swrast.h revision 10f30eb43835c57c00783390a02d72daf4f78e26
1/* $Id: swrast.h,v 1.13 2001/12/17 04:54:35 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  3.5
6 *
7 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 *    Keith Whitwell <keithw@valinux.com>
28 */
29
30#ifndef SWRAST_H
31#define SWRAST_H
32
33#include "mtypes.h"
34
35
36
37/* The software rasterizer now uses this format for vertices.  Thus a
38 * 'RasterSetup' stage or other translation is required between the
39 * tnl module and the swrast rasterization functions.  This serves to
40 * isolate the swrast module from the internals of the tnl module, and
41 * improve its usefulness as a fallback mechanism for hardware
42 * drivers.
43 *
44 * Full software drivers:
45 *   - Register the rastersetup and triangle functions from
46 *     utils/software_helper.
47 *   - On statechange, update the rasterization pointers in that module.
48 *
49 * Rasterization hardware drivers:
50 *   - Keep native rastersetup.
51 *   - Implement native twoside,offset and unfilled triangle setup.
52 *   - Implement a translator from native vertices to swrast vertices.
53 *   - On partial fallback (mix of accelerated and unaccelerated
54 *   prims), call a pass-through function which translates native
55 *   vertices to SWvertices and calls the appropriate swrast function.
56 *   - On total fallback (vertex format insufficient for state or all
57 *     primitives unaccelerated), hook in swrast_setup instead.
58 */
59typedef struct {
60   GLfloat win[4];
61   GLfloat texcoord[MAX_TEXTURE_UNITS][4];
62   GLchan color[4];
63   GLchan specular[4];
64   GLfloat fog;
65   GLuint index;
66   GLfloat pointSize;
67} SWvertex;
68
69
70/*
71 * The sw_span structure is used by the triangle template code in
72 * s_tritemp.h.  It describes how colors, Z, texcoords, etc are to be
73 * interpolated across each scanline of triangle.
74 * With this structure it's easy to hand-off span rasterization to a
75 * subroutine instead of doing it all inline like we used to do.
76 * It also cleans up the local variable namespace a great deal.
77 *
78 * It would be interesting to experiment with multiprocessor rasterization
79 * with this structure.  The triangle rasterizer could simply emit a
80 * stream of these structures which would be consumed by one or more
81 * span-processing threads which could run in parallel.
82 */
83
84
85/* When the sw_span struct is initialized, these flags indicates
86 * which values are needed for rendering the triangle.
87 */
88#define SPAN_RGBA         0x001
89#define SPAN_SPEC         0x002
90#define SPAN_INDEX        0x004
91#define SPAN_Z            0x008
92#define SPAN_FOG          0x010
93#define SPAN_TEXTURE      0x020
94#define SPAN_INT_TEXTURE  0x040
95#define SPAN_LAMBDA       0x080
96#define SPAN_FLAT         0x100  /* flat shading? */
97
98
99struct sw_span {
100   GLint x, y;
101   GLuint start, end;  /* start=first pixel in span, end=last pixel in span*/
102                       /* only end is used until now.(end was before called count) */
103   GLuint activeMask;  /* OR of the SPAN_* flags */
104#if CHAN_TYPE == GL_FLOAT
105   GLfloat red, redStep;
106   GLfloat green, greenStep;
107   GLfloat blue, blueStep;
108   GLfloat alpha, alphaStep;
109   GLfloat specRed, specRedStep;
110   GLfloat specGreen, specGreenStep;
111   GLfloat specBlue, specBlueStep;
112#else /* CHAN_TYPE == */
113   GLfixed red, redStep;
114   GLfixed green, greenStep;
115   GLfixed blue, blueStep;
116   GLfixed alpha, alphaStep;
117   GLfixed specRed, specRedStep;
118   GLfixed specGreen, specGreenStep;
119   GLfixed specBlue, specBlueStep;
120#endif
121   GLfixed index, indexStep;
122   GLfixed z, zStep;
123   GLfloat fog, fogStep;
124   GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4];
125   GLfixed intTex[2], intTexStep[2];
126   /* Needed for texture lambda (LOD) computation */
127   GLfloat rho[MAX_TEXTURE_UNITS];
128   GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
129
130   GLboolean write_all;   /* This flag indicates that only a part of */
131                          /*the span is visible. */
132#ifdef DEBUG
133   GLboolean filledDepth, filledMask, filledAlpha;
134   GLboolean filledColor, filledSpecular;
135   GLboolean filledLambda[MAX_TEXTURE_UNITS], filledTex[MAX_TEXTURE_UNITS];
136   GLboolean testedDepth, testedAlpha;
137#endif
138   /* The interpolated fragment values */
139   GLdepth depth[MAX_WIDTH];
140   union {
141      GLchan rgb[MAX_WIDTH][3];
142      GLchan rgba[MAX_WIDTH][4];
143      GLuint index[MAX_WIDTH];
144   } color;
145   GLchan specular[MAX_WIDTH][4];
146   GLint   itexcoords[MAX_WIDTH][2];                       /* s, t    */
147   GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][3];     /* s, t, r */
148   GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
149   GLfloat coverage[MAX_WIDTH];
150   GLubyte mask[MAX_WIDTH];
151};
152
153#ifdef DEBUG
154#define SW_SPAN_SET_FLAG(flag) {ASSERT((flag) == GL_FALSE);(flag) = GL_TRUE;}
155#define SW_SPAN_RESET(span) {                                        \
156         (span).filledDepth = (span).filledMask = (span).filledAlpha \
157         = (span).filledColor = (span).filledSpecular                \
158         = (span).testedDepth = (span).testedAlpha = GL_FALSE;       \
159         MEMSET((span).filledTex, GL_FALSE,                          \
160		MAX_TEXTURE_UNITS*sizeof(GLboolean));                \
161         MEMSET((span).filledLambda, GL_FALSE,                       \
162		MAX_TEXTURE_UNITS*sizeof(GLboolean));                \
163         (span).start = 0; (span).write_all = GL_TRUE;}
164#else
165#define SW_SPAN_SET_FLAG(flag) ;
166#define SW_SPAN_RESET(span) {(span).start = 0;(span).write_all = GL_TRUE;}
167#endif
168
169struct swrast_device_driver;
170
171
172/* These are the public-access functions exported from swrast.
173 */
174extern void
175_swrast_alloc_buffers( GLcontext *ctx );
176
177extern GLboolean
178_swrast_CreateContext( GLcontext *ctx );
179
180extern void
181_swrast_DestroyContext( GLcontext *ctx );
182
183/* Get a (non-const) reference to the device driver struct for swrast.
184 */
185extern struct swrast_device_driver *
186_swrast_GetDeviceDriverReference( GLcontext *ctx );
187
188extern void
189_swrast_Bitmap( GLcontext *ctx,
190		GLint px, GLint py,
191		GLsizei width, GLsizei height,
192		const struct gl_pixelstore_attrib *unpack,
193		const GLubyte *bitmap );
194
195extern void
196_swrast_CopyPixels( GLcontext *ctx,
197		    GLint srcx, GLint srcy,
198		    GLint destx, GLint desty,
199		    GLsizei width, GLsizei height,
200		    GLenum type );
201
202extern void
203_swrast_DrawPixels( GLcontext *ctx,
204		    GLint x, GLint y,
205		    GLsizei width, GLsizei height,
206		    GLenum format, GLenum type,
207		    const struct gl_pixelstore_attrib *unpack,
208		    const GLvoid *pixels );
209
210extern void
211_swrast_ReadPixels( GLcontext *ctx,
212		    GLint x, GLint y, GLsizei width, GLsizei height,
213		    GLenum format, GLenum type,
214		    const struct gl_pixelstore_attrib *unpack,
215		    GLvoid *pixels );
216
217extern void
218_swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
219	       GLint x, GLint y, GLint width, GLint height );
220
221extern void
222_swrast_Accum( GLcontext *ctx, GLenum op,
223	       GLfloat value, GLint xpos, GLint ypos,
224	       GLint width, GLint height );
225
226
227/* Reset the stipple counter
228 */
229extern void
230_swrast_ResetLineStipple( GLcontext *ctx );
231
232/* These will always render the correct point/line/triangle for the
233 * current state.
234 *
235 * For flatshaded primitives, the provoking vertex is the final one.
236 */
237extern void
238_swrast_Point( GLcontext *ctx, const SWvertex *v );
239
240extern void
241_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
242
243extern void
244_swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
245                  const SWvertex *v1, const SWvertex *v2 );
246
247extern void
248_swrast_Quad( GLcontext *ctx,
249              const SWvertex *v0, const SWvertex *v1,
250	      const SWvertex *v2,  const SWvertex *v3);
251
252extern void
253_swrast_flush( GLcontext *ctx );
254
255
256/* Tell the software rasterizer about core state changes.
257 */
258extern void
259_swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
260
261/* Configure software rasterizer to match hardware rasterizer characteristics:
262 */
263extern void
264_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
265
266extern void
267_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
268
269/* Debug:
270 */
271extern void
272_swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
273
274
275/*
276 * Imaging fallbacks (a better solution should be found, perhaps
277 * moving all the imaging fallback code to a new module)
278 */
279void
280_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
281				GLenum internalFormat,
282				GLint x, GLint y, GLsizei width,
283				GLsizei height);
284void
285_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
286				GLenum internalFormat,
287				GLint x, GLint y, GLsizei width);
288void
289_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
290			   GLint x, GLint y, GLsizei width);
291void
292_swrast_CopyColorTable( GLcontext *ctx,
293			GLenum target, GLenum internalformat,
294			GLint x, GLint y, GLsizei width);
295
296
297/*
298 * Texture fallbacks, Brian Paul.  Could also live in a new module
299 * with the rest of the texture store fallbacks?
300 */
301extern void
302_swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
303                      GLenum internalFormat,
304                      GLint x, GLint y, GLsizei width, GLint border);
305
306extern void
307_swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
308                      GLenum internalFormat,
309                      GLint x, GLint y, GLsizei width, GLsizei height,
310                      GLint border);
311
312
313extern void
314_swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
315                         GLint xoffset, GLint x, GLint y, GLsizei width);
316
317extern void
318_swrast_copy_texsubimage2d(GLcontext *ctx,
319                         GLenum target, GLint level,
320                         GLint xoffset, GLint yoffset,
321                         GLint x, GLint y, GLsizei width, GLsizei height);
322
323extern void
324_swrast_copy_texsubimage3d(GLcontext *ctx,
325                         GLenum target, GLint level,
326                         GLint xoffset, GLint yoffset, GLint zoffset,
327                         GLint x, GLint y, GLsizei width, GLsizei height);
328
329
330
331/* The driver interface for the software rasterizer.  Unless otherwise
332 * noted, all functions are mandatory.
333 */
334struct swrast_device_driver {
335
336   void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
337                          GLenum buffer );
338   /*
339    * Specifies the current buffer for span/pixel reading.
340    * colorBuffer will be one of:
341    *    GL_FRONT_LEFT - this buffer always exists
342    *    GL_BACK_LEFT - when double buffering
343    *    GL_FRONT_RIGHT - when using stereo
344    *    GL_BACK_RIGHT - when using stereo and double buffering
345    */
346
347
348   /***
349    *** Functions for synchronizing access to the framebuffer:
350    ***/
351
352   void (*SpanRenderStart)(GLcontext *ctx);
353   void (*SpanRenderFinish)(GLcontext *ctx);
354   /* OPTIONAL.
355    *
356    * Called before and after all rendering operations, including DrawPixels,
357    * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
358    * These are a suitable place for grabbing/releasing hardware locks.
359    *
360    * NOTE: The swrast triangle/line/point routines *DO NOT* call
361    * these functions.  Locking in that case must be organized by the
362    * driver by other mechanisms.
363    */
364
365   /***
366    *** Functions for writing pixels to the frame buffer:
367    ***/
368
369   void (*WriteRGBASpan)( const GLcontext *ctx,
370                          GLuint n, GLint x, GLint y,
371                          CONST GLchan rgba[][4], const GLubyte mask[] );
372   void (*WriteRGBSpan)( const GLcontext *ctx,
373                         GLuint n, GLint x, GLint y,
374                         CONST GLchan rgb[][3], const GLubyte mask[] );
375   /* Write a horizontal run of RGBA or RGB pixels.
376    * If mask is NULL, draw all pixels.
377    * If mask is not null, only draw pixel [i] when mask [i] is true.
378    */
379
380   void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
381                              const GLchan color[4], const GLubyte mask[] );
382   /* Write a horizontal run of RGBA pixels all with the same color.
383    */
384
385   void (*WriteRGBAPixels)( const GLcontext *ctx,
386                            GLuint n, const GLint x[], const GLint y[],
387                            CONST GLchan rgba[][4], const GLubyte mask[] );
388   /* Write array of RGBA pixels at random locations.
389    */
390
391   void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
392                                GLuint n, const GLint x[], const GLint y[],
393                                const GLchan color[4], const GLubyte mask[] );
394   /* Write an array of mono-RGBA pixels at random locations.
395    */
396
397   void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
398                          const GLuint index[], const GLubyte mask[] );
399   void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
400                         const GLubyte index[], const GLubyte mask[] );
401   /* Write a horizontal run of CI pixels.  One function is for 32bpp
402    * indexes and the other for 8bpp pixels (the common case).  You mus
403    * implement both for color index mode.
404    */
405
406   void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
407                            GLuint colorIndex, const GLubyte mask[] );
408   /* Write a horizontal run of color index pixels using the color index
409    * last specified by the Index() function.
410    */
411
412   void (*WriteCI32Pixels)( const GLcontext *ctx,
413                            GLuint n, const GLint x[], const GLint y[],
414                            const GLuint index[], const GLubyte mask[] );
415   /*
416    * Write a random array of CI pixels.
417    */
418
419   void (*WriteMonoCIPixels)( const GLcontext *ctx,
420                              GLuint n, const GLint x[], const GLint y[],
421                              GLuint colorIndex, const GLubyte mask[] );
422   /* Write a random array of color index pixels using the color index
423    * last specified by the Index() function.
424    */
425
426
427   /***
428    *** Functions to read pixels from frame buffer:
429    ***/
430
431   void (*ReadCI32Span)( const GLcontext *ctx,
432                         GLuint n, GLint x, GLint y, GLuint index[] );
433   /* Read a horizontal run of color index pixels.
434    */
435
436   void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
437                         GLchan rgba[][4] );
438   /* Read a horizontal run of RGBA pixels.
439    */
440
441   void (*ReadCI32Pixels)( const GLcontext *ctx,
442                           GLuint n, const GLint x[], const GLint y[],
443                           GLuint indx[], const GLubyte mask[] );
444   /* Read a random array of CI pixels.
445    */
446
447   void (*ReadRGBAPixels)( const GLcontext *ctx,
448                           GLuint n, const GLint x[], const GLint y[],
449                           GLchan rgba[][4], const GLubyte mask[] );
450   /* Read a random array of RGBA pixels.
451    */
452
453
454
455   /***
456    *** For supporting hardware Z buffers:
457    *** Either ALL or NONE of these functions must be implemented!
458    *** NOTE that Each depth value is a 32-bit GLuint.  If the depth
459    *** buffer is less than 32 bits deep then the extra upperbits are zero.
460    ***/
461
462   void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
463                           const GLdepth depth[], const GLubyte mask[] );
464   /* Write a horizontal span of values into the depth buffer.  Only write
465    * depth[i] value if mask[i] is nonzero.
466    */
467
468   void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
469                          GLdepth depth[] );
470   /* Read a horizontal span of values from the depth buffer.
471    */
472
473
474   void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
475                             const GLint x[], const GLint y[],
476                             const GLdepth depth[], const GLubyte mask[] );
477   /* Write an array of randomly positioned depth values into the
478    * depth buffer.  Only write depth[i] value if mask[i] is nonzero.
479    */
480
481   void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
482                            const GLint x[], const GLint y[],
483                            GLdepth depth[] );
484   /* Read an array of randomly positioned depth values from the depth buffer.
485    */
486
487
488
489   /***
490    *** For supporting hardware stencil buffers:
491    *** Either ALL or NONE of these functions must be implemented!
492    ***/
493
494   void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
495                             const GLstencil stencil[], const GLubyte mask[] );
496   /* Write a horizontal span of stencil values into the stencil buffer.
497    * If mask is NULL, write all stencil values.
498    * Else, only write stencil[i] if mask[i] is non-zero.
499    */
500
501   void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
502                            GLstencil stencil[] );
503   /* Read a horizontal span of stencil values from the stencil buffer.
504    */
505
506   void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
507                               const GLint x[], const GLint y[],
508                               const GLstencil stencil[],
509                               const GLubyte mask[] );
510   /* Write an array of stencil values into the stencil buffer.
511    * If mask is NULL, write all stencil values.
512    * Else, only write stencil[i] if mask[i] is non-zero.
513    */
514
515   void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
516                              const GLint x[], const GLint y[],
517                              GLstencil stencil[] );
518   /* Read an array of stencil values from the stencil buffer.
519    */
520};
521
522
523
524#endif
525