
4036      assert(index < Elements(t->systemValues));
4037      return t->systemValues[index];
4038
4039   default:
4040      assert(!"unknown src register file");
4041      return ureg_src_undef();
4042   }
4043}
4044
4045/**
4046 * Create a TGSI ureg_dst register from an st_dst_reg.
4047 */
4048static struct ureg_dst
4049translate_dst(struct st_translate *t,
4050              const st_dst_reg *dst_reg,
4051              bool saturate, bool clamp_color)
4052{
4053   struct ureg_dst dst = dst_register(t,
4054                                      dst_reg->file,
4055                                      dst_reg->index);
4056
4057   dst = ureg_writemask(dst, dst_reg->writemask);
4058
4059   if (saturate)
4060      dst = ureg_saturate(dst);
4061   else if (clamp_color && dst_reg->file == PROGRAM_OUTPUT) {
4062      /* Clamp colors for ARB_color_buffer_float. */
4063      switch (t->procType) {
4064      case TGSI_PROCESSOR_VERTEX:
4065         /* XXX if the geometry shader is present, this must be done there
4066          * instead of here. */
4067         if (dst_reg->index == VERT_RESULT_COL0 ||
4068             dst_reg->index == VERT_RESULT_COL1 ||
4069             dst_reg->index == VERT_RESULT_BFC0 ||
4070             dst_reg->index == VERT_RESULT_BFC1) {
4071            dst = ureg_saturate(dst);
4072         }
4073         break;
4074
4075      case TGSI_PROCESSOR_FRAGMENT:
4076         if (dst_reg->index >= FRAG_RESULT_COLOR) {
4077            dst = ureg_saturate(dst);
4078         }
4079         break;
4080      }
4081   }
4082
4083   if (dst_reg->reladdr != NULL)
4084      dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4085
4086   return dst;
4087}
4088
4089/**
4090 * Create a TGSI ureg_src register from an st_src_reg.
4091 */
4092static struct ureg_src
4093translate_src(struct st_translate *t, const st_src_reg *src_reg)
4094{
4095   struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4096
4097   src = ureg_swizzle(src,
4098                      GET_SWZ(src_reg->swizzle, 0) & 0x3,
4099                      GET_SWZ(src_reg->swizzle, 1) & 0x3,
4100                      GET_SWZ(src_reg->swizzle, 2) & 0x3,
4101                      GET_SWZ(src_reg->swizzle, 3) & 0x3);
4102
4103   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4104      src = ureg_negate(src);
4105
4106   if (src_reg->reladdr != NULL) {
4107      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4108       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4109       * set the bit for src.Negate.  So we have to do the operation manually
4110       * here to work around the compiler's problems. */
4111      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4112      struct ureg_src addr = ureg_src(t->address[0]);
4113      src.Indirect = 1;
4114      src.IndirectFile = addr.File;
4115      src.IndirectIndex = addr.Index;
4116      src.IndirectSwizzle = addr.SwizzleX;
4117
4118      if (src_reg->file != PROGRAM_INPUT &&
4119          src_reg->file != PROGRAM_OUTPUT) {
4120         /* If src_reg->index was negative, it was set to zero in
4121          * src_register().  Reassign it now.  But don't do this
4122          * for input/output regs since they get remapped while
4123          * const buffers don't.
4124          */
4125         src.Index = src_reg->index;
4126      }
4127   }
4128
4129   return src;
4130}
4131
4132static struct tgsi_texture_offset
4133translate_tex_offset(struct st_translate *t,
4134                     const struct tgsi_texture_offset *in_offset)
4135{
4136   struct tgsi_texture_offset offset;
4137
4138   assert(in_offset->File == PROGRAM_IMMEDIATE);
4139
4140   offset.File = TGSI_FILE_IMMEDIATE;
4141   offset.Index = in_offset->Index;
4142   offset.SwizzleX = in_offset->SwizzleX;
4143   offset.SwizzleY = in_offset->SwizzleY;
4144   offset.SwizzleZ = in_offset->SwizzleZ;
4145
4146   return offset;
4147}
4148
4149static void
4150compile_tgsi_instruction(struct st_translate *t,
4151                         const glsl_to_tgsi_instruction *inst,
4152                         bool clamp_dst_color_output)
4153{
4154   struct ureg_program *ureg = t->ureg;
4155   GLuint i;
4156   struct ureg_dst dst[1];
4157   struct ureg_src src[4];
4158   struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4159
4160   unsigned num_dst;
4161   unsigned num_src;
4162
4163   num_dst = num_inst_dst_regs(inst->op);
4164   num_src = num_inst_src_regs(inst->op);
4165
4166   if (num_dst)
4167      dst[0] = translate_dst(t,
4168                             &inst->dst,
4169                             inst->saturate,
4170                             clamp_dst_color_output);
4171
4172   for (i = 0; i < num_src; i++)
4173      src[i] = translate_src(t, &inst->src[i]);
4174
4175   switch(inst->op) {
4176   case TGSI_OPCODE_BGNLOOP:
4177   case TGSI_OPCODE_CAL:
4178   case TGSI_OPCODE_ELSE:
4179   case TGSI_OPCODE_ENDLOOP:
4180   case TGSI_OPCODE_IF:
4181      assert(num_dst == 0);
4182      ureg_label_insn(ureg,
4183                      inst->op,
4184                      src, num_src,
4185                      get_label(t,
4186                                inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4187      return;
4188
4189   case TGSI_OPCODE_TEX:
4190   case TGSI_OPCODE_TXB:
4191   case TGSI_OPCODE_TXD:
4192   case TGSI_OPCODE_TXL:
4193   case TGSI_OPCODE_TXP:
4194   case TGSI_OPCODE_TXQ:
4195   case TGSI_OPCODE_TXF:
4196      src[num_src++] = t->samplers[inst->sampler];
4197      for (i = 0; i < inst->tex_offset_num_offset; i++) {
4198         texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4199      }
4200      ureg_tex_insn(ureg,
4201                    inst->op,
4202                    dst, num_dst,
4203                    st_translate_texture_target(inst->tex_target, inst->tex_shadow),
4204                    texoffsets, inst->tex_offset_num_offset,
4205                    src, num_src);
4206      return;
4207
4208   case TGSI_OPCODE_SCS:
4209      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4210      ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4211      break;
4212
4213   default:
4214      ureg_insn(ureg,
4215                inst->op,
4216                dst, num_dst,
4217                src, num_src);
4218      break;
4219   }
4220}
4221
4222/**
4223 * Emit the TGSI instructions for inverting and adjusting WPOS.
4224 * This code is unavoidable because it also depends on whether
4225 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4226 */
4227static void
4228emit_wpos_adjustment( struct st_translate *t,
4229                      const struct gl_program *program,
4230                      boolean invert,
4231                      GLfloat adjX, GLfloat adjY[2])
4232{
4233   struct ureg_program *ureg = t->ureg;
4234
4235   /* Fragment program uses fragment position input.
4236    * Need to replace instances of INPUT[WPOS] with temp T
4237    * where T = INPUT[WPOS] by y is inverted.
4238    */
4239   static const gl_state_index wposTransformState[STATE_LENGTH]
4240      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4241          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4242
4243   /* XXX: note we are modifying the incoming shader here!  Need to
4244    * do this before emitting the constant decls below, or this
4245    * will be missed:
4246    */
4247   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4248                                                       wposTransformState);
4249
4250   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4251   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4252   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4253
4254   /* First, apply the coordinate shift: */
4255   if (adjX || adjY[0] || adjY[1]) {
4256      if (adjY[0] != adjY[1]) {
4257         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4258          * depending on whether inversion is actually going to be applied
4259          * or not, which is determined by testing against the inversion
4260          * state variable used below, which will be either +1 or -1.
4261          */
4262         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4263
4264         ureg_CMP(ureg, adj_temp,
4265                  ureg_scalar(wpostrans, invert ? 2 : 0),
4266                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4267                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4268         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4269      } else {
4270         ureg_ADD(ureg, wpos_temp, wpos_input,
4271                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4272      }
4273      wpos_input = ureg_src(wpos_temp);
4274   } else {
4275      /* MOV wpos_temp, input[wpos]
4276       */
4277      ureg_MOV( ureg, wpos_temp, wpos_input );
4278   }
4279
4280   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4281    * inversion/identity, or the other way around if we're drawing to an FBO.
4282    */
4283   if (invert) {
4284      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4285       */
4286      ureg_MAD( ureg,
4287                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4288                wpos_input,
4289                ureg_scalar(wpostrans, 0),
4290                ureg_scalar(wpostrans, 1));
4291   } else {
4292      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4293       */
4294      ureg_MAD( ureg,
4295                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4296                wpos_input,
4297                ureg_scalar(wpostrans, 2),
4298                ureg_scalar(wpostrans, 3));
4299   }
4300
4301   /* Use wpos_temp as position input from here on:
4302    */
4303   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4304}
4305
4306
4307/**
4308 * Emit fragment position/ooordinate code.
4309 */
4310static void
4311emit_wpos(struct st_context *st,
4312          struct st_translate *t,
4313          const struct gl_program *program,
4314          struct ureg_program *ureg)
4315{
4316   const struct gl_fragment_program *fp =
4317      (const struct gl_fragment_program *) program;
4318   struct pipe_screen *pscreen = st->pipe->screen;
4319   GLfloat adjX = 0.0f;
4320   GLfloat adjY[2] = { 0.0f, 0.0f };
4321   boolean invert = FALSE;
4322
4323   /* Query the pixel center conventions supported by the pipe driver and set
4324    * adjX, adjY to help out if it cannot handle the requested one internally.
4325    *
4326    * The bias of the y-coordinate depends on whether y-inversion takes place
4327    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4328    * drawing to an FBO (causes additional inversion), and whether the the pipe
4329    * driver origin and the requested origin differ (the latter condition is
4330    * stored in the 'invert' variable).
4331    *
4332    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4333    *
4334    * center shift only:
4335    * i -> h: +0.5
4336    * h -> i: -0.5
4337    *
4338    * inversion only:
4339    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4340    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4341    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4342    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4343    *
4344    * inversion and center shift:
4345    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4346    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4347    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4348    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4349    */
4350   if (fp->OriginUpperLeft) {
4351      /* Fragment shader wants origin in upper-left */
4352      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4353         /* the driver supports upper-left origin */
4354      }
4355      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4356         /* the driver supports lower-left origin, need to invert Y */
4357         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4358         invert = TRUE;
4359      }
4360      else
4361         assert(0);
4362   }
4363   else {
4364      /* Fragment shader wants origin in lower-left */
4365      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4366         /* the driver supports lower-left origin */
4367         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4368      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4369         /* the driver supports upper-left origin, need to invert Y */
4370         invert = TRUE;
4371      else
4372         assert(0);
4373   }
4374
4375   if (fp->PixelCenterInteger) {
4376      /* Fragment shader wants pixel center integer */
4377      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4378         /* the driver supports pixel center integer */
4379         adjY[1] = 1.0f;
4380         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4381      }
4382      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4383         /* the driver supports pixel center half integer, need to bias X,Y */
4384         adjX = -0.5f;
4385         adjY[0] = -0.5f;
4386         adjY[1] = 0.5f;
4387      }
4388      else
4389         assert(0);
4390   }
4391   else {
4392      /* Fragment shader wants pixel center half integer */
4393      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4394         /* the driver supports pixel center half integer */
4395      }
4396      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4397         /* the driver supports pixel center integer, need to bias X,Y */
4398         adjX = adjY[0] = adjY[1] = 0.5f;
4399         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4400      }
4401      else
4402         assert(0);
4403   }
4404
4405   /* we invert after adjustment so that we avoid the MOV to temporary,
4406    * and reuse the adjustment ADD instead */
4407   emit_wpos_adjustment(t, program, invert, adjX, adjY);
4408}
4409
4410/**
4411 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4412 * TGSI uses +1 for front, -1 for back.
4413 * This function converts the TGSI value to the GL value.  Simply clamping/
4414 * saturating the value to [0,1] does the job.
4415 */
4416static void
4417emit_face_var(struct st_translate *t)
4418{
4419   struct ureg_program *ureg = t->ureg;
4420   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4421   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4422
4423   /* MOV_SAT face_temp, input[face] */
4424   face_temp = ureg_saturate(face_temp);
4425   ureg_MOV(ureg, face_temp, face_input);
4426
4427   /* Use face_temp as face input from here on: */
4428   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4429}
4430
4431static void
4432emit_edgeflags(struct st_translate *t)
4433{
4434   struct ureg_program *ureg = t->ureg;
4435   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4436   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4437
4438   ureg_MOV(ureg, edge_dst, edge_src);
4439}
4440
4441/**
4442 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4443 * \param program  the program to translate
4444 * \param numInputs  number of input registers used
4445 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
4446 *                      input indexes
4447 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
4448 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
4449 *                            each input
4450 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4451 * \param numOutputs  number of output registers used
4452 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4453 *                       generic outputs
4454 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4455 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4456 *                             each output
4457 *
4458 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4459 */
4460extern "C" enum pipe_error
4461st_translate_program(
4462   struct gl_context *ctx,
4463   uint procType,
4464   struct ureg_program *ureg,
4465   glsl_to_tgsi_visitor *program,
4466   const struct gl_program *proginfo,
4467   GLuint numInputs,
4468   const GLuint inputMapping[],
4469   const ubyte inputSemanticName[],
4470   const ubyte inputSemanticIndex[],
4471   const GLuint interpMode[],
4472   GLuint numOutputs,
4473   const GLuint outputMapping[],
4474   const ubyte outputSemanticName[],
4475   const ubyte outputSemanticIndex[],
4476   boolean passthrough_edgeflags,
4477   boolean clamp_color)
4478{
4479   struct st_translate *t;
4480   unsigned i;
4481   enum pipe_error ret = PIPE_OK;
4482
4483   assert(numInputs <= Elements(t->inputs));
4484   assert(numOutputs <= Elements(t->outputs));
4485
4486   t = CALLOC_STRUCT(st_translate);
4487   if (!t) {
4488      ret = PIPE_ERROR_OUT_OF_MEMORY;
4489      goto out;
4490   }
4491
4492   memset(t, 0, sizeof *t);
4493
4494   t->procType = procType;
4495   t->inputMapping = inputMapping;
4496   t->outputMapping = outputMapping;
4497   t->ureg = ureg;
4498
4499   if (program->shader_program) {
4500      for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4501         struct gl_uniform_storage *const storage =
4502               &program->shader_program->UniformStorage[i];
4503
4504         _mesa_uniform_detach_all_driver_storage(storage);
4505      }
4506   }
4507
4508   /*
4509    * Declare input attributes.
4510    */
4511   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4512      for (i = 0; i < numInputs; i++) {
4513         t->inputs[i] = ureg_DECL_fs_input(ureg,
4514                                           inputSemanticName[i],
4515                                           inputSemanticIndex[i],
4516                                           interpMode[i]);
4517      }
4518
4519      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4520         /* Must do this after setting up t->inputs, and before
4521          * emitting constant references, below:
4522          */
4523          emit_wpos(st_context(ctx), t, proginfo, ureg);
4524      }
4525
4526      if (proginfo->InputsRead & FRAG_BIT_FACE)
4527         emit_face_var(t);
4528
4529      /*
4530       * Declare output attributes.
4531       */
4532      for (i = 0; i < numOutputs; i++) {
4533         switch (outputSemanticName[i]) {
4534         case TGSI_SEMANTIC_POSITION:
4535            t->outputs[i] = ureg_DECL_output(ureg,
4536                                             TGSI_SEMANTIC_POSITION, /* Z/Depth */
4537                                             outputSemanticIndex[i]);
4538            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4539            break;
4540         case TGSI_SEMANTIC_STENCIL:
4541            t->outputs[i] = ureg_DECL_output(ureg,
4542                                             TGSI_SEMANTIC_STENCIL, /* Stencil */
4543                                             outputSemanticIndex[i]);
4544            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4545            break;
4546         case TGSI_SEMANTIC_COLOR:
4547            t->outputs[i] = ureg_DECL_output(ureg,
4548                                             TGSI_SEMANTIC_COLOR,
4549                                             outputSemanticIndex[i]);
4550            break;
4551         default:
4552            assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4553            ret = PIPE_ERROR_BAD_INPUT;
4554            goto out;
4555         }
4556      }
4557   }
4558   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4559      for (i = 0; i < numInputs; i++) {
4560         t->inputs[i] = ureg_DECL_gs_input(ureg,
4561                                           i,
4562                                           inputSemanticName[i],
4563                                           inputSemanticIndex[i]);
4564      }
4565
4566      for (i = 0; i < numOutputs; i++) {
4567         t->outputs[i] = ureg_DECL_output(ureg,
4568                                          outputSemanticName[i],
4569                                          outputSemanticIndex[i]);
4570      }
4571   }
4572   else {
4573      assert(procType == TGSI_PROCESSOR_VERTEX);
4574
4575      for (i = 0; i < numInputs; i++) {
4576         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4577      }
4578
4579      for (i = 0; i < numOutputs; i++) {
4580         if (outputSemanticName[i] == TGSI_SEMANTIC_CLIPDIST) {
4581            int mask = ((1 << (program->num_clip_distances - 4*outputSemanticIndex[i])) - 1) & TGSI_WRITEMASK_XYZW;
4582            t->outputs[i] = ureg_DECL_output_masked(ureg,
4583                                                    outputSemanticName[i],
4584                                                    outputSemanticIndex[i],
4585                                                    mask);
4586         } else {
4587            t->outputs[i] = ureg_DECL_output(ureg,
4588                                             outputSemanticName[i],
4589                                             outputSemanticIndex[i]);
4590         }
4591      }
4592      if (passthrough_edgeflags)
4593         emit_edgeflags(t);
4594   }
4595
4596   /* Declare address register.
4597    */
4598   if (program->num_address_regs > 0) {
4599      assert(program->num_address_regs == 1);
4600      t->address[0] = ureg_DECL_address(ureg);
4601   }
4602
4603   /* Declare misc input registers
4604    */
4605   {
4606      GLbitfield sysInputs = proginfo->SystemValuesRead;
4607      unsigned numSys = 0;
4608      for (i = 0; sysInputs; i++) {
4609         if (sysInputs & (1 << i)) {
4610            unsigned semName = mesa_sysval_to_semantic[i];
4611            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4612            numSys++;
4613            sysInputs &= ~(1 << i);
4614         }
4615      }
4616   }
4617
4618   if (program->indirect_addr_temps) {
4619      /* If temps are accessed with indirect addressing, declare temporaries
4620       * in sequential order.  Else, we declare them on demand elsewhere.
4621       * (Note: the number of temporaries is equal to program->next_temp)
4622       */
4623      for (i = 0; i < (unsigned)program->next_temp; i++) {
4624         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4625         t->temps[i] = ureg_DECL_temporary(t->ureg);
4626      }
4627   }
4628
4629   /* Emit constants and uniforms.  TGSI uses a single index space for these,
4630    * so we put all the translated regs in t->constants.
4631    */
4632   if (proginfo->Parameters) {
4633      t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4634      if (t->constants == NULL) {
4635         ret = PIPE_ERROR_OUT_OF_MEMORY;
4636         goto out;
4637      }
4638
4639      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4640         switch (proginfo->Parameters->Parameters[i].Type) {
4641         case PROGRAM_ENV_PARAM:
4642         case PROGRAM_LOCAL_PARAM:
4643         case PROGRAM_STATE_VAR:
4644         case PROGRAM_NAMED_PARAM:
4645         case PROGRAM_UNIFORM:
4646            t->constants[i] = ureg_DECL_constant(ureg, i);
4647            break;
4648
4649         /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4650          * addressing of the const buffer.
4651          * FIXME: Be smarter and recognize param arrays:
4652          * indirect addressing is only valid within the referenced
4653          * array.
4654          */
4655         case PROGRAM_CONSTANT:
4656            if (program->indirect_addr_consts)
4657               t->constants[i] = ureg_DECL_constant(ureg, i);
4658            else
4659               t->constants[i] = emit_immediate(t,
4660                                                proginfo->Parameters->ParameterValues[i],
4661                                                proginfo->Parameters->Parameters[i].DataType,
4662                                                4);
4663            break;
4664         default:
4665            break;
4666         }
4667      }
4668   }
4669
4670   /* Emit immediate values.
4671    */
4672   t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4673   if (t->immediates == NULL) {
4674      ret = PIPE_ERROR_OUT_OF_MEMORY;
4675      goto out;
4676   }
4677   i = 0;
4678   foreach_iter(exec_list_iterator, iter, program->immediates) {
4679      immediate_storage *imm = (immediate_storage *)iter.get();
4680      assert(i < program->num_immediates);
4681      t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4682   }
4683   assert(i == program->num_immediates);
4684
4685   /* texture samplers */
4686   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4687      if (program->samplers_used & (1 << i)) {
4688         t->samplers[i] = ureg_DECL_sampler(ureg, i);
4689      }
4690   }
4691
4692   /* Emit each instruction in turn:
4693    */
4694   foreach_iter(exec_list_iterator, iter, program->instructions) {
4695      set_insn_start(t, ureg_get_instruction_number(ureg));
4696      compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get(),
4697                               clamp_color);
4698   }
4699
4700   /* Fix up all emitted labels:
4701    */
4702   for (i = 0; i < t->labels_count; i++) {
4703      ureg_fixup_label(ureg, t->labels[i].token,
4704                       t->insn[t->labels[i].branch_target]);
4705   }
4706
4707   if (program->shader_program) {
4708      /* This has to be done last.  Any operation the can cause
4709       * prog->ParameterValues to get reallocated (e.g., anything that adds a
4710       * program constant) has to happen before creating this linkage.
4711       */
4712      for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4713         if (program->shader_program->_LinkedShaders[i] == NULL)
4714            continue;
4715
4716         _mesa_associate_uniform_storage(ctx, program->shader_program,
4717               program->shader_program->_LinkedShaders[i]->Program->Parameters);
4718      }
4719   }
4720
4721out:
4722   if (t) {
4723      FREE(t->insn);
4724      FREE(t->labels);
4725      FREE(t->constants);
4726      FREE(t->immediates);
4727
4728      if (t->error) {
4729         debug_printf("%s: translate error flag set\n", __FUNCTION__);
4730      }
4731
4732      FREE(t);
4733   }
4734
4735   return ret;
4736}
4737/* ----------------------------- End TGSI code ------------------------------ */
4738
4739/**
4740 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4741 * generating Mesa IR.
4742 */
4743static struct gl_program *
4744get_mesa_program(struct gl_context *ctx,
4745                 struct gl_shader_program *shader_program,
4746                 struct gl_shader *shader,
4747                 int num_clip_distances)
4748{
4749   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4750   struct gl_program *prog;
4751   GLenum target;
4752   const char *target_string;
4753   bool progress;
4754   struct gl_shader_compiler_options *options =
4755         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4756
4757   switch (shader->Type) {
4758   case GL_VERTEX_SHADER:
4759      target = GL_VERTEX_PROGRAM_ARB;
4760      target_string = "vertex";
4761      break;
4762   case GL_FRAGMENT_SHADER:
4763      target = GL_FRAGMENT_PROGRAM_ARB;
4764      target_string = "fragment";
4765      break;
4766   case GL_GEOMETRY_SHADER:
4767      target = GL_GEOMETRY_PROGRAM_NV;
4768      target_string = "geometry";
4769      break;
4770   default:
4771      assert(!"should not be reached");
4772      return NULL;
4773   }
4774
4775   validate_ir_tree(shader->ir);
4776
4777   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4778   if (!prog)
4779      return NULL;
4780   prog->Parameters = _mesa_new_parameter_list();
4781   v->ctx = ctx;
4782   v->prog = prog;
4783   v->shader_program = shader_program;
4784   v->options = options;
4785   v->glsl_version = ctx->Const.GLSLVersion;
4786   v->native_integers = ctx->Const.NativeIntegers;
4787   v->num_clip_distances = num_clip_distances;
4788
4789   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4790					       prog->Parameters);
4791
4792   /* Remove reads from output registers. */
4793   lower_output_reads(shader->ir);
4794
4795   /* Emit intermediate IR for main(). */
4796   visit_exec_list(shader->ir, v);
4797
4798   /* Now emit bodies for any functions that were used. */
4799   do {
4800      progress = GL_FALSE;
4801
4802      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4803         function_entry *entry = (function_entry *)iter.get();
4804
4805         if (!entry->bgn_inst) {
4806            v->current_function = entry;
4807
4808            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4809            entry->bgn_inst->function = entry;
4810
4811            visit_exec_list(&entry->sig->body, v);
4812
4813            glsl_to_tgsi_instruction *last;
4814            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4815            if (last->op != TGSI_OPCODE_RET)
4816               v->emit(NULL, TGSI_OPCODE_RET);
4817
4818            glsl_to_tgsi_instruction *end;
4819            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4820            end->function = entry;
4821
4822            progress = GL_TRUE;
4823         }
4824      }
4825   } while (progress);
4826
4827#if 0
4828   /* Print out some information (for debugging purposes) used by the
4829    * optimization passes. */
4830   for (i=0; i < v->next_temp; i++) {
4831      int fr = v->get_first_temp_read(i);
4832      int fw = v->get_first_temp_write(i);
4833      int lr = v->get_last_temp_read(i);
4834      int lw = v->get_last_temp_write(i);
4835
4836      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4837      assert(fw <= fr);
4838   }
4839#endif
4840
4841   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4842   v->simplify_cmp();
4843   v->copy_propagate();
4844   while (v->eliminate_dead_code_advanced());
4845
4846   /* FIXME: These passes to optimize temporary registers don't work when there
4847    * is indirect addressing of the temporary register space.  We need proper
4848    * array support so that we don't have to give up these passes in every
4849    * shader that uses arrays.
4850    */
4851   if (!v->indirect_addr_temps) {
4852      v->eliminate_dead_code();
4853      v->merge_registers();
4854      v->renumber_registers();
4855   }
4856
4857   /* Write the END instruction. */
4858   v->emit(NULL, TGSI_OPCODE_END);
4859
4860   if (ctx->Shader.Flags & GLSL_DUMP) {
4861      printf("\n");
4862      printf("GLSL IR for linked %s program %d:\n", target_string,
4863             shader_program->Name);
4864      _mesa_print_ir(shader->ir, NULL);
4865      printf("\n");
4866      printf("\n");
4867      fflush(stdout);
4868   }
4869
4870   prog->Instructions = NULL;
4871   prog->NumInstructions = 0;
4872
4873   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4874   count_resources(v, prog);
4875
4876   _mesa_reference_program(ctx, &shader->Program, prog);
4877
4878   /* This has to be done last.  Any operation the can cause
4879    * prog->ParameterValues to get reallocated (e.g., anything that adds a
4880    * program constant) has to happen before creating this linkage.
4881    */
4882   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4883   if (!shader_program->LinkStatus) {
4884      return NULL;
4885   }
4886
4887   struct st_vertex_program *stvp;
4888   struct st_fragment_program *stfp;
4889   struct st_geometry_program *stgp;
4890
4891   switch (shader->Type) {
4892   case GL_VERTEX_SHADER:
4893      stvp = (struct st_vertex_program *)prog;
4894      stvp->glsl_to_tgsi = v;
4895      break;
4896   case GL_FRAGMENT_SHADER:
4897      stfp = (struct st_fragment_program *)prog;
4898      stfp->glsl_to_tgsi = v;
4899      break;
4900   case GL_GEOMETRY_SHADER:
4901      stgp = (struct st_geometry_program *)prog;
4902      stgp->glsl_to_tgsi = v;
4903      break;
4904   default:
4905      assert(!"should not be reached");
4906      return NULL;
4907   }
4908
4909   return prog;
4910}
4911
4912/**
4913 * Searches through the IR for a declaration of gl_ClipDistance and returns the
4914 * declared size of the gl_ClipDistance array.  Returns 0 if gl_ClipDistance is
4915 * not declared in the IR.
4916 */
4917int get_clip_distance_size(exec_list *ir)
4918{
4919   foreach_iter (exec_list_iterator, iter, *ir) {
4920      ir_instruction *inst = (ir_instruction *)iter.get();
4921      ir_variable *var = inst->as_variable();
4922      if (var == NULL) continue;
4923      if (!strcmp(var->name, "gl_ClipDistance")) {
4924         return var->type->length;
4925      }
4926   }
4927
4928   return 0;
4929}
4930
4931extern "C" {
4932
4933struct gl_shader *
4934st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4935{
4936   struct gl_shader *shader;
4937   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4938          type == GL_GEOMETRY_SHADER_ARB);
4939   shader = rzalloc(NULL, struct gl_shader);
4940   if (shader) {
4941      shader->Type = type;
4942      shader->Name = name;
4943      _mesa_init_shader(ctx, shader);
4944   }
4945   return shader;
4946}
4947
4948struct gl_shader_program *
4949st_new_shader_program(struct gl_context *ctx, GLuint name)
4950{
4951   struct gl_shader_program *shProg;
4952   shProg = rzalloc(NULL, struct gl_shader_program);
4953   if (shProg) {
4954      shProg->Name = name;
4955      _mesa_init_shader_program(ctx, shProg);
4956   }
4957   return shProg;
4958}
4959
4960/**
4961 * Link a shader.
4962 * Called via ctx->Driver.LinkShader()
4963 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4964 * with code lowering and other optimizations.
4965 */
4966GLboolean
4967st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4968{
4969   int num_clip_distances[MESA_SHADER_TYPES];
4970   assert(prog->LinkStatus);
4971
4972   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4973      if (prog->_LinkedShaders[i] == NULL)
4974         continue;
4975
4976      bool progress;
4977      exec_list *ir = prog->_LinkedShaders[i]->ir;
4978      const struct gl_shader_compiler_options *options =
4979            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4980
4981      /* We have to determine the length of the gl_ClipDistance array before
4982       * the array is lowered to two vec4s by lower_clip_distance().
4983       */
4984      num_clip_distances[i] = get_clip_distance_size(ir);
4985
4986      do {
4987         unsigned what_to_lower = MOD_TO_FRACT | DIV_TO_MUL_RCP |
4988            EXP_TO_EXP2 | LOG_TO_LOG2;
4989         if (options->EmitNoPow)
4990            what_to_lower |= POW_TO_EXP2;
4991         if (!ctx->Const.NativeIntegers)
4992            what_to_lower |= INT_DIV_TO_MUL_RCP;
4993
4994         progress = false;
4995
4996         /* Lowering */
4997         do_mat_op_to_vec(ir);
4998         lower_instructions(ir, what_to_lower);
4999
5000         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5001
5002         progress = do_common_optimization(ir, true, true,
5003					   options->MaxUnrollIterations)
5004	   || progress;
5005
5006         progress = lower_quadop_vector(ir, false) || progress;
5007         progress = lower_clip_distance(ir) || progress;
5008
5009         if (options->MaxIfDepth == 0)
5010            progress = lower_discard(ir) || progress;
5011
5012         progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5013
5014         if (options->EmitNoNoise)
5015            progress = lower_noise(ir) || progress;
5016
5017         /* If there are forms of indirect addressing that the driver
5018          * cannot handle, perform the lowering pass.
5019          */
5020         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5021             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5022           progress =
5023             lower_variable_index_to_cond_assign(ir,
5024        					 options->EmitNoIndirectInput,
5025        					 options->EmitNoIndirectOutput,
5026        					 options->EmitNoIndirectTemp,
5027        					 options->EmitNoIndirectUniform)
5028             || progress;
5029
5030         progress = do_vec_index_to_cond_assign(ir) || progress;
5031      } while (progress);
5032
5033      validate_ir_tree(ir);
5034   }
5035
5036   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5037      struct gl_program *linked_prog;
5038
5039      if (prog->_LinkedShaders[i] == NULL)
5040         continue;
5041
5042      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i],
5043                                     num_clip_distances[i]);
5044
5045      if (linked_prog) {
5046	 static const GLenum targets[] = {
5047	    GL_VERTEX_PROGRAM_ARB,
5048	    GL_FRAGMENT_PROGRAM_ARB,
5049	    GL_GEOMETRY_PROGRAM_NV
5050	 };
5051
5052	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5053				 linked_prog);
5054         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5055	    _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5056				    NULL);
5057            _mesa_reference_program(ctx, &linked_prog, NULL);
5058            return GL_FALSE;
5059         }
5060      }
5061
5062      _mesa_reference_program(ctx, &linked_prog, NULL);
5063   }
5064
5065   return GL_TRUE;
5066}
5067
5068void
5069st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5070                                const GLuint outputMapping[],
5071                                struct pipe_stream_output_info *so)
5072{
5073   unsigned i;
5074   struct gl_transform_feedback_info *info =
5075      &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5076
5077   for (i = 0; i < info->NumOutputs; i++) {
5078      so->output[i].register_index =
5079         outputMapping[info->Outputs[i].OutputRegister];
5080      so->output[i].start_component = info->Outputs[i].ComponentOffset;
5081      so->output[i].num_components = info->Outputs[i].NumComponents;
5082      so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5083      so->output[i].dst_offset = info->Outputs[i].DstOffset;
5084   }
5085
5086   for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5087      so->stride[i] = info->BufferStride[i];
5088   }
5089   so->num_outputs = info->NumOutputs;
5090}
5091
5092} /* extern "C" */
5093