FixedPointParameterType.cpp revision 258c6f5ae24de2e96ac0a0a842483bdc60b6b063
1/* <auto_header>
2 * <FILENAME>
3 *
4 * INTEL CONFIDENTIAL
5 * Copyright © 2011 Intel
6 * Corporation All Rights Reserved.
7 *
8 * The source code contained or described herein and all documents related to
9 * the source code ("Material") are owned by Intel Corporation or its suppliers
10 * or licensors. Title to the Material remains with Intel Corporation or its
11 * suppliers and licensors. The Material contains trade secrets and proprietary
12 * and confidential information of Intel or its suppliers and licensors. The
13 * Material is protected by worldwide copyright and trade secret laws and
14 * treaty provisions. No part of the Material may be used, copied, reproduced,
15 * modified, published, uploaded, posted, transmitted, distributed, or
16 * disclosed in any way without Intel’s prior express written permission.
17 *
18 * No license under any patent, copyright, trade secret or other intellectual
19 * property right is granted to or conferred upon you by disclosure or delivery
20 * of the Materials, either expressly, by implication, inducement, estoppel or
21 * otherwise. Any license under such intellectual property rights must be
22 * express and approved by Intel in writing.
23 *
24 *  AUTHOR: Patrick Benavoli (patrickx.benavoli@intel.com)
25 * CREATED: 2011-06-01
26 * UPDATED: 2011-07-27
27 *
28 *
29 * </auto_header>
30 */
31#include "FixedPointParameterType.h"
32#include <stdlib.h>
33#include <sstream>
34#include <iomanip>
35#include <assert.h>
36#include <math.h>
37#include "Parameter.h"
38#include "ParameterAccessContext.h"
39#include "ConfigurationAccessContext.h"
40
41#define base CParameterType
42
43CFixedPointParameterType::CFixedPointParameterType(const string& strName) : base(strName), _uiIntegral(0), _uiFractional(0)
44{
45}
46
47string CFixedPointParameterType::getKind() const
48{
49    return "FixedPointParameter";
50}
51
52// Element properties
53void CFixedPointParameterType::showProperties(string& strResult) const
54{
55    base::showProperties(strResult);
56
57    // Notation
58    strResult += "Notation: Q";
59    strResult += toString(_uiIntegral);
60    strResult += ".";
61    strResult += toString(_uiFractional);
62    strResult += "\n";
63}
64
65// XML Serialization value space handling
66// Value space handling for configuration import
67void CFixedPointParameterType::handleValueSpaceAttribute(CXmlElement& xmlConfigurableElementSettingsElement, CConfigurationAccessContext& configurationAccessContext) const
68{
69    // Direction?
70    if (!configurationAccessContext.serializeOut()) {
71
72        // Get Value space from XML
73        if (xmlConfigurableElementSettingsElement.hasAttribute("ValueSpace")) {
74
75            configurationAccessContext.setValueSpaceRaw(xmlConfigurableElementSettingsElement.getAttributeBoolean("ValueSpace", "Raw"));
76        } else {
77
78            configurationAccessContext.setValueSpaceRaw(false);
79        }
80    } else {
81        // Provide value space only if not the default one
82        if (configurationAccessContext.valueSpaceIsRaw()) {
83
84            xmlConfigurableElementSettingsElement.setAttributeString("ValueSpace", "Raw");
85        }
86    }
87}
88
89bool CFixedPointParameterType::fromXml(const CXmlElement& xmlElement, CXmlSerializingContext& serializingContext)
90{
91    // Size
92    uint32_t uiSizeInBits = xmlElement.getAttributeInteger("Size");
93
94    // Q notation
95    _uiIntegral = xmlElement.getAttributeInteger("Integral");
96    _uiFractional = xmlElement.getAttributeInteger("Fractional");
97
98    // Size vs. Q notation integrity check
99    if (uiSizeInBits < getUtilSizeInBits()) {
100
101        serializingContext.setError("Inconsistent Size vs. Q notation for " + getKind() + " " + xmlElement.getPath() + ": Summing (Integral + _uiFractional + 1) should not exceed given Size (" + xmlElement.getAttributeString("Size") + ")");
102
103        return false;
104    }
105
106    // Set the size
107    setSize(uiSizeInBits / 8);
108
109    return base::fromXml(xmlElement, serializingContext);
110}
111
112bool CFixedPointParameterType::toBlackboard(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
113{
114    // Hexa
115    bool bValueProvidedAsHexa = !strValue.compare(0, 2, "0x");
116
117    // Check data integrity
118    if (bValueProvidedAsHexa && !parameterAccessContext.valueSpaceIsRaw()) {
119
120        parameterAccessContext.setError("Hexadecimal values are not supported for " + getKind() + " when selected value space is real:");
121
122        return false;
123    }
124
125    int32_t iData;
126
127    if (parameterAccessContext.valueSpaceIsRaw()) {
128
129        // Get data in integer form
130        iData = strtol(strValue.c_str(), NULL, 0);
131
132        if (bValueProvidedAsHexa && isEncodable(iData)) {
133
134            // Sign extend
135            signExtend(iData);
136        }
137
138    } else {
139        double dData = strtod(strValue.c_str(), NULL);
140
141        // Do the conversion
142        iData = asInteger(dData);
143    }
144
145    // Check integrity
146    if (!isConsistent(iData)) {
147
148        // Illegal value provided
149        parameterAccessContext.setError(getOutOfRangeError(strValue, parameterAccessContext.valueSpaceIsRaw(), bValueProvidedAsHexa));
150
151        return false;
152    }
153
154    uiValue = iData;
155
156    return true;
157}
158
159bool CFixedPointParameterType::fromBlackboard(string& strValue, const uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
160{
161    int32_t iData = uiValue;
162
163    // Check consistency
164    assert(isEncodable(iData));
165
166    // Format
167    ostringstream strStream;
168
169    // Raw formatting?
170    if (parameterAccessContext.valueSpaceIsRaw()) {
171
172        // Hexa formatting?
173        if (parameterAccessContext.outputRawFormatIsHex()) {
174
175            strStream << "0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << (uint32_t)iData;
176        } else {
177
178            // Sign extend
179            signExtend(iData);
180
181            strStream << iData;
182        }
183    } else {
184
185        // Sign extend
186        signExtend(iData);
187
188        // Conversion
189        double dData = asDouble(iData);
190
191        // Set up the precision of the display and notation type
192        strStream << fixed << setprecision((_uiFractional + 1) * log10(2.0)) << dData;
193    }
194
195    strValue = strStream.str();
196
197    return true;
198}
199
200// Value access
201bool CFixedPointParameterType::toBlackboard(double dUserValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
202{
203    // Do the conversion
204    int32_t iData = asInteger(dUserValue);
205
206    // Check integrity
207    if (!isConsistent(iData)) {
208
209        // Illegal value provided
210        parameterAccessContext.setError("Value out of range");
211
212        return false;
213    }
214
215    uiValue = iData;
216
217    return true;
218}
219
220bool CFixedPointParameterType::fromBlackboard(double& dUserValue, uint32_t uiValue, CParameterAccessContext& parameterAccessContext) const
221{
222    (void)parameterAccessContext;
223
224    int32_t iData = uiValue;
225
226    // Check consistency
227    assert(isEncodable(iData));
228
229    // Sign extend
230    signExtend(iData);
231
232    dUserValue = asDouble(iData);
233
234    return true;
235}
236
237// Util size
238uint32_t CFixedPointParameterType::getUtilSizeInBits() const
239{
240    return _uiIntegral + _uiFractional + 1;
241}
242
243// Out of range error
244string CFixedPointParameterType::getOutOfRangeError(const string& strValue, bool bRawValueSpace, bool bHexaValue) const
245{
246    // Min/Max computation
247    int32_t iMax = (1L << (getSize() * 8 - 1)) - 1;
248    int32_t iMin = -iMax - 1;
249
250    ostringstream strStream;
251
252    strStream << "Value " << strValue << " standing out of admitted ";
253
254    if (!bRawValueSpace) {
255
256        strStream << "real range [" << (double)iMin / (1UL << _uiFractional) << ", "<< (double)iMax / (1UL << _uiFractional) << "]";
257    } else {
258
259        strStream << "raw range [";
260
261        if (bHexaValue) {
262
263            // Format Min
264            strStream << "0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << makeEncodable(iMin);
265            // Format Max
266            strStream << ", 0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << makeEncodable(iMax);
267
268        } else {
269
270            strStream << iMin << ", " << iMax;
271        }
272
273        strStream << "]";
274    }
275    strStream <<  " for " << getKind();
276
277    return strStream.str();
278}
279
280// Check data is consistent with available range, with respect to its sign
281bool CFixedPointParameterType::isConsistent(uint32_t uiData) const
282{
283    uint32_t uiShift = getSize() * 8;
284
285    if (uiShift == 8 * sizeof(uiData)) {
286        // Prevent inappropriate shifts
287        return true;
288    }
289
290    // Negative value?
291    bool bIsValueExpectedNegative = (uiData & (1 << (uiShift - 1))) != 0;
292
293    // Check high bits are clean
294    return bIsValueExpectedNegative ? !(~uiData >> uiShift) : !(uiData >> uiShift);
295}
296
297// Data conversion
298int32_t CFixedPointParameterType::asInteger(double dValue) const
299{
300    // Do the conversion
301    int32_t iData = (int32_t)(dValue * (1UL << _uiFractional) + 0.5F - (double)(dValue < 0));
302    // Left justify
303    iData <<= getSize() * 8 - getUtilSizeInBits();
304
305    return iData;
306}
307
308double CFixedPointParameterType::asDouble(int32_t iValue) const
309{
310    // Unjustify
311    iValue >>= getSize() * 8 - getUtilSizeInBits();
312    // Convert
313    return (double)iValue / (1UL << _uiFractional);
314}
315