SkConvolver.cpp revision b726df472bb996aaab9ea0e62568208599385a1c
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "SkConvolver.h"
6#include "SkSize.h"
7#include "SkTypes.h"
8
9namespace {
10
11    // Converts the argument to an 8-bit unsigned value by clamping to the range
12    // 0-255.
13    inline unsigned char ClampTo8(int a) {
14        if (static_cast<unsigned>(a) < 256) {
15            return a;  // Avoid the extra check in the common case.
16        }
17        if (a < 0) {
18            return 0;
19        }
20        return 255;
21    }
22
23    // Stores a list of rows in a circular buffer. The usage is you write into it
24    // by calling AdvanceRow. It will keep track of which row in the buffer it
25    // should use next, and the total number of rows added.
26    class CircularRowBuffer {
27    public:
28        // The number of pixels in each row is given in |sourceRowPixelWidth|.
29        // The maximum number of rows needed in the buffer is |maxYFilterSize|
30        // (we only need to store enough rows for the biggest filter).
31        //
32        // We use the |firstInputRow| to compute the coordinates of all of the
33        // following rows returned by Advance().
34        CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize,
35                          int firstInputRow)
36            : fRowByteWidth(destRowPixelWidth * 4),
37              fNumRows(maxYFilterSize),
38              fNextRow(0),
39              fNextRowCoordinate(firstInputRow) {
40            fBuffer.reset(fRowByteWidth * maxYFilterSize);
41            fRowAddresses.reset(fNumRows);
42        }
43
44        // Moves to the next row in the buffer, returning a pointer to the beginning
45        // of it.
46        unsigned char* advanceRow() {
47            unsigned char* row = &fBuffer[fNextRow * fRowByteWidth];
48            fNextRowCoordinate++;
49
50            // Set the pointer to the next row to use, wrapping around if necessary.
51            fNextRow++;
52            if (fNextRow == fNumRows) {
53                fNextRow = 0;
54            }
55            return row;
56        }
57
58        // Returns a pointer to an "unrolled" array of rows. These rows will start
59        // at the y coordinate placed into |*firstRowIndex| and will continue in
60        // order for the maximum number of rows in this circular buffer.
61        //
62        // The |firstRowIndex_| may be negative. This means the circular buffer
63        // starts before the top of the image (it hasn't been filled yet).
64        unsigned char* const* GetRowAddresses(int* firstRowIndex) {
65            // Example for a 4-element circular buffer holding coords 6-9.
66            //   Row 0   Coord 8
67            //   Row 1   Coord 9
68            //   Row 2   Coord 6  <- fNextRow = 2, fNextRowCoordinate = 10.
69            //   Row 3   Coord 7
70            //
71            // The "next" row is also the first (lowest) coordinate. This computation
72            // may yield a negative value, but that's OK, the math will work out
73            // since the user of this buffer will compute the offset relative
74            // to the firstRowIndex and the negative rows will never be used.
75            *firstRowIndex = fNextRowCoordinate - fNumRows;
76
77            int curRow = fNextRow;
78            for (int i = 0; i < fNumRows; i++) {
79                fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth];
80
81                // Advance to the next row, wrapping if necessary.
82                curRow++;
83                if (curRow == fNumRows) {
84                    curRow = 0;
85                }
86            }
87            return &fRowAddresses[0];
88        }
89
90    private:
91        // The buffer storing the rows. They are packed, each one fRowByteWidth.
92        SkTArray<unsigned char> fBuffer;
93
94        // Number of bytes per row in the |buffer|.
95        int fRowByteWidth;
96
97        // The number of rows available in the buffer.
98        int fNumRows;
99
100        // The next row index we should write into. This wraps around as the
101        // circular buffer is used.
102        int fNextRow;
103
104        // The y coordinate of the |fNextRow|. This is incremented each time a
105        // new row is appended and does not wrap.
106        int fNextRowCoordinate;
107
108        // Buffer used by GetRowAddresses().
109        SkTArray<unsigned char*> fRowAddresses;
110    };
111
112// Convolves horizontally along a single row. The row data is given in
113// |srcData| and continues for the numValues() of the filter.
114template<bool hasAlpha>
115    void ConvolveHorizontally(const unsigned char* srcData,
116                              const SkConvolutionFilter1D& filter,
117                              unsigned char* outRow) {
118        // Loop over each pixel on this row in the output image.
119        int numValues = filter.numValues();
120        for (int outX = 0; outX < numValues; outX++) {
121            // Get the filter that determines the current output pixel.
122            int filterOffset, filterLength;
123            const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
124                filter.FilterForValue(outX, &filterOffset, &filterLength);
125
126            // Compute the first pixel in this row that the filter affects. It will
127            // touch |filterLength| pixels (4 bytes each) after this.
128            const unsigned char* rowToFilter = &srcData[filterOffset * 4];
129
130            // Apply the filter to the row to get the destination pixel in |accum|.
131            int accum[4] = {0};
132            for (int filterX = 0; filterX < filterLength; filterX++) {
133                SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
134                accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
135                accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
136                accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
137                if (hasAlpha) {
138                    accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
139                }
140            }
141
142            // Bring this value back in range. All of the filter scaling factors
143            // are in fixed point with kShiftBits bits of fractional part.
144            accum[0] >>= SkConvolutionFilter1D::kShiftBits;
145            accum[1] >>= SkConvolutionFilter1D::kShiftBits;
146            accum[2] >>= SkConvolutionFilter1D::kShiftBits;
147            if (hasAlpha) {
148                accum[3] >>= SkConvolutionFilter1D::kShiftBits;
149            }
150
151            // Store the new pixel.
152            outRow[outX * 4 + 0] = ClampTo8(accum[0]);
153            outRow[outX * 4 + 1] = ClampTo8(accum[1]);
154            outRow[outX * 4 + 2] = ClampTo8(accum[2]);
155            if (hasAlpha) {
156                outRow[outX * 4 + 3] = ClampTo8(accum[3]);
157            }
158        }
159    }
160
161    // There's a bug somewhere here with GCC autovectorization (-ftree-vectorize) on 32 bit builds.
162    // Dropping to -O2 disables -ftree-vectorize.  GCC 4.6 needs noinline.  http://skbug.com/2575
163    #if defined(__i386) && SK_HAS_ATTRIBUTE(optimize) && defined(SK_RELEASE)
164        #define SK_MAYBE_DISABLE_VECTORIZATION __attribute__((optimize("O2"), noinline))
165    #else
166        #define SK_MAYBE_DISABLE_VECTORIZATION
167    #endif
168
169    SK_MAYBE_DISABLE_VECTORIZATION
170    static void ConvolveHorizontallyAlpha(const unsigned char* srcData,
171                                          const SkConvolutionFilter1D& filter,
172                                          unsigned char* outRow) {
173        return ConvolveHorizontally<true>(srcData, filter, outRow);
174    }
175
176    SK_MAYBE_DISABLE_VECTORIZATION
177    static void ConvolveHorizontallyNoAlpha(const unsigned char* srcData,
178                                            const SkConvolutionFilter1D& filter,
179                                            unsigned char* outRow) {
180        return ConvolveHorizontally<false>(srcData, filter, outRow);
181    }
182
183    #undef SK_MAYBE_DISABLE_VECTORIZATION
184
185
186// Does vertical convolution to produce one output row. The filter values and
187// length are given in the first two parameters. These are applied to each
188// of the rows pointed to in the |sourceDataRows| array, with each row
189// being |pixelWidth| wide.
190//
191// The output must have room for |pixelWidth * 4| bytes.
192template<bool hasAlpha>
193    void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
194                            int filterLength,
195                            unsigned char* const* sourceDataRows,
196                            int pixelWidth,
197                            unsigned char* outRow) {
198        // We go through each column in the output and do a vertical convolution,
199        // generating one output pixel each time.
200        for (int outX = 0; outX < pixelWidth; outX++) {
201            // Compute the number of bytes over in each row that the current column
202            // we're convolving starts at. The pixel will cover the next 4 bytes.
203            int byteOffset = outX * 4;
204
205            // Apply the filter to one column of pixels.
206            int accum[4] = {0};
207            for (int filterY = 0; filterY < filterLength; filterY++) {
208                SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
209                accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
210                accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
211                accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
212                if (hasAlpha) {
213                    accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
214                }
215            }
216
217            // Bring this value back in range. All of the filter scaling factors
218            // are in fixed point with kShiftBits bits of precision.
219            accum[0] >>= SkConvolutionFilter1D::kShiftBits;
220            accum[1] >>= SkConvolutionFilter1D::kShiftBits;
221            accum[2] >>= SkConvolutionFilter1D::kShiftBits;
222            if (hasAlpha) {
223                accum[3] >>= SkConvolutionFilter1D::kShiftBits;
224            }
225
226            // Store the new pixel.
227            outRow[byteOffset + 0] = ClampTo8(accum[0]);
228            outRow[byteOffset + 1] = ClampTo8(accum[1]);
229            outRow[byteOffset + 2] = ClampTo8(accum[2]);
230            if (hasAlpha) {
231                unsigned char alpha = ClampTo8(accum[3]);
232
233                // Make sure the alpha channel doesn't come out smaller than any of the
234                // color channels. We use premultipled alpha channels, so this should
235                // never happen, but rounding errors will cause this from time to time.
236                // These "impossible" colors will cause overflows (and hence random pixel
237                // values) when the resulting bitmap is drawn to the screen.
238                //
239                // We only need to do this when generating the final output row (here).
240                int maxColorChannel = SkTMax(outRow[byteOffset + 0],
241                                               SkTMax(outRow[byteOffset + 1],
242                                                      outRow[byteOffset + 2]));
243                if (alpha < maxColorChannel) {
244                    outRow[byteOffset + 3] = maxColorChannel;
245                } else {
246                    outRow[byteOffset + 3] = alpha;
247                }
248            } else {
249                // No alpha channel, the image is opaque.
250                outRow[byteOffset + 3] = 0xff;
251            }
252        }
253    }
254
255    void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
256                            int filterLength,
257                            unsigned char* const* sourceDataRows,
258                            int pixelWidth,
259                            unsigned char* outRow,
260                            bool sourceHasAlpha) {
261        if (sourceHasAlpha) {
262            ConvolveVertically<true>(filterValues, filterLength,
263                                     sourceDataRows, pixelWidth,
264                                     outRow);
265        } else {
266            ConvolveVertically<false>(filterValues, filterLength,
267                                      sourceDataRows, pixelWidth,
268                                      outRow);
269        }
270    }
271
272}  // namespace
273
274// SkConvolutionFilter1D ---------------------------------------------------------
275
276SkConvolutionFilter1D::SkConvolutionFilter1D()
277: fMaxFilter(0) {
278}
279
280SkConvolutionFilter1D::~SkConvolutionFilter1D() {
281}
282
283void SkConvolutionFilter1D::AddFilter(int filterOffset,
284                                      const float* filterValues,
285                                      int filterLength) {
286    SkASSERT(filterLength > 0);
287
288    SkTArray<ConvolutionFixed> fixedValues;
289    fixedValues.reset(filterLength);
290
291    for (int i = 0; i < filterLength; ++i) {
292        fixedValues.push_back(FloatToFixed(filterValues[i]));
293    }
294
295    AddFilter(filterOffset, &fixedValues[0], filterLength);
296}
297
298void SkConvolutionFilter1D::AddFilter(int filterOffset,
299                                      const ConvolutionFixed* filterValues,
300                                      int filterLength) {
301    // It is common for leading/trailing filter values to be zeros. In such
302    // cases it is beneficial to only store the central factors.
303    // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
304    // a 1080p image this optimization gives a ~10% speed improvement.
305    int filterSize = filterLength;
306    int firstNonZero = 0;
307    while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) {
308        firstNonZero++;
309    }
310
311    if (firstNonZero < filterLength) {
312        // Here we have at least one non-zero factor.
313        int lastNonZero = filterLength - 1;
314        while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) {
315            lastNonZero--;
316        }
317
318        filterOffset += firstNonZero;
319        filterLength = lastNonZero + 1 - firstNonZero;
320        SkASSERT(filterLength > 0);
321
322        for (int i = firstNonZero; i <= lastNonZero; i++) {
323            fFilterValues.push_back(filterValues[i]);
324        }
325    } else {
326        // Here all the factors were zeroes.
327        filterLength = 0;
328    }
329
330    FilterInstance instance;
331
332    // We pushed filterLength elements onto fFilterValues
333    instance.fDataLocation = (static_cast<int>(fFilterValues.count()) -
334                                               filterLength);
335    instance.fOffset = filterOffset;
336    instance.fTrimmedLength = filterLength;
337    instance.fLength = filterSize;
338    fFilters.push_back(instance);
339
340    fMaxFilter = SkTMax(fMaxFilter, filterLength);
341}
342
343const SkConvolutionFilter1D::ConvolutionFixed* SkConvolutionFilter1D::GetSingleFilter(
344                                        int* specifiedFilterlength,
345                                        int* filterOffset,
346                                        int* filterLength) const {
347    const FilterInstance& filter = fFilters[0];
348    *filterOffset = filter.fOffset;
349    *filterLength = filter.fTrimmedLength;
350    *specifiedFilterlength = filter.fLength;
351    if (filter.fTrimmedLength == 0) {
352        return NULL;
353    }
354
355    return &fFilterValues[filter.fDataLocation];
356}
357
358void BGRAConvolve2D(const unsigned char* sourceData,
359                    int sourceByteRowStride,
360                    bool sourceHasAlpha,
361                    const SkConvolutionFilter1D& filterX,
362                    const SkConvolutionFilter1D& filterY,
363                    int outputByteRowStride,
364                    unsigned char* output,
365                    const SkConvolutionProcs& convolveProcs,
366                    bool useSimdIfPossible) {
367
368    int maxYFilterSize = filterY.maxFilter();
369
370    // The next row in the input that we will generate a horizontally
371    // convolved row for. If the filter doesn't start at the beginning of the
372    // image (this is the case when we are only resizing a subset), then we
373    // don't want to generate any output rows before that. Compute the starting
374    // row for convolution as the first pixel for the first vertical filter.
375    int filterOffset, filterLength;
376    const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
377        filterY.FilterForValue(0, &filterOffset, &filterLength);
378    int nextXRow = filterOffset;
379
380    // We loop over each row in the input doing a horizontal convolution. This
381    // will result in a horizontally convolved image. We write the results into
382    // a circular buffer of convolved rows and do vertical convolution as rows
383    // are available. This prevents us from having to store the entire
384    // intermediate image and helps cache coherency.
385    // We will need four extra rows to allow horizontal convolution could be done
386    // simultaneously. We also pad each row in row buffer to be aligned-up to
387    // 16 bytes.
388    // TODO(jiesun): We do not use aligned load from row buffer in vertical
389    // convolution pass yet. Somehow Windows does not like it.
390    int rowBufferWidth = (filterX.numValues() + 15) & ~0xF;
391    int rowBufferHeight = maxYFilterSize +
392                          (convolveProcs.fConvolve4RowsHorizontally ? 4 : 0);
393    CircularRowBuffer rowBuffer(rowBufferWidth,
394                                rowBufferHeight,
395                                filterOffset);
396
397    // Loop over every possible output row, processing just enough horizontal
398    // convolutions to run each subsequent vertical convolution.
399    SkASSERT(outputByteRowStride >= filterX.numValues() * 4);
400    int numOutputRows = filterY.numValues();
401
402    // We need to check which is the last line to convolve before we advance 4
403    // lines in one iteration.
404    int lastFilterOffset, lastFilterLength;
405
406    // SSE2 can access up to 3 extra pixels past the end of the
407    // buffer. At the bottom of the image, we have to be careful
408    // not to access data past the end of the buffer. Normally
409    // we fall back to the C++ implementation for the last row.
410    // If the last row is less than 3 pixels wide, we may have to fall
411    // back to the C++ version for more rows. Compute how many
412    // rows we need to avoid the SSE implementation for here.
413    filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset,
414                           &lastFilterLength);
415    int avoidSimdRows = 1 + convolveProcs.fExtraHorizontalReads /
416        (lastFilterOffset + lastFilterLength);
417
418    filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset,
419                           &lastFilterLength);
420
421    for (int outY = 0; outY < numOutputRows; outY++) {
422        filterValues = filterY.FilterForValue(outY,
423                                              &filterOffset, &filterLength);
424
425        // Generate output rows until we have enough to run the current filter.
426        while (nextXRow < filterOffset + filterLength) {
427            if (convolveProcs.fConvolve4RowsHorizontally &&
428                nextXRow + 3 < lastFilterOffset + lastFilterLength -
429                avoidSimdRows) {
430                const unsigned char* src[4];
431                unsigned char* outRow[4];
432                for (int i = 0; i < 4; ++i) {
433                    src[i] = &sourceData[(uint64_t)(nextXRow + i) * sourceByteRowStride];
434                    outRow[i] = rowBuffer.advanceRow();
435                }
436                convolveProcs.fConvolve4RowsHorizontally(src, filterX, outRow);
437                nextXRow += 4;
438            } else {
439                // Check if we need to avoid SSE2 for this row.
440                if (convolveProcs.fConvolveHorizontally &&
441                    nextXRow < lastFilterOffset + lastFilterLength -
442                    avoidSimdRows) {
443                    convolveProcs.fConvolveHorizontally(
444                        &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
445                        filterX, rowBuffer.advanceRow(), sourceHasAlpha);
446                } else {
447                    if (sourceHasAlpha) {
448                        ConvolveHorizontallyAlpha(
449                            &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
450                            filterX, rowBuffer.advanceRow());
451                    } else {
452                        ConvolveHorizontallyNoAlpha(
453                            &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
454                            filterX, rowBuffer.advanceRow());
455                    }
456                }
457                nextXRow++;
458            }
459        }
460
461        // Compute where in the output image this row of final data will go.
462        unsigned char* curOutputRow = &output[outY * outputByteRowStride];
463
464        // Get the list of rows that the circular buffer has, in order.
465        int firstRowInCircularBuffer;
466        unsigned char* const* rowsToConvolve =
467            rowBuffer.GetRowAddresses(&firstRowInCircularBuffer);
468
469        // Now compute the start of the subset of those rows that the filter
470        // needs.
471        unsigned char* const* firstRowForFilter =
472            &rowsToConvolve[filterOffset - firstRowInCircularBuffer];
473
474        if (convolveProcs.fConvolveVertically) {
475            convolveProcs.fConvolveVertically(filterValues, filterLength,
476                                               firstRowForFilter,
477                                               filterX.numValues(), curOutputRow,
478                                               sourceHasAlpha);
479        } else {
480            ConvolveVertically(filterValues, filterLength,
481                               firstRowForFilter,
482                               filterX.numValues(), curOutputRow,
483                               sourceHasAlpha);
484        }
485    }
486}
487