1/*
2 *    Stack-less Just-In-Time compiler
3 *
4 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 *   1. Redistributions of source code must retain the above copyright notice, this list of
10 *      conditions and the following disclaimer.
11 *
12 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13 *      of conditions and the following disclaimer in the documentation and/or other materials
14 *      provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#ifndef _SLJIT_LIR_H_
28#define _SLJIT_LIR_H_
29
30/*
31   ------------------------------------------------------------------------
32    Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33   ------------------------------------------------------------------------
34
35   Short description
36    Advantages:
37      - The execution can be continued from any LIR instruction. In other
38        words, it is possible to jump to any label from anywhere, even from
39        a code fragment, which is compiled later, if both compiled code
40        shares the same context. See sljit_emit_enter for more details
41      - Supports self modifying code: target of (conditional) jump and call
42        instructions and some constant values can be dynamically modified
43        during runtime
44        - although it is not suggested to do it frequently
45        - can be used for inline caching: save an important value once
46          in the instruction stream
47        - since this feature limits the optimization possibilities, a
48          special flag must be passed at compile time when these
49          instructions are emitted
50      - A fixed stack space can be allocated for local variables
51      - The compiler is thread-safe
52      - The compiler is highly configurable through preprocessor macros.
53        You can disable unneeded features (multithreading in single
54        threaded applications), and you can use your own system functions
55        (including memory allocators). See sljitConfig.h
56    Disadvantages:
57      - No automatic register allocation, and temporary results are
58        not stored on the stack. (hence the name comes)
59    In practice:
60      - This approach is very effective for interpreters
61        - One of the saved registers typically points to a stack interface
62        - It can jump to any exception handler anytime (even if it belongs
63          to another function)
64        - Hot paths can be modified during runtime reflecting the changes
65          of the fastest execution path of the dynamic language
66        - SLJIT supports complex memory addressing modes
67        - mainly position and context independent code (except some cases)
68
69    For valgrind users:
70      - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71*/
72
73#if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74#include "sljitConfig.h"
75#endif
76
77/* The following header file defines useful macros for fine tuning
78sljit based code generators. They are listed in the beginning
79of sljitConfigInternal.h */
80
81#include "sljitConfigInternal.h"
82
83/* --------------------------------------------------------------------- */
84/*  Error codes                                                          */
85/* --------------------------------------------------------------------- */
86
87/* Indicates no error. */
88#define SLJIT_SUCCESS			0
89/* After the call of sljit_generate_code(), the error code of the compiler
90   is set to this value to avoid future sljit calls (in debug mode at least).
91   The complier should be freed after sljit_generate_code(). */
92#define SLJIT_ERR_COMPILED		1
93/* Cannot allocate non executable memory. */
94#define SLJIT_ERR_ALLOC_FAILED		2
95/* Cannot allocate executable memory.
96   Only for sljit_generate_code() */
97#define SLJIT_ERR_EX_ALLOC_FAILED	3
98/* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99#define SLJIT_ERR_UNSUPPORTED		4
100/* An ivalid argument is passed to any SLJIT function. */
101#define SLJIT_ERR_BAD_ARGUMENT		5
102
103/* --------------------------------------------------------------------- */
104/*  Registers                                                            */
105/* --------------------------------------------------------------------- */
106
107/*
108  Scratch (R) registers: registers whose may not preserve their values
109  across function calls.
110
111  Saved (S) registers: registers whose preserve their values across
112  function calls.
113
114  The scratch and saved register sets are overlap. The last scratch register
115  is the first saved register, the one before the last is the second saved
116  register, and so on.
117
118  If an architecture provides two scratch and three saved registers,
119  its scratch and saved register sets are the following:
120
121     R0   |  [S4]  |   R0 and S4 represent the same physical register
122     R1   |  [S3]  |   R1 and S3 represent the same physical register
123    [R2]  |   S2   |   R2 and S2 represent the same physical register
124    [R3]  |   S1   |   R3 and S1 represent the same physical register
125    [R4]  |   S0   |   R4 and S0 represent the same physical register
126
127  Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
128        SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
129
130  Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
131        and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
132        are virtual on x86-32. See below.
133
134  The purpose of this definition is convenience. Although a register
135  is either scratch register or saved register, SLJIT allows accessing
136  them from the other set. For example, four registers can be used as
137  scratch registers and the fifth one as saved register on the architecture
138  above. Of course the last two scratch registers (R2 and R3) from this
139  four will be saved on the stack, because they are defined as saved
140  registers in the application binary interface. Still R2 and R3 can be
141  used for referencing to these registers instead of S2 and S1, which
142  makes easier to write platform independent code. Scratch registers
143  can be saved registers in a similar way, but these extra saved
144  registers will not be preserved across function calls! Hence the
145  application must save them on those platforms, where the number of
146  saved registers is too low. This can be done by copy them onto
147  the stack and restore them after a function call.
148
149  Note: To emphasize that registers assigned to R2-R4 are saved
150        registers, they are enclosed by square brackets. S3-S4
151        are marked in a similar way.
152
153  Note: sljit_emit_enter and sljit_set_context defines whether a register
154        is S or R register. E.g: when 3 scratches and 1 saved is mapped
155        by sljit_emit_enter, the allowed register set will be: R0-R2 and
156        S0. Although S2 is mapped to the same position as R2, it does not
157        available in the current configuration. Furthermore the R3 (S1)
158        register does not available as well.
159*/
160
161/* When SLJIT_UNUSED is specified as destination, the result is discarded. */
162#define SLJIT_UNUSED		0
163
164/* Scratch registers. */
165#define SLJIT_R0	1
166#define SLJIT_R1	2
167#define SLJIT_R2	3
168/* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
169   are allocated on the stack). These registers are called virtual
170   and cannot be used for memory addressing (cannot be part of
171   any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
172   limitation on other CPUs. See sljit_get_register_index(). */
173#define SLJIT_R3	4
174#define SLJIT_R4	5
175#define SLJIT_R5	6
176#define SLJIT_R6	7
177#define SLJIT_R7	8
178#define SLJIT_R8	9
179#define SLJIT_R9	10
180/* All R registers provided by the architecture can be accessed by SLJIT_R(i)
181   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
182#define SLJIT_R(i)	(1 + (i))
183
184/* Saved registers. */
185#define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
186#define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
187#define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
188/* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
189   are allocated on the stack). These registers are called virtual
190   and cannot be used for memory addressing (cannot be part of
191   any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
192   limitation on other CPUs. See sljit_get_register_index(). */
193#define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
194#define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
195#define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
196#define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
197#define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
198#define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
199#define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
200/* All S registers provided by the architecture can be accessed by SLJIT_S(i)
201   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
202#define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
203
204/* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
205#define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
206
207/* The SLJIT_SP provides direct access to the linear stack space allocated by
208   sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
209   The immediate offset is extended by the relative stack offset automatically.
210   The sljit_get_local_base can be used to obtain the absolute offset. */
211#define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
212
213/* Return with machine word. */
214
215#define SLJIT_RETURN_REG	SLJIT_R0
216
217/* x86 prefers specific registers for special purposes. In case of shift
218   by register it supports only SLJIT_R2 for shift argument
219   (which is the src2 argument of sljit_emit_op2). If another register is
220   used, sljit must exchange data between registers which cause a minor
221   slowdown. Other architectures has no such limitation. */
222
223#define SLJIT_PREF_SHIFT_REG	SLJIT_R2
224
225/* --------------------------------------------------------------------- */
226/*  Floating point registers                                             */
227/* --------------------------------------------------------------------- */
228
229/* Each floating point register can store a 32 or a 64 bit precision
230   value. The FR and FS register sets are overlap in the same way as R
231   and S register sets. See above. */
232
233/* Note: SLJIT_UNUSED as destination is not valid for floating point
234   operations, since they cannot be used for setting flags. */
235
236/* Floating point scratch registers. */
237#define SLJIT_FR0	1
238#define SLJIT_FR1	2
239#define SLJIT_FR2	3
240#define SLJIT_FR3	4
241#define SLJIT_FR4	5
242#define SLJIT_FR5	6
243/* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
244   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
245#define SLJIT_FR(i)	(1 + (i))
246
247/* Floating point saved registers. */
248#define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
249#define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
250#define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
251#define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
252#define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
253#define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
254/* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256#define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257
258/* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259#define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260
261/* --------------------------------------------------------------------- */
262/*  Main structures and functions                                        */
263/* --------------------------------------------------------------------- */
264
265/*
266	The following structures are private, and can be changed in the
267	future. Keeping them here allows code inlining.
268*/
269
270struct sljit_memory_fragment {
271	struct sljit_memory_fragment *next;
272	sljit_uw used_size;
273	/* Must be aligned to sljit_sw. */
274	sljit_u8 memory[1];
275};
276
277struct sljit_label {
278	struct sljit_label *next;
279	sljit_uw addr;
280	/* The maximum size difference. */
281	sljit_uw size;
282};
283
284struct sljit_jump {
285	struct sljit_jump *next;
286	sljit_uw addr;
287	sljit_sw flags;
288	union {
289		sljit_uw target;
290		struct sljit_label* label;
291	} u;
292};
293
294struct sljit_const {
295	struct sljit_const *next;
296	sljit_uw addr;
297};
298
299struct sljit_compiler {
300	sljit_s32 error;
301	sljit_s32 options;
302
303	struct sljit_label *labels;
304	struct sljit_jump *jumps;
305	struct sljit_const *consts;
306	struct sljit_label *last_label;
307	struct sljit_jump *last_jump;
308	struct sljit_const *last_const;
309
310	void *allocator_data;
311	struct sljit_memory_fragment *buf;
312	struct sljit_memory_fragment *abuf;
313
314	/* Used scratch registers. */
315	sljit_s32 scratches;
316	/* Used saved registers. */
317	sljit_s32 saveds;
318	/* Used float scratch registers. */
319	sljit_s32 fscratches;
320	/* Used float saved registers. */
321	sljit_s32 fsaveds;
322	/* Local stack size. */
323	sljit_s32 local_size;
324	/* Code size. */
325	sljit_uw size;
326	/* For statistical purposes. */
327	sljit_uw executable_size;
328
329#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
330	sljit_s32 args;
331#endif
332
333#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
334	sljit_s32 mode32;
335#endif
336
337#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
338	sljit_s32 flags_saved;
339#endif
340
341#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
342	/* Constant pool handling. */
343	sljit_uw *cpool;
344	sljit_u8 *cpool_unique;
345	sljit_uw cpool_diff;
346	sljit_uw cpool_fill;
347	/* Other members. */
348	/* Contains pointer, "ldr pc, [...]" pairs. */
349	sljit_uw patches;
350#endif
351
352#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
353	/* Temporary fields. */
354	sljit_uw shift_imm;
355	sljit_s32 cache_arg;
356	sljit_sw cache_argw;
357#endif
358
359#if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
360	sljit_s32 cache_arg;
361	sljit_sw cache_argw;
362#endif
363
364#if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
365	sljit_s32 cache_arg;
366	sljit_sw cache_argw;
367#endif
368
369#if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
370	sljit_sw imm;
371	sljit_s32 cache_arg;
372	sljit_sw cache_argw;
373#endif
374
375#if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
376	sljit_s32 delay_slot;
377	sljit_s32 cache_arg;
378	sljit_sw cache_argw;
379#endif
380
381#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
382	sljit_s32 delay_slot;
383	sljit_s32 cache_arg;
384	sljit_sw cache_argw;
385#endif
386
387#if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
388	sljit_s32 cache_arg;
389	sljit_sw cache_argw;
390#endif
391
392#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
393	FILE* verbose;
394#endif
395
396#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
397		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
398	/* Local size passed to the functions. */
399	sljit_s32 logical_local_size;
400#endif
401
402#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
403		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
404		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
405	sljit_s32 skip_checks;
406#endif
407};
408
409/* --------------------------------------------------------------------- */
410/*  Main functions                                                       */
411/* --------------------------------------------------------------------- */
412
413/* Creates an sljit compiler. The allocator_data is required by some
414   custom memory managers. This pointer is passed to SLJIT_MALLOC
415   and SLJIT_FREE macros. Most allocators (including the default
416   one) ignores this value, and it is recommended to pass NULL
417   as a dummy value for allocator_data.
418
419   Returns NULL if failed. */
420SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
421
422/* Frees everything except the compiled machine code. */
423SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
424
425/* Returns the current error code. If an error is occurred, future sljit
426   calls which uses the same compiler argument returns early with the same
427   error code. Thus there is no need for checking the error after every
428   call, it is enough to do it before the code is compiled. Removing
429   these checks increases the performance of the compiling process. */
430static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
431
432/* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
433   if an error was detected before. After the error code is set
434   the compiler behaves as if the allocation failure happened
435   during an sljit function call. This can greatly simplify error
436   checking, since only the compiler status needs to be checked
437   after the compilation. */
438SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
439
440/*
441   Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
442   and <= 128 bytes on 64 bit architectures. The memory area is owned by the
443   compiler, and freed by sljit_free_compiler. The returned pointer is
444   sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
445   the compiling, and no need to worry about freeing them. The size is
446   enough to contain at most 16 pointers. If the size is outside of the range,
447   the function will return with NULL. However, this return value does not
448   indicate that there is no more memory (does not set the current error code
449   of the compiler to out-of-memory status).
450*/
451SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
452
453#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
454/* Passing NULL disables verbose. */
455SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
456#endif
457
458SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
459SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
460
461/*
462   After the machine code generation is finished we can retrieve the allocated
463   executable memory size, although this area may not be fully filled with
464   instructions depending on some optimizations. This function is useful only
465   for statistical purposes.
466
467   Before a successful code generation, this function returns with 0.
468*/
469static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
470
471/* Instruction generation. Returns with any error code. If there is no
472   error, they return with SLJIT_SUCCESS. */
473
474/*
475   The executable code is a function call from the viewpoint of the C
476   language. The function calls must obey to the ABI (Application
477   Binary Interface) of the platform, which specify the purpose of
478   all machine registers and stack handling among other things. The
479   sljit_emit_enter function emits the necessary instructions for
480   setting up a new context for the executable code and moves function
481   arguments to the saved registers. Furthermore the options argument
482   can be used to pass configuration options to the compiler. The
483   available options are listed before sljit_emit_enter.
484
485   The number of sljit_sw arguments passed to the generated function
486   are specified in the "args" parameter. The number of arguments must
487   be less than or equal to 3. The first argument goes to SLJIT_S0,
488   the second goes to SLJIT_S1 and so on. The register set used by
489   the function must be declared as well. The number of scratch and
490   saved registers used by the function must be passed to sljit_emit_enter.
491   Only R registers between R0 and "scratches" argument can be used
492   later. E.g. if "scratches" is set to 2, the register set will be
493   limited to R0 and R1. The S registers and the floating point
494   registers ("fscratches" and "fsaveds") are specified in a similar
495   way. The sljit_emit_enter is also capable of allocating a stack
496   space for local variables. The "local_size" argument contains the
497   size in bytes of this local area and its staring address is stored
498   in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
499   SLJIT_SP + local_size (exclusive) can be modified freely until
500   the function returns. The stack space is not initialized.
501
502   Note: the following conditions must met:
503         0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
504         0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
505         scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
506         0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
507         0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
508         fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
509
510   Note: every call of sljit_emit_enter and sljit_set_context
511         overwrites the previous context.
512*/
513
514/* The absolute address returned by sljit_get_local_base with
515offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
516#define SLJIT_DOUBLE_ALIGNMENT 0x00000001
517
518/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
519#define SLJIT_MAX_LOCAL_SIZE	65536
520
521SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
522	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
523	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
524
525/* The machine code has a context (which contains the local stack space size,
526   number of used registers, etc.) which initialized by sljit_emit_enter. Several
527   functions (like sljit_emit_return) requres this context to be able to generate
528   the appropriate code. However, some code fragments (like inline cache) may have
529   no normal entry point so their context is unknown for the compiler. Their context
530   can be provided to the compiler by the sljit_set_context function.
531
532   Note: every call of sljit_emit_enter and sljit_set_context overwrites
533         the previous context. */
534
535SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
536	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
537	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
538
539/* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
540   function does not return with anything or any opcode between SLJIT_MOV and
541   SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
542   is SLJIT_UNUSED, otherwise see below the description about source and
543   destination arguments. */
544
545SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
546	sljit_s32 src, sljit_sw srcw);
547
548/* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
549   even the stack frame is passed to the callee. The return address is preserved in
550   dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
551   is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
552
553/* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
554   instructions are needed. Excellent for small uility functions, where saving registers
555   and setting up a new stack frame would cost too much performance. However, it is still
556   possible to return to the address of the caller (or anywhere else). */
557
558/* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
559
560/* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
561   since many architectures do clever branch prediction on call / return instruction pairs. */
562
563SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
564SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
565
566/*
567   Source and destination values for arithmetical instructions
568    imm              - a simple immediate value (cannot be used as a destination)
569    reg              - any of the registers (immediate argument must be 0)
570    [imm]            - absolute immediate memory address
571    [reg+imm]        - indirect memory address
572    [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
573                       useful for (byte, half, int, sljit_sw) array access
574                       (fully supported by both x86 and ARM architectures, and cheap operation on others)
575*/
576
577/*
578   IMPORATNT NOTE: memory access MUST be naturally aligned except
579                   SLJIT_UNALIGNED macro is defined and its value is 1.
580
581     length | alignment
582   ---------+-----------
583     byte   | 1 byte (any physical_address is accepted)
584     half   | 2 byte (physical_address & 0x1 == 0)
585     int    | 4 byte (physical_address & 0x3 == 0)
586     word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
587            | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
588    pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
589            | on 64 bit machines)
590
591   Note:   Different architectures have different addressing limitations.
592           A single instruction is enough for the following addressing
593           modes. Other adrressing modes are emulated by instruction
594           sequences. This information could help to improve those code
595           generators which focuses only a few architectures.
596
597   x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
598           [reg+(reg<<imm)] is supported
599           [imm], -2^32+1 <= imm <= 2^32-1 is supported
600           Write-back is not supported
601   arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
602                bytes, any halfs or floating point values)
603           [reg+(reg<<imm)] is supported
604           Write-back is supported
605   arm-t2: [reg+imm], -255 <= imm <= 4095
606           [reg+(reg<<imm)] is supported
607           Write back is supported only for [reg+imm], where -255 <= imm <= 255
608   ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
609                signed load on 64 bit requires immediates divisible by 4.
610                [reg+imm] is not supported for signed 8 bit values.
611           [reg+reg] is supported
612           Write-back is supported except for one instruction: 32 bit signed
613                load with [reg+imm] addressing mode on 64 bit.
614   mips:   [reg+imm], -65536 <= imm <= 65535
615   sparc:  [reg+imm], -4096 <= imm <= 4095
616           [reg+reg] is supported
617*/
618
619/* Register output: simply the name of the register.
620   For destination, you can use SLJIT_UNUSED as well. */
621#define SLJIT_MEM		0x80
622#define SLJIT_MEM0()		(SLJIT_MEM)
623#define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
624#define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
625#define SLJIT_IMM		0x40
626
627/* Set 32 bit operation mode (I) on 64 bit CPUs. This flag is ignored on 32
628   bit CPUs. When this flag is set for an arithmetic operation, only the
629   lower 32 bit of the input register(s) are used, and the CPU status flags
630   are set according to the 32 bit result. Although the higher 32 bit of
631   the input and the result registers are not defined by SLJIT, it might be
632   defined by the CPU architecture (e.g. MIPS). To satisfy these requirements
633   all source registers must be computed by operations where this flag is
634   also set. In other words 32 and 64 bit arithmetic operations cannot be
635   mixed. The only exception is SLJIT_IMOV and SLJIT_IMOVU whose source
636   register can hold any 32 or 64 bit value. This source register is
637   converted to a 32 bit compatible format. SLJIT does not generate any
638   instructions on certain CPUs (e.g. on x86 and ARM) if the source and
639   destination operands are the same registers. Affects sljit_emit_op0,
640   sljit_emit_op1 and sljit_emit_op2. */
641#define SLJIT_I32_OP		0x100
642
643/* F32 precision mode (SP). This flag is similar to SLJIT_I32_OP, just
644   it applies to floating point registers (it is even the same bit). When
645   this flag is passed, the CPU performs 32 bit floating point operations.
646   Similar to SLJIT_I32_OP, all register arguments must be computed by
647   floating point operations where this flag is also set. Affects
648   sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
649#define SLJIT_F32_OP		0x100
650
651/* Common CPU status flags for all architectures (x86, ARM, PPC)
652    - carry flag
653    - overflow flag
654    - zero flag
655    - negative/positive flag (depends on arc)
656   On mips, these flags are emulated by software. */
657
658/* By default, the instructions may, or may not set the CPU status flags.
659   Forcing to set or keep status flags can be done with the following flags: */
660
661/* Note: sljit tries to emit the minimum number of instructions. Using these
662   flags can increase them, so use them wisely to avoid unnecessary code generation. */
663
664/* Set Equal (Zero) status flag (E). */
665#define SLJIT_SET_E			0x0200
666/* Set unsigned status flag (U). */
667#define SLJIT_SET_U			0x0400
668/* Set signed status flag (S). */
669#define SLJIT_SET_S			0x0800
670/* Set signed overflow flag (O). */
671#define SLJIT_SET_O			0x1000
672/* Set carry flag (C).
673   Note: Kinda unsigned overflow, but behaves differently on various cpus. */
674#define SLJIT_SET_C			0x2000
675/* Do not modify the flags (K).
676   Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
677#define SLJIT_KEEP_FLAGS		0x4000
678
679/* Notes:
680     - you cannot postpone conditional jump instructions except if noted that
681       the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
682     - flag combinations: '|' means 'logical or'. */
683
684/* Starting index of opcodes for sljit_emit_op0. */
685#define SLJIT_OP0_BASE			0
686
687/* Flags: - (never set any flags)
688   Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
689         It falls back to SLJIT_NOP in those cases. */
690#define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
691/* Flags: - (never set any flags)
692   Note: may or may not cause an extra cycle wait
693         it can even decrease the runtime in a few cases. */
694#define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
695/* Flags: - (may destroy flags)
696   Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
697   Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
698#define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
699/* Flags: - (may destroy flags)
700   Signed multiplication of SLJIT_R0 and SLJIT_R1.
701   Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
702#define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
703/* Flags: I - (may destroy flags)
704   Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
705   The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
706   Note: if SLJIT_R1 is 0, the behaviour is undefined. */
707#define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
708#define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
709/* Flags: I - (may destroy flags)
710   Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
711   The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
712   Note: if SLJIT_R1 is 0, the behaviour is undefined.
713   Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
714         the behaviour is undefined. */
715#define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
716#define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
717/* Flags: I - (may destroy flags)
718   Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
719   The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
720   Note: if SLJIT_R1 is 0, the behaviour is undefined. */
721#define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
722#define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
723/* Flags: I - (may destroy flags)
724   Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
725   The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
726   Note: if SLJIT_R1 is 0, the behaviour is undefined.
727   Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
728         the behaviour is undefined. */
729#define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
730#define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
731
732SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
733
734/* Starting index of opcodes for sljit_emit_op1. */
735#define SLJIT_OP1_BASE			32
736
737/* Notes for MOV instructions:
738   U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
739       or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
740   UB = unsigned byte (8 bit)
741   SB = signed byte (8 bit)
742   UH = unsigned half (16 bit)
743   SH = signed half (16 bit)
744   UI = unsigned int (32 bit)
745   SI = signed int (32 bit)
746   P  = pointer (sljit_p) size */
747
748/* Flags: - (never set any flags) */
749#define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
750/* Flags: I - (never set any flags) */
751#define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
752#define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
753/* Flags: I - (never set any flags) */
754#define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
755#define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
756/* Flags: I - (never set any flags) */
757#define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
758#define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
759/* Flags: I - (never set any flags) */
760#define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
761#define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
762/* Flags: I - (never set any flags)
763   Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
764#define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
765/* Flags: I - (never set any flags)
766   Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
767#define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
768/* Flags: I - (never set any flags) */
769#define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
770/* Flags: - (never set any flags) */
771#define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
772/* Flags: - (never set any flags) */
773#define SLJIT_MOVU			(SLJIT_OP1_BASE + 8)
774/* Flags: I - (never set any flags) */
775#define SLJIT_MOVU_U8			(SLJIT_OP1_BASE + 9)
776#define SLJIT_MOVU32_U8			(SLJIT_MOVU_U8 | SLJIT_I32_OP)
777/* Flags: I - (never set any flags) */
778#define SLJIT_MOVU_S8			(SLJIT_OP1_BASE + 10)
779#define SLJIT_MOVU32_S8			(SLJIT_MOVU_S8 | SLJIT_I32_OP)
780/* Flags: I - (never set any flags) */
781#define SLJIT_MOVU_U16			(SLJIT_OP1_BASE + 11)
782#define SLJIT_MOVU32_U16			(SLJIT_MOVU_U16 | SLJIT_I32_OP)
783/* Flags: I - (never set any flags) */
784#define SLJIT_MOVU_S16			(SLJIT_OP1_BASE + 12)
785#define SLJIT_MOVU32_S16		(SLJIT_MOVU_S16 | SLJIT_I32_OP)
786/* Flags: I - (never set any flags)
787   Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
788#define SLJIT_MOVU_U32			(SLJIT_OP1_BASE + 13)
789/* Flags: I - (never set any flags)
790   Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
791#define SLJIT_MOVU_S32			(SLJIT_OP1_BASE + 14)
792/* Flags: I - (never set any flags) */
793#define SLJIT_MOVU32			(SLJIT_MOVU_S32 | SLJIT_I32_OP)
794/* Flags: - (never set any flags) */
795#define SLJIT_MOVU_P			(SLJIT_OP1_BASE + 15)
796/* Flags: I | E | K */
797#define SLJIT_NOT			(SLJIT_OP1_BASE + 16)
798#define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
799/* Flags: I | E | O | K */
800#define SLJIT_NEG			(SLJIT_OP1_BASE + 17)
801#define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
802/* Count leading zeroes
803   Flags: I | E | K
804   Important note! Sparc 32 does not support K flag, since
805   the required popc instruction is introduced only in sparc 64. */
806#define SLJIT_CLZ			(SLJIT_OP1_BASE + 18)
807#define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
808
809SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
810	sljit_s32 dst, sljit_sw dstw,
811	sljit_s32 src, sljit_sw srcw);
812
813/* Starting index of opcodes for sljit_emit_op2. */
814#define SLJIT_OP2_BASE			96
815
816/* Flags: I | E | O | C | K */
817#define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
818#define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
819/* Flags: I | C | K */
820#define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
821#define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
822/* Flags: I | E | U | S | O | C | K */
823#define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
824#define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
825/* Flags: I | C | K */
826#define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
827#define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
828/* Note: integer mul
829   Flags: I | O (see SLJIT_C_MUL_*) | K */
830#define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
831#define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
832/* Flags: I | E | K */
833#define SLJIT_AND			(SLJIT_OP2_BASE + 5)
834#define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
835/* Flags: I | E | K */
836#define SLJIT_OR			(SLJIT_OP2_BASE + 6)
837#define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
838/* Flags: I | E | K */
839#define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
840#define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
841/* Flags: I | E | K
842   Let bit_length be the length of the shift operation: 32 or 64.
843   If src2 is immediate, src2w is masked by (bit_length - 1).
844   Otherwise, if the content of src2 is outside the range from 0
845   to bit_length - 1, the result is undefined. */
846#define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
847#define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
848/* Flags: I | E | K
849   Let bit_length be the length of the shift operation: 32 or 64.
850   If src2 is immediate, src2w is masked by (bit_length - 1).
851   Otherwise, if the content of src2 is outside the range from 0
852   to bit_length - 1, the result is undefined. */
853#define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
854#define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
855/* Flags: I | E | K
856   Let bit_length be the length of the shift operation: 32 or 64.
857   If src2 is immediate, src2w is masked by (bit_length - 1).
858   Otherwise, if the content of src2 is outside the range from 0
859   to bit_length - 1, the result is undefined. */
860#define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
861#define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
862
863SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
864	sljit_s32 dst, sljit_sw dstw,
865	sljit_s32 src1, sljit_sw src1w,
866	sljit_s32 src2, sljit_sw src2w);
867
868/* Returns with non-zero if fpu is available. */
869
870SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void);
871
872/* Starting index of opcodes for sljit_emit_fop1. */
873#define SLJIT_FOP1_BASE			128
874
875/* Flags: SP - (never set any flags) */
876#define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
877#define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
878/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
879   SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
880   Rounding mode when the destination is W or I: round towards zero. */
881/* Flags: SP - (never set any flags) */
882#define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
883#define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
884/* Flags: SP - (never set any flags) */
885#define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
886#define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
887/* Flags: SP - (never set any flags) */
888#define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
889#define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
890/* Flags: SP - (never set any flags) */
891#define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
892#define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
893/* Flags: SP - (never set any flags) */
894#define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
895#define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
896/* Note: dst is the left and src is the right operand for SLJIT_CMPD.
897   Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
898         is set, the comparison result is unpredictable.
899   Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
900#define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
901#define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
902/* Flags: SP - (never set any flags) */
903#define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
904#define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
905/* Flags: SP - (never set any flags) */
906#define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
907#define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
908
909SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
910	sljit_s32 dst, sljit_sw dstw,
911	sljit_s32 src, sljit_sw srcw);
912
913/* Starting index of opcodes for sljit_emit_fop2. */
914#define SLJIT_FOP2_BASE			160
915
916/* Flags: SP - (never set any flags) */
917#define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
918#define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
919/* Flags: SP - (never set any flags) */
920#define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
921#define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
922/* Flags: SP - (never set any flags) */
923#define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
924#define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
925/* Flags: SP - (never set any flags) */
926#define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
927#define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
928
929SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
930	sljit_s32 dst, sljit_sw dstw,
931	sljit_s32 src1, sljit_sw src1w,
932	sljit_s32 src2, sljit_sw src2w);
933
934/* Label and jump instructions. */
935
936SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
937
938/* Invert (negate) conditional type: xor (^) with 0x1 */
939
940/* Integer comparison types. */
941#define SLJIT_EQUAL			0
942#define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
943#define SLJIT_ZERO			0
944#define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
945#define SLJIT_NOT_EQUAL			1
946#define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
947#define SLJIT_NOT_ZERO			1
948#define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
949
950#define SLJIT_LESS			2
951#define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
952#define SLJIT_GREATER_EQUAL		3
953#define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
954#define SLJIT_GREATER			4
955#define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
956#define SLJIT_LESS_EQUAL		5
957#define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
958#define SLJIT_SIG_LESS			6
959#define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
960#define SLJIT_SIG_GREATER_EQUAL		7
961#define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
962#define SLJIT_SIG_GREATER		8
963#define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
964#define SLJIT_SIG_LESS_EQUAL		9
965#define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
966
967#define SLJIT_OVERFLOW			10
968#define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
969#define SLJIT_NOT_OVERFLOW		11
970#define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
971
972#define SLJIT_MUL_OVERFLOW		12
973#define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
974#define SLJIT_MUL_NOT_OVERFLOW		13
975#define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
976
977/* Floating point comparison types. */
978#define SLJIT_EQUAL_F64			14
979#define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
980#define SLJIT_NOT_EQUAL_F64		15
981#define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
982#define SLJIT_LESS_F64			16
983#define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
984#define SLJIT_GREATER_EQUAL_F64		17
985#define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
986#define SLJIT_GREATER_F64		18
987#define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
988#define SLJIT_LESS_EQUAL_F64		19
989#define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
990#define SLJIT_UNORDERED_F64		20
991#define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
992#define SLJIT_ORDERED_F64		21
993#define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
994
995/* Unconditional jump types. */
996#define SLJIT_JUMP			22
997#define SLJIT_FAST_CALL			23
998#define SLJIT_CALL0			24
999#define SLJIT_CALL1			25
1000#define SLJIT_CALL2			26
1001#define SLJIT_CALL3			27
1002
1003/* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1004
1005/* The target can be changed during runtime (see: sljit_set_jump_addr). */
1006#define SLJIT_REWRITABLE_JUMP		0x1000
1007
1008/* Emit a jump instruction. The destination is not set, only the type of the jump.
1009    type must be between SLJIT_EQUAL and SLJIT_CALL3
1010    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1011   Flags: - (never set any flags) for both conditional and unconditional jumps.
1012   Flags: destroy all flags for calls. */
1013SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1014
1015/* Basic arithmetic comparison. In most architectures it is implemented as
1016   an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1017   appropriate flags) followed by a sljit_emit_jump. However some
1018   architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1019   It is suggested to use this comparison form when appropriate.
1020    type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1021    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1022   Flags: destroy flags. */
1023SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1024	sljit_s32 src1, sljit_sw src1w,
1025	sljit_s32 src2, sljit_sw src2w);
1026
1027/* Basic floating point comparison. In most architectures it is implemented as
1028   an SLJIT_FCMP operation (setting appropriate flags) followed by a
1029   sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1030   special optimizations here. It is suggested to use this comparison form
1031   when appropriate.
1032    type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1033    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1034   Flags: destroy flags.
1035   Note: if either operand is NaN, the behaviour is undefined for
1036         types up to SLJIT_S_LESS_EQUAL. */
1037SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1038	sljit_s32 src1, sljit_sw src1w,
1039	sljit_s32 src2, sljit_sw src2w);
1040
1041/* Set the destination of the jump to this label. */
1042SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1043/* Set the destination address of the jump to this label. */
1044SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1045
1046/* Call function or jump anywhere. Both direct and indirect form
1047    type must be between SLJIT_JUMP and SLJIT_CALL3
1048    Direct form: set src to SLJIT_IMM() and srcw to the address
1049    Indirect form: any other valid addressing mode
1050   Flags: - (never set any flags) for unconditional jumps.
1051   Flags: destroy all flags for calls. */
1052SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1053
1054/* Perform the operation using the conditional flags as the second argument.
1055   Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
1056   represented by the type is 1, if the condition represented by the type
1057   is fulfilled, and 0 otherwise.
1058
1059   If op == SLJIT_MOV, SLJIT_MOV_S32, SLJIT_MOV_U32:
1060     Set dst to the value represented by the type (0 or 1).
1061     Src must be SLJIT_UNUSED, and srcw must be 0
1062     Flags: - (never set any flags)
1063   If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1064     Performs the binary operation using src as the first, and the value
1065     represented by type as the second argument.
1066     Important note: only dst=src and dstw=srcw is supported at the moment!
1067     Flags: I | E | K
1068   Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1069SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1070	sljit_s32 dst, sljit_sw dstw,
1071	sljit_s32 src, sljit_sw srcw,
1072	sljit_s32 type);
1073
1074/* Copies the base address of SLJIT_SP + offset to dst.
1075   Flags: - (never set any flags) */
1076SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1077
1078/* The constant can be changed runtime (see: sljit_set_const)
1079   Flags: - (never set any flags) */
1080SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1081
1082/* After the code generation the address for label, jump and const instructions
1083   are computed. Since these structures are freed by sljit_free_compiler, the
1084   addresses must be preserved by the user program elsewere. */
1085static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1086static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1087static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1088
1089/* Only the address is required to rewrite the code. */
1090SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1091SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1092
1093/* --------------------------------------------------------------------- */
1094/*  Miscellaneous utility functions                                      */
1095/* --------------------------------------------------------------------- */
1096
1097#define SLJIT_MAJOR_VERSION	0
1098#define SLJIT_MINOR_VERSION	93
1099
1100/* Get the human readable name of the platform. Can be useful on platforms
1101   like ARM, where ARM and Thumb2 functions can be mixed, and
1102   it is useful to know the type of the code generator. */
1103SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1104
1105/* Portable helper function to get an offset of a member. */
1106#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1107
1108#if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1109/* This global lock is useful to compile common functions. */
1110SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1111SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1112#endif
1113
1114#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1115
1116/* The sljit_stack is a utiliy feature of sljit, which allocates a
1117   writable memory region between base (inclusive) and limit (exclusive).
1118   Both base and limit is a pointer, and base is always <= than limit.
1119   This feature uses the "address space reserve" feature
1120   of modern operating systems. Basically we don't need to allocate a
1121   huge memory block in one step for the worst case, we can start with
1122   a smaller chunk and extend it later. Since the address space is
1123   reserved, the data never copied to other regions, thus it is safe
1124   to store pointers here. */
1125
1126/* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1127   Note: stack growing should not happen in small steps: 4k, 16k or even
1128     bigger growth is better.
1129   Note: this structure may not be supported by all operating systems.
1130     Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1131     is not defined. */
1132
1133struct sljit_stack {
1134	/* User data, anything can be stored here.
1135	   Starting with the same value as base. */
1136	sljit_uw top;
1137	/* These members are read only. */
1138	sljit_uw base;
1139	sljit_uw limit;
1140	sljit_uw max_limit;
1141};
1142
1143/* Returns NULL if unsuccessful.
1144   Note: limit and max_limit contains the size for stack allocation.
1145   Note: the top field is initialized to base.
1146   Note: see sljit_create_compiler for the explanation of allocator_data. */
1147SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
1148SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1149
1150/* Can be used to increase (allocate) or decrease (free) the memory area.
1151   Returns with a non-zero value if unsuccessful. If new_limit is greater than
1152   max_limit, it will fail. It is very easy to implement a stack data structure,
1153   since the growth ratio can be added to the current limit, and sljit_stack_resize
1154   will do all the necessary checks. The fields of the stack are not changed if
1155   sljit_stack_resize fails. */
1156SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
1157
1158#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1159
1160#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1161
1162/* Get the entry address of a given function. */
1163#define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
1164
1165#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1166
1167/* All JIT related code should be placed in the same context (library, binary, etc.). */
1168
1169#define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
1170
1171/* For powerpc64, the function pointers point to a context descriptor. */
1172struct sljit_function_context {
1173	sljit_sw addr;
1174	sljit_sw r2;
1175	sljit_sw r11;
1176};
1177
1178/* Fill the context arguments using the addr and the function.
1179   If func_ptr is NULL, it will not be set to the address of context
1180   If addr is NULL, the function address also comes from the func pointer. */
1181SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1182
1183#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1184
1185/* --------------------------------------------------------------------- */
1186/*  CPU specific functions                                               */
1187/* --------------------------------------------------------------------- */
1188
1189/* The following function is a helper function for sljit_emit_op_custom.
1190   It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1191   SLJIT_S and SLJIT_SP registers.
1192
1193   Note: it returns with -1 for virtual registers (only on x86-32). */
1194
1195SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1196
1197/* The following function is a helper function for sljit_emit_op_custom.
1198   It returns with the real machine register index of any SLJIT_FLOAT register.
1199
1200   Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1201
1202SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1203
1204/* Any instruction can be inserted into the instruction stream by
1205   sljit_emit_op_custom. It has a similar purpose as inline assembly.
1206   The size parameter must match to the instruction size of the target
1207   architecture:
1208
1209         x86: 0 < size <= 15. The instruction argument can be byte aligned.
1210      Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1211              if size == 4, the instruction argument must be 4 byte aligned.
1212   Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1213
1214SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1215	void *instruction, sljit_s32 size);
1216
1217#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
1218
1219/* Returns with non-zero if sse2 is available. */
1220
1221SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_sse2_available(void);
1222
1223/* Returns with non-zero if cmov instruction is available. */
1224
1225SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_cmov_available(void);
1226
1227/* Emit a conditional mov instruction on x86 CPUs. This instruction
1228   moves src to destination, if the condition is satisfied. Unlike
1229   other arithmetic instructions, destination must be a register.
1230   Before such instructions are emitted, cmov support should be
1231   checked by sljit_x86_is_cmov_available function.
1232    type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
1233    dst_reg must be a valid register and it can be combined
1234      with SLJIT_I32_OP to perform 32 bit arithmetic
1235   Flags: I - (never set any flags)
1236 */
1237
1238SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_emit_cmov(struct sljit_compiler *compiler,
1239	sljit_s32 type,
1240	sljit_s32 dst_reg,
1241	sljit_s32 src, sljit_sw srcw);
1242
1243#endif
1244
1245#endif /* _SLJIT_LIR_H_ */
1246