swrast.h revision 18a285a5e244b7405b85feb7315a30d99920ec5d
1/* $Id: swrast.h,v 1.21 2002/03/16 00:53:15 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  4.1
6 *
7 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 *    Keith Whitwell <keithw@valinux.com>
28 */
29
30#ifndef SWRAST_H
31#define SWRAST_H
32
33#include "mtypes.h"
34
35
36/* The software rasterizer now uses this format for vertices.  Thus a
37 * 'RasterSetup' stage or other translation is required between the
38 * tnl module and the swrast rasterization functions.  This serves to
39 * isolate the swrast module from the internals of the tnl module, and
40 * improve its usefulness as a fallback mechanism for hardware
41 * drivers.
42 *
43 * Full software drivers:
44 *   - Register the rastersetup and triangle functions from
45 *     utils/software_helper.
46 *   - On statechange, update the rasterization pointers in that module.
47 *
48 * Rasterization hardware drivers:
49 *   - Keep native rastersetup.
50 *   - Implement native twoside,offset and unfilled triangle setup.
51 *   - Implement a translator from native vertices to swrast vertices.
52 *   - On partial fallback (mix of accelerated and unaccelerated
53 *   prims), call a pass-through function which translates native
54 *   vertices to SWvertices and calls the appropriate swrast function.
55 *   - On total fallback (vertex format insufficient for state or all
56 *     primitives unaccelerated), hook in swrast_setup instead.
57 */
58typedef struct {
59   GLfloat win[4];
60   GLfloat texcoord[MAX_TEXTURE_UNITS][4];
61   GLchan color[4];
62   GLchan specular[4];
63   GLfloat fog;
64   GLuint index;
65   GLfloat pointSize;
66} SWvertex;
67
68
69/*
70 * The sw_span structure describes the colors, Z, fogcoord, texcoords,
71 * etc for a horizontal run of pixels.  We can either specify a base/step
72 * to indicate interpolated values, or fill in arrays of values.
73 * The interpMask and arrayMask bitfields indicate which are active.
74 *
75 * With this structure it's easy to hand-off span rasterization to
76 * subroutines instead of doing it all inline in the triangle functions
77 * like we used to do.
78 * It also cleans up the local variable namespace a great deal.
79 *
80 * It would be interesting to experiment with multiprocessor rasterization
81 * with this structure.  The triangle rasterizer could simply emit a
82 * stream of these structures which would be consumed by one or more
83 * span-processing threads which could run in parallel.
84 */
85
86
87/* Values for interpMask and arrayMask */
88#define SPAN_RGBA         0x001
89#define SPAN_SPEC         0x002
90#define SPAN_INDEX        0x004
91#define SPAN_Z            0x008
92#define SPAN_FOG          0x010
93#define SPAN_TEXTURE      0x020
94#define SPAN_INT_TEXTURE  0x040
95#define SPAN_LAMBDA       0x080
96#define SPAN_COVERAGE     0x100
97#define SPAN_FLAT         0x200  /* flat shading? */
98#define SPAN_XY           0x400  /* arrayMask only - for xArray, yArray */
99#define SPAN_MASK         0x800  /* arrayMask only */
100
101
102struct sw_span {
103   GLint x, y;
104
105   /* only need to process pixels between start <= i < end */
106   GLuint start, end;
107
108   /* This flag indicates that only a part of the span is visible */
109   GLboolean writeAll;
110
111   /**
112    * This bitmask (of SPAN_* flags) indicates which of the x/xStep
113    * variables are relevant.
114    */
115   GLuint interpMask;
116
117#if CHAN_TYPE == GL_FLOAT
118   GLfloat red, redStep;
119   GLfloat green, greenStep;
120   GLfloat blue, blueStep;
121   GLfloat alpha, alphaStep;
122   GLfloat specRed, specRedStep;
123   GLfloat specGreen, specGreenStep;
124   GLfloat specBlue, specBlueStep;
125#else /* CHAN_TYPE == */
126   GLfixed red, redStep;
127   GLfixed green, greenStep;
128   GLfixed blue, blueStep;
129   GLfixed alpha, alphaStep;
130   GLfixed specRed, specRedStep;
131   GLfixed specGreen, specGreenStep;
132   GLfixed specBlue, specBlueStep;
133#endif
134   GLfixed index, indexStep;
135   GLfixed z, zStep;
136   GLfloat fog, fogStep;
137   GLfloat tex[MAX_TEXTURE_UNITS][4];
138   GLfloat texStepX[MAX_TEXTURE_UNITS][4];
139   GLfloat texStepY[MAX_TEXTURE_UNITS][4];
140   GLfixed intTex[2], intTexStep[2];
141
142   /**
143    * This bitmask (of SPAN_* flags) indicates which of the fragment arrays
144    * are relevant.
145    */
146   GLuint arrayMask;
147
148   /**
149    * Arrays of fragment values.  These will either be computed from the
150    * x/xStep values above or filled in by glDraw/CopyPixels, etc.
151    */
152   union {
153      GLchan rgb[MAX_WIDTH][3];
154      GLchan rgba[MAX_WIDTH][4];
155      GLuint index[MAX_WIDTH];
156   } color;
157   GLchan  specArray[MAX_WIDTH][4];
158   GLint   xArray[MAX_WIDTH];  /* X/Y used for point/line rendering only */
159   GLint   yArray[MAX_WIDTH];
160   GLdepth zArray[MAX_WIDTH];
161   GLfloat fogArray[MAX_WIDTH];
162   GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4];
163   GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
164   GLfloat coverage[MAX_WIDTH];
165
166   /* This mask indicates if fragment is alive or culled */
167   GLubyte mask[MAX_WIDTH];
168};
169
170
171#define INIT_SPAN(S)	\
172do {			\
173   S.interpMask = 0;	\
174   S.arrayMask = 0;	\
175   S.start = S.end = 0;	\
176} while (0)
177
178
179
180struct swrast_device_driver;
181
182
183/* These are the public-access functions exported from swrast.
184 */
185extern void
186_swrast_alloc_buffers( GLframebuffer *buffer );
187
188extern GLboolean
189_swrast_CreateContext( GLcontext *ctx );
190
191extern void
192_swrast_DestroyContext( GLcontext *ctx );
193
194/* Get a (non-const) reference to the device driver struct for swrast.
195 */
196extern struct swrast_device_driver *
197_swrast_GetDeviceDriverReference( GLcontext *ctx );
198
199extern void
200_swrast_Bitmap( GLcontext *ctx,
201		GLint px, GLint py,
202		GLsizei width, GLsizei height,
203		const struct gl_pixelstore_attrib *unpack,
204		const GLubyte *bitmap );
205
206extern void
207_swrast_CopyPixels( GLcontext *ctx,
208		    GLint srcx, GLint srcy,
209		    GLint destx, GLint desty,
210		    GLsizei width, GLsizei height,
211		    GLenum type );
212
213extern void
214_swrast_DrawPixels( GLcontext *ctx,
215		    GLint x, GLint y,
216		    GLsizei width, GLsizei height,
217		    GLenum format, GLenum type,
218		    const struct gl_pixelstore_attrib *unpack,
219		    const GLvoid *pixels );
220
221extern void
222_swrast_ReadPixels( GLcontext *ctx,
223		    GLint x, GLint y, GLsizei width, GLsizei height,
224		    GLenum format, GLenum type,
225		    const struct gl_pixelstore_attrib *unpack,
226		    GLvoid *pixels );
227
228extern void
229_swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
230	       GLint x, GLint y, GLint width, GLint height );
231
232extern void
233_swrast_Accum( GLcontext *ctx, GLenum op,
234	       GLfloat value, GLint xpos, GLint ypos,
235	       GLint width, GLint height );
236
237
238/* Reset the stipple counter
239 */
240extern void
241_swrast_ResetLineStipple( GLcontext *ctx );
242
243/* These will always render the correct point/line/triangle for the
244 * current state.
245 *
246 * For flatshaded primitives, the provoking vertex is the final one.
247 */
248extern void
249_swrast_Point( GLcontext *ctx, const SWvertex *v );
250
251extern void
252_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
253
254extern void
255_swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
256                  const SWvertex *v1, const SWvertex *v2 );
257
258extern void
259_swrast_Quad( GLcontext *ctx,
260              const SWvertex *v0, const SWvertex *v1,
261	      const SWvertex *v2,  const SWvertex *v3);
262
263extern void
264_swrast_flush( GLcontext *ctx );
265
266
267/* Tell the software rasterizer about core state changes.
268 */
269extern void
270_swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
271
272/* Configure software rasterizer to match hardware rasterizer characteristics:
273 */
274extern void
275_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
276
277extern void
278_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
279
280/* Debug:
281 */
282extern void
283_swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
284
285
286/*
287 * Imaging fallbacks (a better solution should be found, perhaps
288 * moving all the imaging fallback code to a new module)
289 */
290extern void
291_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
292				GLenum internalFormat,
293				GLint x, GLint y, GLsizei width,
294				GLsizei height);
295extern void
296_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
297				GLenum internalFormat,
298				GLint x, GLint y, GLsizei width);
299extern void
300_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
301			   GLint x, GLint y, GLsizei width);
302extern void
303_swrast_CopyColorTable( GLcontext *ctx,
304			GLenum target, GLenum internalformat,
305			GLint x, GLint y, GLsizei width);
306
307
308/*
309 * Texture fallbacks, Brian Paul.  Could also live in a new module
310 * with the rest of the texture store fallbacks?
311 */
312extern void
313_swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
314                        GLenum internalFormat,
315                        GLint x, GLint y, GLsizei width, GLint border);
316
317extern void
318_swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
319                        GLenum internalFormat,
320                        GLint x, GLint y, GLsizei width, GLsizei height,
321                        GLint border);
322
323
324extern void
325_swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
326                           GLint xoffset, GLint x, GLint y, GLsizei width);
327
328extern void
329_swrast_copy_texsubimage2d(GLcontext *ctx,
330                           GLenum target, GLint level,
331                           GLint xoffset, GLint yoffset,
332                           GLint x, GLint y, GLsizei width, GLsizei height);
333
334extern void
335_swrast_copy_texsubimage3d(GLcontext *ctx,
336                           GLenum target, GLint level,
337                           GLint xoffset, GLint yoffset, GLint zoffset,
338                           GLint x, GLint y, GLsizei width, GLsizei height);
339
340
341
342/* The driver interface for the software rasterizer.  Unless otherwise
343 * noted, all functions are mandatory.
344 */
345struct swrast_device_driver {
346
347   void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
348                          GLenum buffer );
349   /*
350    * Specifies the current buffer for span/pixel reading.
351    * colorBuffer will be one of:
352    *    GL_FRONT_LEFT - this buffer always exists
353    *    GL_BACK_LEFT - when double buffering
354    *    GL_FRONT_RIGHT - when using stereo
355    *    GL_BACK_RIGHT - when using stereo and double buffering
356    */
357
358
359   /***
360    *** Functions for synchronizing access to the framebuffer:
361    ***/
362
363   void (*SpanRenderStart)(GLcontext *ctx);
364   void (*SpanRenderFinish)(GLcontext *ctx);
365   /* OPTIONAL.
366    *
367    * Called before and after all rendering operations, including DrawPixels,
368    * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
369    * These are a suitable place for grabbing/releasing hardware locks.
370    *
371    * NOTE: The swrast triangle/line/point routines *DO NOT* call
372    * these functions.  Locking in that case must be organized by the
373    * driver by other mechanisms.
374    */
375
376   /***
377    *** Functions for writing pixels to the frame buffer:
378    ***/
379
380   void (*WriteRGBASpan)( const GLcontext *ctx,
381                          GLuint n, GLint x, GLint y,
382                          CONST GLchan rgba[][4], const GLubyte mask[] );
383   void (*WriteRGBSpan)( const GLcontext *ctx,
384                         GLuint n, GLint x, GLint y,
385                         CONST GLchan rgb[][3], const GLubyte mask[] );
386   /* Write a horizontal run of RGBA or RGB pixels.
387    * If mask is NULL, draw all pixels.
388    * If mask is not null, only draw pixel [i] when mask [i] is true.
389    */
390
391   void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
392                              const GLchan color[4], const GLubyte mask[] );
393   /* Write a horizontal run of RGBA pixels all with the same color.
394    */
395
396   void (*WriteRGBAPixels)( const GLcontext *ctx,
397                            GLuint n, const GLint x[], const GLint y[],
398                            CONST GLchan rgba[][4], const GLubyte mask[] );
399   /* Write array of RGBA pixels at random locations.
400    */
401
402   void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
403                                GLuint n, const GLint x[], const GLint y[],
404                                const GLchan color[4], const GLubyte mask[] );
405   /* Write an array of mono-RGBA pixels at random locations.
406    */
407
408   void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
409                          const GLuint index[], const GLubyte mask[] );
410   void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
411                         const GLubyte index[], const GLubyte mask[] );
412   /* Write a horizontal run of CI pixels.  One function is for 32bpp
413    * indexes and the other for 8bpp pixels (the common case).  You mus
414    * implement both for color index mode.
415    */
416
417   void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
418                            GLuint colorIndex, const GLubyte mask[] );
419   /* Write a horizontal run of color index pixels using the color index
420    * last specified by the Index() function.
421    */
422
423   void (*WriteCI32Pixels)( const GLcontext *ctx,
424                            GLuint n, const GLint x[], const GLint y[],
425                            const GLuint index[], const GLubyte mask[] );
426   /*
427    * Write a random array of CI pixels.
428    */
429
430   void (*WriteMonoCIPixels)( const GLcontext *ctx,
431                              GLuint n, const GLint x[], const GLint y[],
432                              GLuint colorIndex, const GLubyte mask[] );
433   /* Write a random array of color index pixels using the color index
434    * last specified by the Index() function.
435    */
436
437
438   /***
439    *** Functions to read pixels from frame buffer:
440    ***/
441
442   void (*ReadCI32Span)( const GLcontext *ctx,
443                         GLuint n, GLint x, GLint y, GLuint index[] );
444   /* Read a horizontal run of color index pixels.
445    */
446
447   void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
448                         GLchan rgba[][4] );
449   /* Read a horizontal run of RGBA pixels.
450    */
451
452   void (*ReadCI32Pixels)( const GLcontext *ctx,
453                           GLuint n, const GLint x[], const GLint y[],
454                           GLuint indx[], const GLubyte mask[] );
455   /* Read a random array of CI pixels.
456    */
457
458   void (*ReadRGBAPixels)( const GLcontext *ctx,
459                           GLuint n, const GLint x[], const GLint y[],
460                           GLchan rgba[][4], const GLubyte mask[] );
461   /* Read a random array of RGBA pixels.
462    */
463
464
465
466   /***
467    *** For supporting hardware Z buffers:
468    *** Either ALL or NONE of these functions must be implemented!
469    *** NOTE that Each depth value is a 32-bit GLuint.  If the depth
470    *** buffer is less than 32 bits deep then the extra upperbits are zero.
471    ***/
472
473   void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
474                           const GLdepth depth[], const GLubyte mask[] );
475   /* Write a horizontal span of values into the depth buffer.  Only write
476    * depth[i] value if mask[i] is nonzero.
477    */
478
479   void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
480                          GLdepth depth[] );
481   /* Read a horizontal span of values from the depth buffer.
482    */
483
484
485   void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
486                             const GLint x[], const GLint y[],
487                             const GLdepth depth[], const GLubyte mask[] );
488   /* Write an array of randomly positioned depth values into the
489    * depth buffer.  Only write depth[i] value if mask[i] is nonzero.
490    */
491
492   void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
493                            const GLint x[], const GLint y[],
494                            GLdepth depth[] );
495   /* Read an array of randomly positioned depth values from the depth buffer.
496    */
497
498
499
500   /***
501    *** For supporting hardware stencil buffers:
502    *** Either ALL or NONE of these functions must be implemented!
503    ***/
504
505   void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
506                             const GLstencil stencil[], const GLubyte mask[] );
507   /* Write a horizontal span of stencil values into the stencil buffer.
508    * If mask is NULL, write all stencil values.
509    * Else, only write stencil[i] if mask[i] is non-zero.
510    */
511
512   void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
513                            GLstencil stencil[] );
514   /* Read a horizontal span of stencil values from the stencil buffer.
515    */
516
517   void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
518                               const GLint x[], const GLint y[],
519                               const GLstencil stencil[],
520                               const GLubyte mask[] );
521   /* Write an array of stencil values into the stencil buffer.
522    * If mask is NULL, write all stencil values.
523    * Else, only write stencil[i] if mask[i] is non-zero.
524    */
525
526   void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
527                              const GLint x[], const GLint y[],
528                              GLstencil stencil[] );
529   /* Read an array of stencil values from the stencil buffer.
530    */
531};
532
533
534
535#endif
536