SkGeometry.cpp revision 8f4d2306fa866a26f9448048ff63f692b2ba43aa
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkGeometry.h"
11#include "Sk64.h"
12#include "SkMatrix.h"
13
14bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
15    if (ambiguous) {
16        *ambiguous = false;
17    }
18    // Determine quick discards.
19    // Consider query line going exactly through point 0 to not
20    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
21    if (pt.fY == pts[0].fY) {
22        if (ambiguous) {
23            *ambiguous = true;
24        }
25        return false;
26    }
27    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
28        return false;
29    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
30        return false;
31    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
32        return false;
33    // Determine degenerate cases
34    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
35        return false;
36    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
37        // We've already determined the query point lies within the
38        // vertical range of the line segment.
39        if (pt.fX <= pts[0].fX) {
40            if (ambiguous) {
41                *ambiguous = (pt.fY == pts[1].fY);
42            }
43            return true;
44        }
45        return false;
46    }
47    // Ambiguity check
48    if (pt.fY == pts[1].fY) {
49        if (pt.fX <= pts[1].fX) {
50            if (ambiguous) {
51                *ambiguous = true;
52            }
53            return true;
54        }
55        return false;
56    }
57    // Full line segment evaluation
58    SkScalar delta_y = pts[1].fY - pts[0].fY;
59    SkScalar delta_x = pts[1].fX - pts[0].fX;
60    SkScalar slope = SkScalarDiv(delta_y, delta_x);
61    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
62    // Solve for x coordinate at y = pt.fY
63    SkScalar x = SkScalarDiv(pt.fY - b, slope);
64    return pt.fX <= x;
65}
66
67/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
68    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
69    May also introduce overflow of fixed when we compute our setup.
70*/
71//    #define DIRECT_EVAL_OF_POLYNOMIALS
72
73////////////////////////////////////////////////////////////////////////
74
75static int is_not_monotonic(float a, float b, float c) {
76    float ab = a - b;
77    float bc = b - c;
78    if (ab < 0) {
79        bc = -bc;
80    }
81    return ab == 0 || bc < 0;
82}
83
84////////////////////////////////////////////////////////////////////////
85
86static bool is_unit_interval(SkScalar x)
87{
88    return x > 0 && x < SK_Scalar1;
89}
90
91static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
92{
93    SkASSERT(ratio);
94
95    if (numer < 0)
96    {
97        numer = -numer;
98        denom = -denom;
99    }
100
101    if (denom == 0 || numer == 0 || numer >= denom)
102        return 0;
103
104    SkScalar r = SkScalarDiv(numer, denom);
105    if (SkScalarIsNaN(r)) {
106        return 0;
107    }
108    SkASSERT(r >= 0 && r < SK_Scalar1);
109    if (r == 0) // catch underflow if numer <<<< denom
110        return 0;
111    *ratio = r;
112    return 1;
113}
114
115/** From Numerical Recipes in C.
116
117    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
118    x1 = Q / A
119    x2 = C / Q
120*/
121int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
122{
123    SkASSERT(roots);
124
125    if (A == 0)
126        return valid_unit_divide(-C, B, roots);
127
128    SkScalar* r = roots;
129
130    float R = B*B - 4*A*C;
131    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
132        return 0;
133    }
134    R = sk_float_sqrt(R);
135
136    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
137    r += valid_unit_divide(Q, A, r);
138    r += valid_unit_divide(C, Q, r);
139    if (r - roots == 2)
140    {
141        if (roots[0] > roots[1])
142            SkTSwap<SkScalar>(roots[0], roots[1]);
143        else if (roots[0] == roots[1])  // nearly-equal?
144            r -= 1; // skip the double root
145    }
146    return (int)(r - roots);
147}
148
149///////////////////////////////////////////////////////////////////////////////
150///////////////////////////////////////////////////////////////////////////////
151
152static SkScalar eval_quad(const SkScalar src[], SkScalar t)
153{
154    SkASSERT(src);
155    SkASSERT(t >= 0 && t <= SK_Scalar1);
156
157#ifdef DIRECT_EVAL_OF_POLYNOMIALS
158    SkScalar    C = src[0];
159    SkScalar    A = src[4] - 2 * src[2] + C;
160    SkScalar    B = 2 * (src[2] - C);
161    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
162#else
163    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
164    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
165    return SkScalarInterp(ab, bc, t);
166#endif
167}
168
169static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
170{
171    SkScalar A = src[4] - 2 * src[2] + src[0];
172    SkScalar B = src[2] - src[0];
173
174    return 2 * SkScalarMulAdd(A, t, B);
175}
176
177static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
178{
179    SkScalar A = src[4] - 2 * src[2] + src[0];
180    SkScalar B = src[2] - src[0];
181    return A + 2 * B;
182}
183
184void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
185{
186    SkASSERT(src);
187    SkASSERT(t >= 0 && t <= SK_Scalar1);
188
189    if (pt)
190        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
191    if (tangent)
192        tangent->set(eval_quad_derivative(&src[0].fX, t),
193                     eval_quad_derivative(&src[0].fY, t));
194}
195
196void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
197{
198    SkASSERT(src);
199
200    if (pt)
201    {
202        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
203        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
204        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
205        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
206        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
207    }
208    if (tangent)
209        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
210                     eval_quad_derivative_at_half(&src[0].fY));
211}
212
213static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
214{
215    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
216    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
217
218    dst[0] = src[0];
219    dst[2] = ab;
220    dst[4] = SkScalarInterp(ab, bc, t);
221    dst[6] = bc;
222    dst[8] = src[4];
223}
224
225void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
226{
227    SkASSERT(t > 0 && t < SK_Scalar1);
228
229    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
230    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
231}
232
233void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
234{
235    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
236    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
237    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
238    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
239
240    dst[0] = src[0];
241    dst[1].set(x01, y01);
242    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
243    dst[3].set(x12, y12);
244    dst[4] = src[2];
245}
246
247/** Quad'(t) = At + B, where
248    A = 2(a - 2b + c)
249    B = 2(b - a)
250    Solve for t, only if it fits between 0 < t < 1
251*/
252int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
253{
254    /*  At + B == 0
255        t = -B / A
256    */
257    return valid_unit_divide(a - b, a - b - b + c, tValue);
258}
259
260static inline void flatten_double_quad_extrema(SkScalar coords[14])
261{
262    coords[2] = coords[6] = coords[4];
263}
264
265/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
266 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
267 */
268int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
269{
270    SkASSERT(src);
271    SkASSERT(dst);
272
273#if 0
274    static bool once = true;
275    if (once)
276    {
277        once = false;
278        SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
279        SkPoint d[6];
280
281        int n = SkChopQuadAtYExtrema(s, d);
282        SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
283    }
284#endif
285
286    SkScalar a = src[0].fY;
287    SkScalar b = src[1].fY;
288    SkScalar c = src[2].fY;
289
290    if (is_not_monotonic(a, b, c))
291    {
292        SkScalar    tValue;
293        if (valid_unit_divide(a - b, a - b - b + c, &tValue))
294        {
295            SkChopQuadAt(src, dst, tValue);
296            flatten_double_quad_extrema(&dst[0].fY);
297            return 1;
298        }
299        // if we get here, we need to force dst to be monotonic, even though
300        // we couldn't compute a unit_divide value (probably underflow).
301        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
302    }
303    dst[0].set(src[0].fX, a);
304    dst[1].set(src[1].fX, b);
305    dst[2].set(src[2].fX, c);
306    return 0;
307}
308
309/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
310    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
311 */
312int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
313{
314    SkASSERT(src);
315    SkASSERT(dst);
316
317    SkScalar a = src[0].fX;
318    SkScalar b = src[1].fX;
319    SkScalar c = src[2].fX;
320
321    if (is_not_monotonic(a, b, c)) {
322        SkScalar tValue;
323        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
324            SkChopQuadAt(src, dst, tValue);
325            flatten_double_quad_extrema(&dst[0].fX);
326            return 1;
327        }
328        // if we get here, we need to force dst to be monotonic, even though
329        // we couldn't compute a unit_divide value (probably underflow).
330        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
331    }
332    dst[0].set(a, src[0].fY);
333    dst[1].set(b, src[1].fY);
334    dst[2].set(c, src[2].fY);
335    return 0;
336}
337
338//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
339//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
340//  F''(t)  = 2 (a - 2b + c)
341//
342//  A = 2 (b - a)
343//  B = 2 (a - 2b + c)
344//
345//  Maximum curvature for a quadratic means solving
346//  Fx' Fx'' + Fy' Fy'' = 0
347//
348//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
349//
350float SkFindQuadMaxCurvature(const SkPoint src[3]) {
351    SkScalar    Ax = src[1].fX - src[0].fX;
352    SkScalar    Ay = src[1].fY - src[0].fY;
353    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
354    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
355    SkScalar    t = 0;  // 0 means don't chop
356
357    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
358    return t;
359}
360
361int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
362{
363    SkScalar t = SkFindQuadMaxCurvature(src);
364    if (t == 0) {
365        memcpy(dst, src, 3 * sizeof(SkPoint));
366        return 1;
367    } else {
368        SkChopQuadAt(src, dst, t);
369        return 2;
370    }
371}
372
373#define SK_ScalarTwoThirds  (0.666666666f)
374
375void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
376    const SkScalar scale = SK_ScalarTwoThirds;
377    dst[0] = src[0];
378    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
379               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
380    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
381               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
382    dst[3] = src[2];
383}
384
385////////////////////////////////////////////////////////////////////////////////////////
386///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
387////////////////////////////////////////////////////////////////////////////////////////
388
389static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
390{
391    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
392    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
393    coeff[2] = 3*(pt[2] - pt[0]);
394    coeff[3] = pt[0];
395}
396
397void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
398{
399    SkASSERT(pts);
400
401    if (cx)
402        get_cubic_coeff(&pts[0].fX, cx);
403    if (cy)
404        get_cubic_coeff(&pts[0].fY, cy);
405}
406
407static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
408{
409    SkASSERT(src);
410    SkASSERT(t >= 0 && t <= SK_Scalar1);
411
412    if (t == 0)
413        return src[0];
414
415#ifdef DIRECT_EVAL_OF_POLYNOMIALS
416    SkScalar D = src[0];
417    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
418    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
419    SkScalar C = 3*(src[2] - D);
420
421    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
422#else
423    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
424    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
425    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
426    SkScalar    abc = SkScalarInterp(ab, bc, t);
427    SkScalar    bcd = SkScalarInterp(bc, cd, t);
428    return SkScalarInterp(abc, bcd, t);
429#endif
430}
431
432/** return At^2 + Bt + C
433*/
434static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
435{
436    SkASSERT(t >= 0 && t <= SK_Scalar1);
437
438    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
439}
440
441static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
442{
443    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
444    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
445    SkScalar C = src[2] - src[0];
446
447    return eval_quadratic(A, B, C, t);
448}
449
450static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
451{
452    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
453    SkScalar B = src[4] - 2 * src[2] + src[0];
454
455    return SkScalarMulAdd(A, t, B);
456}
457
458void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
459{
460    SkASSERT(src);
461    SkASSERT(t >= 0 && t <= SK_Scalar1);
462
463    if (loc)
464        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
465    if (tangent)
466        tangent->set(eval_cubic_derivative(&src[0].fX, t),
467                     eval_cubic_derivative(&src[0].fY, t));
468    if (curvature)
469        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
470                       eval_cubic_2ndDerivative(&src[0].fY, t));
471}
472
473/** Cubic'(t) = At^2 + Bt + C, where
474    A = 3(-a + 3(b - c) + d)
475    B = 6(a - 2b + c)
476    C = 3(b - a)
477    Solve for t, keeping only those that fit betwee 0 < t < 1
478*/
479int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
480{
481    // we divide A,B,C by 3 to simplify
482    SkScalar A = d - a + 3*(b - c);
483    SkScalar B = 2*(a - b - b + c);
484    SkScalar C = b - a;
485
486    return SkFindUnitQuadRoots(A, B, C, tValues);
487}
488
489static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
490{
491    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
492    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
493    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
494    SkScalar    abc = SkScalarInterp(ab, bc, t);
495    SkScalar    bcd = SkScalarInterp(bc, cd, t);
496    SkScalar    abcd = SkScalarInterp(abc, bcd, t);
497
498    dst[0] = src[0];
499    dst[2] = ab;
500    dst[4] = abc;
501    dst[6] = abcd;
502    dst[8] = bcd;
503    dst[10] = cd;
504    dst[12] = src[6];
505}
506
507void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
508{
509    SkASSERT(t > 0 && t < SK_Scalar1);
510
511    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
512    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
513}
514
515/*  http://code.google.com/p/skia/issues/detail?id=32
516
517    This test code would fail when we didn't check the return result of
518    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
519    that after the first chop, the parameters to valid_unit_divide are equal
520    (thanks to finite float precision and rounding in the subtracts). Thus
521    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
522    up with 1.0, hence the need to check and just return the last cubic as
523    a degenerate clump of 4 points in the sampe place.
524
525    static void test_cubic() {
526        SkPoint src[4] = {
527            { 556.25000, 523.03003 },
528            { 556.23999, 522.96002 },
529            { 556.21997, 522.89001 },
530            { 556.21997, 522.82001 }
531        };
532        SkPoint dst[10];
533        SkScalar tval[] = { 0.33333334f, 0.99999994f };
534        SkChopCubicAt(src, dst, tval, 2);
535    }
536 */
537
538void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
539{
540#ifdef SK_DEBUG
541    {
542        for (int i = 0; i < roots - 1; i++)
543        {
544            SkASSERT(is_unit_interval(tValues[i]));
545            SkASSERT(is_unit_interval(tValues[i+1]));
546            SkASSERT(tValues[i] < tValues[i+1]);
547        }
548    }
549#endif
550
551    if (dst)
552    {
553        if (roots == 0) // nothing to chop
554            memcpy(dst, src, 4*sizeof(SkPoint));
555        else
556        {
557            SkScalar    t = tValues[0];
558            SkPoint     tmp[4];
559
560            for (int i = 0; i < roots; i++)
561            {
562                SkChopCubicAt(src, dst, t);
563                if (i == roots - 1)
564                    break;
565
566                dst += 3;
567                // have src point to the remaining cubic (after the chop)
568                memcpy(tmp, dst, 4 * sizeof(SkPoint));
569                src = tmp;
570
571                // watch out in case the renormalized t isn't in range
572                if (!valid_unit_divide(tValues[i+1] - tValues[i],
573                                       SK_Scalar1 - tValues[i], &t)) {
574                    // if we can't, just create a degenerate cubic
575                    dst[4] = dst[5] = dst[6] = src[3];
576                    break;
577                }
578            }
579        }
580    }
581}
582
583void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
584{
585    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
586    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
587    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
588    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
589    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
590    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
591
592    SkScalar x012 = SkScalarAve(x01, x12);
593    SkScalar y012 = SkScalarAve(y01, y12);
594    SkScalar x123 = SkScalarAve(x12, x23);
595    SkScalar y123 = SkScalarAve(y12, y23);
596
597    dst[0] = src[0];
598    dst[1].set(x01, y01);
599    dst[2].set(x012, y012);
600    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
601    dst[4].set(x123, y123);
602    dst[5].set(x23, y23);
603    dst[6] = src[3];
604}
605
606static void flatten_double_cubic_extrema(SkScalar coords[14])
607{
608    coords[4] = coords[8] = coords[6];
609}
610
611/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
612    the resulting beziers are monotonic in Y. This is called by the scan converter.
613    Depending on what is returned, dst[] is treated as follows
614    0   dst[0..3] is the original cubic
615    1   dst[0..3] and dst[3..6] are the two new cubics
616    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
617    If dst == null, it is ignored and only the count is returned.
618*/
619int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
620    SkScalar    tValues[2];
621    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
622                                           src[3].fY, tValues);
623
624    SkChopCubicAt(src, dst, tValues, roots);
625    if (dst && roots > 0) {
626        // we do some cleanup to ensure our Y extrema are flat
627        flatten_double_cubic_extrema(&dst[0].fY);
628        if (roots == 2) {
629            flatten_double_cubic_extrema(&dst[3].fY);
630        }
631    }
632    return roots;
633}
634
635int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
636    SkScalar    tValues[2];
637    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
638                                           src[3].fX, tValues);
639
640    SkChopCubicAt(src, dst, tValues, roots);
641    if (dst && roots > 0) {
642        // we do some cleanup to ensure our Y extrema are flat
643        flatten_double_cubic_extrema(&dst[0].fX);
644        if (roots == 2) {
645            flatten_double_cubic_extrema(&dst[3].fX);
646        }
647    }
648    return roots;
649}
650
651/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
652
653    Inflection means that curvature is zero.
654    Curvature is [F' x F''] / [F'^3]
655    So we solve F'x X F''y - F'y X F''y == 0
656    After some canceling of the cubic term, we get
657    A = b - a
658    B = c - 2b + a
659    C = d - 3c + 3b - a
660    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
661*/
662int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
663{
664    SkScalar    Ax = src[1].fX - src[0].fX;
665    SkScalar    Ay = src[1].fY - src[0].fY;
666    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
667    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
668    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
669    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
670
671    return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
672}
673
674int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
675{
676    SkScalar    tValues[2];
677    int         count = SkFindCubicInflections(src, tValues);
678
679    if (dst)
680    {
681        if (count == 0)
682            memcpy(dst, src, 4 * sizeof(SkPoint));
683        else
684            SkChopCubicAt(src, dst, tValues, count);
685    }
686    return count + 1;
687}
688
689template <typename T> void bubble_sort(T array[], int count)
690{
691    for (int i = count - 1; i > 0; --i)
692        for (int j = i; j > 0; --j)
693            if (array[j] < array[j-1])
694            {
695                T   tmp(array[j]);
696                array[j] = array[j-1];
697                array[j-1] = tmp;
698            }
699}
700
701// newton refinement
702#if 0
703static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
704{
705    //  x1 = x0 - f(t) / f'(t)
706
707    SkFP    T = SkScalarToFloat(root);
708    SkFP    N, D;
709
710    // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
711    D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
712    D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
713    D = SkFPAdd(D, coeff[2]);
714
715    if (D == 0)
716        return root;
717
718    // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
719    N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
720    N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
721    N = SkFPAdd(N, SkFPMul(T, coeff[2]));
722    N = SkFPAdd(N, coeff[3]);
723
724    if (N)
725    {
726        SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
727
728        if (delta)
729            root -= delta;
730    }
731    return root;
732}
733#endif
734
735/**
736 *  Given an array and count, remove all pair-wise duplicates from the array,
737 *  keeping the existing sorting, and return the new count
738 */
739static int collaps_duplicates(float array[], int count) {
740    for (int n = count; n > 1; --n) {
741        if (array[0] == array[1]) {
742            for (int i = 1; i < n; ++i) {
743                array[i - 1] = array[i];
744            }
745            count -= 1;
746        } else {
747            array += 1;
748        }
749    }
750    return count;
751}
752
753#ifdef SK_DEBUG
754
755#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
756
757static void test_collaps_duplicates() {
758    static bool gOnce;
759    if (gOnce) { return; }
760    gOnce = true;
761    const float src0[] = { 0 };
762    const float src1[] = { 0, 0 };
763    const float src2[] = { 0, 1 };
764    const float src3[] = { 0, 0, 0 };
765    const float src4[] = { 0, 0, 1 };
766    const float src5[] = { 0, 1, 1 };
767    const float src6[] = { 0, 1, 2 };
768    const struct {
769        const float* fData;
770        int fCount;
771        int fCollapsedCount;
772    } data[] = {
773        { TEST_COLLAPS_ENTRY(src0), 1 },
774        { TEST_COLLAPS_ENTRY(src1), 1 },
775        { TEST_COLLAPS_ENTRY(src2), 2 },
776        { TEST_COLLAPS_ENTRY(src3), 1 },
777        { TEST_COLLAPS_ENTRY(src4), 2 },
778        { TEST_COLLAPS_ENTRY(src5), 2 },
779        { TEST_COLLAPS_ENTRY(src6), 3 },
780    };
781    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
782        float dst[3];
783        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
784        int count = collaps_duplicates(dst, data[i].fCount);
785        SkASSERT(data[i].fCollapsedCount == count);
786        for (int j = 1; j < count; ++j) {
787            SkASSERT(dst[j-1] < dst[j]);
788        }
789    }
790}
791#endif
792
793static SkScalar SkScalarCubeRoot(SkScalar x) {
794    return sk_float_pow(x, 0.3333333f);
795}
796
797/*  Solve coeff(t) == 0, returning the number of roots that
798    lie withing 0 < t < 1.
799    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
800
801    Eliminates repeated roots (so that all tValues are distinct, and are always
802    in increasing order.
803*/
804static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3])
805{
806    if (SkScalarNearlyZero(coeff[0]))   // we're just a quadratic
807    {
808        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
809    }
810
811    SkScalar a, b, c, Q, R;
812
813    {
814        SkASSERT(coeff[0] != 0);
815
816        SkScalar inva = SkScalarInvert(coeff[0]);
817        a = coeff[1] * inva;
818        b = coeff[2] * inva;
819        c = coeff[3] * inva;
820    }
821    Q = (a*a - b*3) / 9;
822    R = (2*a*a*a - 9*a*b + 27*c) / 54;
823
824    SkScalar Q3 = Q * Q * Q;
825    SkScalar R2MinusQ3 = R * R - Q3;
826    SkScalar adiv3 = a / 3;
827
828    SkScalar*   roots = tValues;
829    SkScalar    r;
830
831    if (R2MinusQ3 < 0)   // we have 3 real roots
832    {
833        float theta = sk_float_acos(R / sk_float_sqrt(Q3));
834        float neg2RootQ = -2 * sk_float_sqrt(Q);
835
836        r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
837        if (is_unit_interval(r))
838            *roots++ = r;
839
840        r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
841        if (is_unit_interval(r))
842            *roots++ = r;
843
844        r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
845        if (is_unit_interval(r))
846            *roots++ = r;
847
848        SkDEBUGCODE(test_collaps_duplicates();)
849
850        // now sort the roots
851        int count = (int)(roots - tValues);
852        SkASSERT((unsigned)count <= 3);
853        bubble_sort(tValues, count);
854        count = collaps_duplicates(tValues, count);
855        roots = tValues + count;    // so we compute the proper count below
856    }
857    else                // we have 1 real root
858    {
859        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
860        A = SkScalarCubeRoot(A);
861        if (R > 0)
862            A = -A;
863
864        if (A != 0)
865            A += Q / A;
866        r = A - adiv3;
867        if (is_unit_interval(r))
868            *roots++ = r;
869    }
870
871    return (int)(roots - tValues);
872}
873
874/*  Looking for F' dot F'' == 0
875
876    A = b - a
877    B = c - 2b + a
878    C = d - 3c + 3b - a
879
880    F' = 3Ct^2 + 6Bt + 3A
881    F'' = 6Ct + 6B
882
883    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
884*/
885static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4])
886{
887    SkScalar    a = src[2] - src[0];
888    SkScalar    b = src[4] - 2 * src[2] + src[0];
889    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
890
891    coeff[0] = c * c;
892    coeff[1] = 3 * b * c;
893    coeff[2] = 2 * b * b + c * a;
894    coeff[3] = a * b;
895}
896
897// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
898//#define kMinTValueForChopping (SK_Scalar1 / 256)
899#define kMinTValueForChopping   0
900
901/*  Looking for F' dot F'' == 0
902
903    A = b - a
904    B = c - 2b + a
905    C = d - 3c + 3b - a
906
907    F' = 3Ct^2 + 6Bt + 3A
908    F'' = 6Ct + 6B
909
910    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
911*/
912int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
913{
914    SkScalar coeffX[4], coeffY[4];
915    int      i;
916
917    formulate_F1DotF2(&src[0].fX, coeffX);
918    formulate_F1DotF2(&src[0].fY, coeffY);
919
920    for (i = 0; i < 4; i++)
921        coeffX[i] += coeffY[i];
922
923    SkScalar    t[3];
924    int         count = solve_cubic_polynomial(coeffX, t);
925    int         maxCount = 0;
926
927    // now remove extrema where the curvature is zero (mins)
928    // !!!! need a test for this !!!!
929    for (i = 0; i < count; i++)
930    {
931        // if (not_min_curvature())
932        if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
933            tValues[maxCount++] = t[i];
934    }
935    return maxCount;
936}
937
938int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
939{
940    SkScalar    t_storage[3];
941
942    if (tValues == NULL)
943        tValues = t_storage;
944
945    int count = SkFindCubicMaxCurvature(src, tValues);
946
947    if (dst) {
948        if (count == 0)
949            memcpy(dst, src, 4 * sizeof(SkPoint));
950        else
951            SkChopCubicAt(src, dst, tValues, count);
952    }
953    return count + 1;
954}
955
956bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
957    if (ambiguous) {
958        *ambiguous = false;
959    }
960
961    // Find the minimum and maximum y of the extrema, which are the
962    // first and last points since this cubic is monotonic
963    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
964    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
965
966    if (pt.fY == cubic[0].fY
967        || pt.fY < min_y
968        || pt.fY > max_y) {
969        // The query line definitely does not cross the curve
970        if (ambiguous) {
971            *ambiguous = (pt.fY == cubic[0].fY);
972        }
973        return false;
974    }
975
976    bool pt_at_extremum = (pt.fY == cubic[3].fY);
977
978    SkScalar min_x =
979        SkMinScalar(
980            SkMinScalar(
981                SkMinScalar(cubic[0].fX, cubic[1].fX),
982                cubic[2].fX),
983            cubic[3].fX);
984    if (pt.fX < min_x) {
985        // The query line definitely crosses the curve
986        if (ambiguous) {
987            *ambiguous = pt_at_extremum;
988        }
989        return true;
990    }
991
992    SkScalar max_x =
993        SkMaxScalar(
994            SkMaxScalar(
995                SkMaxScalar(cubic[0].fX, cubic[1].fX),
996                cubic[2].fX),
997            cubic[3].fX);
998    if (pt.fX > max_x) {
999        // The query line definitely does not cross the curve
1000        return false;
1001    }
1002
1003    // Do a binary search to find the parameter value which makes y as
1004    // close as possible to the query point. See whether the query
1005    // line's origin is to the left of the associated x coordinate.
1006
1007    // kMaxIter is chosen as the number of mantissa bits for a float,
1008    // since there's no way we are going to get more precision by
1009    // iterating more times than that.
1010    const int kMaxIter = 23;
1011    SkPoint eval;
1012    int iter = 0;
1013    SkScalar upper_t;
1014    SkScalar lower_t;
1015    // Need to invert direction of t parameter if cubic goes up
1016    // instead of down
1017    if (cubic[3].fY > cubic[0].fY) {
1018        upper_t = SK_Scalar1;
1019        lower_t = 0;
1020    } else {
1021        upper_t = 0;
1022        lower_t = SK_Scalar1;
1023    }
1024    do {
1025        SkScalar t = SkScalarAve(upper_t, lower_t);
1026        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
1027        if (pt.fY > eval.fY) {
1028            lower_t = t;
1029        } else {
1030            upper_t = t;
1031        }
1032    } while (++iter < kMaxIter
1033             && !SkScalarNearlyZero(eval.fY - pt.fY));
1034    if (pt.fX <= eval.fX) {
1035        if (ambiguous) {
1036            *ambiguous = pt_at_extremum;
1037        }
1038        return true;
1039    }
1040    return false;
1041}
1042
1043int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
1044    int num_crossings = 0;
1045    SkPoint monotonic_cubics[10];
1046    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
1047    if (ambiguous) {
1048        *ambiguous = false;
1049    }
1050    bool locally_ambiguous;
1051    if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
1052        ++num_crossings;
1053    if (ambiguous) {
1054        *ambiguous |= locally_ambiguous;
1055    }
1056    if (num_monotonic_cubics > 0)
1057        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
1058            ++num_crossings;
1059    if (ambiguous) {
1060        *ambiguous |= locally_ambiguous;
1061    }
1062    if (num_monotonic_cubics > 1)
1063        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
1064            ++num_crossings;
1065    if (ambiguous) {
1066        *ambiguous |= locally_ambiguous;
1067    }
1068    return num_crossings;
1069}
1070////////////////////////////////////////////////////////////////////////////////
1071
1072/*  Find t value for quadratic [a, b, c] = d.
1073    Return 0 if there is no solution within [0, 1)
1074*/
1075static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
1076{
1077    // At^2 + Bt + C = d
1078    SkScalar A = a - 2 * b + c;
1079    SkScalar B = 2 * (b - a);
1080    SkScalar C = a - d;
1081
1082    SkScalar    roots[2];
1083    int         count = SkFindUnitQuadRoots(A, B, C, roots);
1084
1085    SkASSERT(count <= 1);
1086    return count == 1 ? roots[0] : 0;
1087}
1088
1089/*  given a quad-curve and a point (x,y), chop the quad at that point and place
1090    the new off-curve point and endpoint into 'dest'.
1091    Should only return false if the computed pos is the start of the curve
1092    (i.e. root == 0)
1093*/
1094static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest)
1095{
1096    const SkScalar* base;
1097    SkScalar        value;
1098
1099    if (SkScalarAbs(x) < SkScalarAbs(y)) {
1100        base = &quad[0].fX;
1101        value = x;
1102    } else {
1103        base = &quad[0].fY;
1104        value = y;
1105    }
1106
1107    // note: this returns 0 if it thinks value is out of range, meaning the
1108    // root might return something outside of [0, 1)
1109    SkScalar t = quad_solve(base[0], base[2], base[4], value);
1110
1111    if (t > 0)
1112    {
1113        SkPoint tmp[5];
1114        SkChopQuadAt(quad, tmp, t);
1115        dest[0] = tmp[1];
1116        dest[1].set(x, y);
1117        return true;
1118    } else {
1119        /*  t == 0 means either the value triggered a root outside of [0, 1)
1120            For our purposes, we can ignore the <= 0 roots, but we want to
1121            catch the >= 1 roots (which given our caller, will basically mean
1122            a root of 1, give-or-take numerical instability). If we are in the
1123            >= 1 case, return the existing offCurve point.
1124
1125            The test below checks to see if we are close to the "end" of the
1126            curve (near base[4]). Rather than specifying a tolerance, I just
1127            check to see if value is on to the right/left of the middle point
1128            (depending on the direction/sign of the end points).
1129        */
1130        if ((base[0] < base[4] && value > base[2]) ||
1131            (base[0] > base[4] && value < base[2]))   // should root have been 1
1132        {
1133            dest[0] = quad[1];
1134            dest[1].set(x, y);
1135            return true;
1136        }
1137    }
1138    return false;
1139}
1140
1141static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1142// The mid point of the quadratic arc approximation is half way between the two
1143// control points. The float epsilon adjustment moves the on curve point out by
1144// two bits, distributing the convex test error between the round rect approximation
1145// and the convex cross product sign equality test.
1146#define SK_MID_RRECT_OFFSET (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1147    { SK_Scalar1,            0                      },
1148    { SK_Scalar1,            SK_ScalarTanPIOver8    },
1149    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
1150    { SK_ScalarTanPIOver8,   SK_Scalar1             },
1151
1152    { 0,                     SK_Scalar1             },
1153    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
1154    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
1155    { -SK_Scalar1,           SK_ScalarTanPIOver8    },
1156
1157    { -SK_Scalar1,           0                      },
1158    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
1159    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
1160    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
1161
1162    { 0,                     -SK_Scalar1            },
1163    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
1164    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
1165    { SK_Scalar1,            -SK_ScalarTanPIOver8   },
1166
1167    { SK_Scalar1,            0                      }
1168#undef SK_MID_RRECT_OFFSET
1169};
1170
1171int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1172                   SkRotationDirection dir, const SkMatrix* userMatrix,
1173                   SkPoint quadPoints[])
1174{
1175    // rotate by x,y so that uStart is (1.0)
1176    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1177    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1178
1179    SkScalar absX = SkScalarAbs(x);
1180    SkScalar absY = SkScalarAbs(y);
1181
1182    int pointCount;
1183
1184    // check for (effectively) coincident vectors
1185    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1186    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1187    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1188        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1189         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1190
1191        // just return the start-point
1192        quadPoints[0].set(SK_Scalar1, 0);
1193        pointCount = 1;
1194    } else {
1195        if (dir == kCCW_SkRotationDirection)
1196            y = -y;
1197
1198        // what octant (quadratic curve) is [xy] in?
1199        int oct = 0;
1200        bool sameSign = true;
1201
1202        if (0 == y)
1203        {
1204            oct = 4;        // 180
1205            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1206        }
1207        else if (0 == x)
1208        {
1209            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1210            if (y > 0)
1211                oct = 2;    // 90
1212            else
1213                oct = 6;    // 270
1214        }
1215        else
1216        {
1217            if (y < 0)
1218                oct += 4;
1219            if ((x < 0) != (y < 0))
1220            {
1221                oct += 2;
1222                sameSign = false;
1223            }
1224            if ((absX < absY) == sameSign)
1225                oct += 1;
1226        }
1227
1228        int wholeCount = oct << 1;
1229        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1230
1231        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1232        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1]))
1233        {
1234            wholeCount += 2;
1235        }
1236        pointCount = wholeCount + 1;
1237    }
1238
1239    // now handle counter-clockwise and the initial unitStart rotation
1240    SkMatrix    matrix;
1241    matrix.setSinCos(uStart.fY, uStart.fX);
1242    if (dir == kCCW_SkRotationDirection) {
1243        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1244    }
1245    if (userMatrix) {
1246        matrix.postConcat(*userMatrix);
1247    }
1248    matrix.mapPoints(quadPoints, pointCount);
1249    return pointCount;
1250}
1251
1252///////////////////////////////////////////////////////////////////////////////
1253
1254// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1255//     ------------------------------------------
1256//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1257//
1258//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1259//     ------------------------------------------------
1260//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1261//
1262
1263// Take the parametric specification for the conic (either X or Y) and return
1264// in coeff[] the coefficients for the simple quadratic polynomial
1265//    coeff[0] for t^2
1266//    coeff[1] for t
1267//    coeff[2] for constant term
1268//
1269static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
1270    SkASSERT(src);
1271    SkASSERT(t >= 0 && t <= SK_Scalar1);
1272
1273    SkScalar    src2w = SkScalarMul(src[2], w);
1274    SkScalar    C = src[0];
1275    SkScalar    A = src[4] - 2 * src2w + C;
1276    SkScalar    B = 2 * (src2w - C);
1277    SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1278
1279    B = 2 * (w - SK_Scalar1);
1280    C = SK_Scalar1;
1281    A = -B;
1282    SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1283
1284    return SkScalarDiv(numer, denom);
1285}
1286
1287// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1288//
1289//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1290//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1291//  t^0 : -2 P0 w + 2 P1 w
1292//
1293//  We disregard magnitude, so we can freely ignore the denominator of F', and
1294//  divide the numerator by 2
1295//
1296//    coeff[0] for t^2
1297//    coeff[1] for t^1
1298//    coeff[2] for t^0
1299//
1300static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
1301    const SkScalar P20 = src[4] - src[0];
1302    const SkScalar P10 = src[2] - src[0];
1303    const SkScalar wP10 = w * P10;
1304    coeff[0] = w * P20 - P20;
1305    coeff[1] = P20 - 2 * wP10;
1306    coeff[2] = wP10;
1307}
1308
1309static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
1310    SkScalar coeff[3];
1311    conic_deriv_coeff(coord, w, coeff);
1312    return t * (t * coeff[0] + coeff[1]) + coeff[2];
1313}
1314
1315static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1316    SkScalar coeff[3];
1317    conic_deriv_coeff(src, w, coeff);
1318
1319    SkScalar tValues[2];
1320    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1321    SkASSERT(0 == roots || 1 == roots);
1322
1323    if (1 == roots) {
1324        *t = tValues[0];
1325        return true;
1326    }
1327    return false;
1328}
1329
1330struct SkP3D {
1331    SkScalar fX, fY, fZ;
1332
1333    void set(SkScalar x, SkScalar y, SkScalar z) {
1334        fX = x; fY = y; fZ = z;
1335    }
1336
1337    void projectDown(SkPoint* dst) const {
1338        dst->set(fX / fZ, fY / fZ);
1339    }
1340};
1341
1342// we just return the middle 3 points, since the first and last are dups of src
1343//
1344static void p3d_interp(const SkScalar src[3], SkScalar dst[3], SkScalar t) {
1345    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1346    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1347    dst[0] = ab;
1348    dst[3] = SkScalarInterp(ab, bc, t);
1349    dst[6] = bc;
1350}
1351
1352static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1353    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1354    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1355    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1356}
1357
1358void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1359    SkASSERT(t >= 0 && t <= SK_Scalar1);
1360
1361    if (pt) {
1362        pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1363                conic_eval_pos(&fPts[0].fY, fW, t));
1364    }
1365    if (tangent) {
1366        tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1367                     conic_eval_tan(&fPts[0].fY, fW, t));
1368    }
1369}
1370
1371void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1372    SkP3D tmp[3], tmp2[3];
1373
1374    ratquad_mapTo3D(fPts, fW, tmp);
1375
1376    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1377    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1378    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1379
1380    dst[0].fPts[0] = fPts[0];
1381    tmp2[0].projectDown(&dst[0].fPts[1]);
1382    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1383    tmp2[2].projectDown(&dst[1].fPts[1]);
1384    dst[1].fPts[2] = fPts[2];
1385
1386    // to put in "standard form", where w0 and w2 are both 1, we compute the
1387    // new w1 as sqrt(w1*w1/w0*w2)
1388    // or
1389    // w1 /= sqrt(w0*w2)
1390    //
1391    // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
1392    //
1393    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1394    dst[0].fW = tmp2[0].fZ / root;
1395    dst[1].fW = tmp2[2].fZ / root;
1396}
1397
1398static SkScalar subdivide_w_value(SkScalar w) {
1399    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1400}
1401
1402void SkConic::chop(SkConic dst[2]) const {
1403    SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
1404    SkScalar p1x = fW * fPts[1].fX;
1405    SkScalar p1y = fW * fPts[1].fY;
1406    SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
1407    SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
1408
1409    dst[0].fPts[0] = fPts[0];
1410    dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
1411                       (fPts[0].fY + p1y) * scale);
1412    dst[0].fPts[2].set(mx, my);
1413
1414    dst[1].fPts[0].set(mx, my);
1415    dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
1416                       (p1y + fPts[2].fY) * scale);
1417    dst[1].fPts[2] = fPts[2];
1418
1419    dst[0].fW = dst[1].fW = subdivide_w_value(fW);
1420}
1421
1422/*
1423 *  "High order approximation of conic sections by quadratic splines"
1424 *      by Michael Floater, 1993
1425 */
1426#define AS_QUAD_ERROR_SETUP                                         \
1427    SkScalar a = fW - 1;                                            \
1428    SkScalar k = a / (4 * (2 + a));                                 \
1429    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1430    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1431
1432void SkConic::computeAsQuadError(SkVector* err) const {
1433    AS_QUAD_ERROR_SETUP
1434    err->set(x, y);
1435}
1436
1437bool SkConic::asQuadTol(SkScalar tol) const {
1438    AS_QUAD_ERROR_SETUP
1439    return (x * x + y * y) <= tol * tol;
1440}
1441
1442int SkConic::computeQuadPOW2(SkScalar tol) const {
1443    AS_QUAD_ERROR_SETUP
1444    SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
1445
1446    if (error <= 0) {
1447        return 0;
1448    }
1449    uint32_t ierr = (uint32_t)error;
1450    return (34 - SkCLZ(ierr)) >> 1;
1451}
1452
1453static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1454    SkASSERT(level >= 0);
1455
1456    if (0 == level) {
1457        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1458        return pts + 2;
1459    } else {
1460        SkConic dst[2];
1461        src.chop(dst);
1462        --level;
1463        pts = subdivide(dst[0], pts, level);
1464        return subdivide(dst[1], pts, level);
1465    }
1466}
1467
1468int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1469    SkASSERT(pow2 >= 0);
1470    *pts = fPts[0];
1471    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1472    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1473    return 1 << pow2;
1474}
1475
1476bool SkConic::findXExtrema(SkScalar* t) const {
1477    return conic_find_extrema(&fPts[0].fX, fW, t);
1478}
1479
1480bool SkConic::findYExtrema(SkScalar* t) const {
1481    return conic_find_extrema(&fPts[0].fY, fW, t);
1482}
1483
1484bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1485    SkScalar t;
1486    if (this->findXExtrema(&t)) {
1487        this->chopAt(t, dst);
1488        // now clean-up the middle, since we know t was meant to be at
1489        // an X-extrema
1490        SkScalar value = dst[0].fPts[2].fX;
1491        dst[0].fPts[1].fX = value;
1492        dst[1].fPts[0].fX = value;
1493        dst[1].fPts[1].fX = value;
1494        return true;
1495    }
1496    return false;
1497}
1498
1499bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1500    SkScalar t;
1501    if (this->findYExtrema(&t)) {
1502        this->chopAt(t, dst);
1503        // now clean-up the middle, since we know t was meant to be at
1504        // an Y-extrema
1505        SkScalar value = dst[0].fPts[2].fY;
1506        dst[0].fPts[1].fY = value;
1507        dst[1].fPts[0].fY = value;
1508        dst[1].fPts[1].fY = value;
1509        return true;
1510    }
1511    return false;
1512}
1513
1514void SkConic::computeTightBounds(SkRect* bounds) const {
1515    SkPoint pts[4];
1516    pts[0] = fPts[0];
1517    pts[1] = fPts[2];
1518    int count = 2;
1519
1520    SkScalar t;
1521    if (this->findXExtrema(&t)) {
1522        this->evalAt(t, &pts[count++]);
1523    }
1524    if (this->findYExtrema(&t)) {
1525        this->evalAt(t, &pts[count++]);
1526    }
1527    bounds->set(pts, count);
1528}
1529
1530void SkConic::computeFastBounds(SkRect* bounds) const {
1531    bounds->set(fPts, 3);
1532}
1533