SkGeometry.cpp revision b39d5617f60e8c26f76011cfcd984d7ad42d9fa9
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGeometry.h"
9#include "SkMatrix.h"
10
11bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
12    if (ambiguous) {
13        *ambiguous = false;
14    }
15    // Determine quick discards.
16    // Consider query line going exactly through point 0 to not
17    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
18    if (pt.fY == pts[0].fY) {
19        if (ambiguous) {
20            *ambiguous = true;
21        }
22        return false;
23    }
24    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
25        return false;
26    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
27        return false;
28    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
29        return false;
30    // Determine degenerate cases
31    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
32        return false;
33    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
34        // We've already determined the query point lies within the
35        // vertical range of the line segment.
36        if (pt.fX <= pts[0].fX) {
37            if (ambiguous) {
38                *ambiguous = (pt.fY == pts[1].fY);
39            }
40            return true;
41        }
42        return false;
43    }
44    // Ambiguity check
45    if (pt.fY == pts[1].fY) {
46        if (pt.fX <= pts[1].fX) {
47            if (ambiguous) {
48                *ambiguous = true;
49            }
50            return true;
51        }
52        return false;
53    }
54    // Full line segment evaluation
55    SkScalar delta_y = pts[1].fY - pts[0].fY;
56    SkScalar delta_x = pts[1].fX - pts[0].fX;
57    SkScalar slope = SkScalarDiv(delta_y, delta_x);
58    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
59    // Solve for x coordinate at y = pt.fY
60    SkScalar x = SkScalarDiv(pt.fY - b, slope);
61    return pt.fX <= x;
62}
63
64/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
65    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
66    May also introduce overflow of fixed when we compute our setup.
67*/
68//    #define DIRECT_EVAL_OF_POLYNOMIALS
69
70////////////////////////////////////////////////////////////////////////
71
72static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
73    SkScalar ab = a - b;
74    SkScalar bc = b - c;
75    if (ab < 0) {
76        bc = -bc;
77    }
78    return ab == 0 || bc < 0;
79}
80
81////////////////////////////////////////////////////////////////////////
82
83static bool is_unit_interval(SkScalar x) {
84    return x > 0 && x < SK_Scalar1;
85}
86
87static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
88    SkASSERT(ratio);
89
90    if (numer < 0) {
91        numer = -numer;
92        denom = -denom;
93    }
94
95    if (denom == 0 || numer == 0 || numer >= denom) {
96        return 0;
97    }
98
99    SkScalar r = SkScalarDiv(numer, denom);
100    if (SkScalarIsNaN(r)) {
101        return 0;
102    }
103    SkASSERT(r >= 0 && r < SK_Scalar1);
104    if (r == 0) { // catch underflow if numer <<<< denom
105        return 0;
106    }
107    *ratio = r;
108    return 1;
109}
110
111/** From Numerical Recipes in C.
112
113    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
114    x1 = Q / A
115    x2 = C / Q
116*/
117int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
118    SkASSERT(roots);
119
120    if (A == 0) {
121        return valid_unit_divide(-C, B, roots);
122    }
123
124    SkScalar* r = roots;
125
126    SkScalar R = B*B - 4*A*C;
127    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
128        return 0;
129    }
130    R = SkScalarSqrt(R);
131
132    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
133    r += valid_unit_divide(Q, A, r);
134    r += valid_unit_divide(C, Q, r);
135    if (r - roots == 2) {
136        if (roots[0] > roots[1])
137            SkTSwap<SkScalar>(roots[0], roots[1]);
138        else if (roots[0] == roots[1])  // nearly-equal?
139            r -= 1; // skip the double root
140    }
141    return (int)(r - roots);
142}
143
144///////////////////////////////////////////////////////////////////////////////
145///////////////////////////////////////////////////////////////////////////////
146
147static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
148    SkASSERT(src);
149    SkASSERT(t >= 0 && t <= SK_Scalar1);
150
151#ifdef DIRECT_EVAL_OF_POLYNOMIALS
152    SkScalar    C = src[0];
153    SkScalar    A = src[4] - 2 * src[2] + C;
154    SkScalar    B = 2 * (src[2] - C);
155    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
156#else
157    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
158    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
159    return SkScalarInterp(ab, bc, t);
160#endif
161}
162
163static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
164    SkScalar A = src[4] - 2 * src[2] + src[0];
165    SkScalar B = src[2] - src[0];
166
167    return 2 * SkScalarMulAdd(A, t, B);
168}
169
170static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) {
171    SkScalar A = src[4] - 2 * src[2] + src[0];
172    SkScalar B = src[2] - src[0];
173    return A + 2 * B;
174}
175
176void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
177                  SkVector* tangent) {
178    SkASSERT(src);
179    SkASSERT(t >= 0 && t <= SK_Scalar1);
180
181    if (pt) {
182        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
183    }
184    if (tangent) {
185        tangent->set(eval_quad_derivative(&src[0].fX, t),
186                     eval_quad_derivative(&src[0].fY, t));
187    }
188}
189
190void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) {
191    SkASSERT(src);
192
193    if (pt) {
194        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
195        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
196        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
197        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
198        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
199    }
200    if (tangent) {
201        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
202                     eval_quad_derivative_at_half(&src[0].fY));
203    }
204}
205
206static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) {
207    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
208    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
209
210    dst[0] = src[0];
211    dst[2] = ab;
212    dst[4] = SkScalarInterp(ab, bc, t);
213    dst[6] = bc;
214    dst[8] = src[4];
215}
216
217void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
218    SkASSERT(t > 0 && t < SK_Scalar1);
219
220    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
221    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
222}
223
224void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
225    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
226    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
227    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
228    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
229
230    dst[0] = src[0];
231    dst[1].set(x01, y01);
232    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
233    dst[3].set(x12, y12);
234    dst[4] = src[2];
235}
236
237/** Quad'(t) = At + B, where
238    A = 2(a - 2b + c)
239    B = 2(b - a)
240    Solve for t, only if it fits between 0 < t < 1
241*/
242int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
243    /*  At + B == 0
244        t = -B / A
245    */
246    return valid_unit_divide(a - b, a - b - b + c, tValue);
247}
248
249static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
250    coords[2] = coords[6] = coords[4];
251}
252
253/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
254 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
255 */
256int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
257    SkASSERT(src);
258    SkASSERT(dst);
259
260    SkScalar a = src[0].fY;
261    SkScalar b = src[1].fY;
262    SkScalar c = src[2].fY;
263
264    if (is_not_monotonic(a, b, c)) {
265        SkScalar    tValue;
266        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
267            SkChopQuadAt(src, dst, tValue);
268            flatten_double_quad_extrema(&dst[0].fY);
269            return 1;
270        }
271        // if we get here, we need to force dst to be monotonic, even though
272        // we couldn't compute a unit_divide value (probably underflow).
273        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
274    }
275    dst[0].set(src[0].fX, a);
276    dst[1].set(src[1].fX, b);
277    dst[2].set(src[2].fX, c);
278    return 0;
279}
280
281/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
282    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
283 */
284int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
285    SkASSERT(src);
286    SkASSERT(dst);
287
288    SkScalar a = src[0].fX;
289    SkScalar b = src[1].fX;
290    SkScalar c = src[2].fX;
291
292    if (is_not_monotonic(a, b, c)) {
293        SkScalar tValue;
294        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
295            SkChopQuadAt(src, dst, tValue);
296            flatten_double_quad_extrema(&dst[0].fX);
297            return 1;
298        }
299        // if we get here, we need to force dst to be monotonic, even though
300        // we couldn't compute a unit_divide value (probably underflow).
301        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
302    }
303    dst[0].set(a, src[0].fY);
304    dst[1].set(b, src[1].fY);
305    dst[2].set(c, src[2].fY);
306    return 0;
307}
308
309//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
310//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
311//  F''(t)  = 2 (a - 2b + c)
312//
313//  A = 2 (b - a)
314//  B = 2 (a - 2b + c)
315//
316//  Maximum curvature for a quadratic means solving
317//  Fx' Fx'' + Fy' Fy'' = 0
318//
319//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
320//
321SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
322    SkScalar    Ax = src[1].fX - src[0].fX;
323    SkScalar    Ay = src[1].fY - src[0].fY;
324    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
325    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
326    SkScalar    t = 0;  // 0 means don't chop
327
328    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
329    return t;
330}
331
332int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
333    SkScalar t = SkFindQuadMaxCurvature(src);
334    if (t == 0) {
335        memcpy(dst, src, 3 * sizeof(SkPoint));
336        return 1;
337    } else {
338        SkChopQuadAt(src, dst, t);
339        return 2;
340    }
341}
342
343#define SK_ScalarTwoThirds  (0.666666666f)
344
345void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
346    const SkScalar scale = SK_ScalarTwoThirds;
347    dst[0] = src[0];
348    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
349               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
350    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
351               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
352    dst[3] = src[2];
353}
354
355//////////////////////////////////////////////////////////////////////////////
356///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
357//////////////////////////////////////////////////////////////////////////////
358
359static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) {
360    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
361    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
362    coeff[2] = 3*(pt[2] - pt[0]);
363    coeff[3] = pt[0];
364}
365
366void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) {
367    SkASSERT(pts);
368
369    if (cx) {
370        get_cubic_coeff(&pts[0].fX, cx);
371    }
372    if (cy) {
373        get_cubic_coeff(&pts[0].fY, cy);
374    }
375}
376
377static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
378    SkASSERT(src);
379    SkASSERT(t >= 0 && t <= SK_Scalar1);
380
381    if (t == 0) {
382        return src[0];
383    }
384
385#ifdef DIRECT_EVAL_OF_POLYNOMIALS
386    SkScalar D = src[0];
387    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
388    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
389    SkScalar C = 3*(src[2] - D);
390
391    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
392#else
393    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
394    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
395    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
396    SkScalar    abc = SkScalarInterp(ab, bc, t);
397    SkScalar    bcd = SkScalarInterp(bc, cd, t);
398    return SkScalarInterp(abc, bcd, t);
399#endif
400}
401
402/** return At^2 + Bt + C
403*/
404static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
405    SkASSERT(t >= 0 && t <= SK_Scalar1);
406
407    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
408}
409
410static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
411    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
412    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
413    SkScalar C = src[2] - src[0];
414
415    return eval_quadratic(A, B, C, t);
416}
417
418static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
419    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
420    SkScalar B = src[4] - 2 * src[2] + src[0];
421
422    return SkScalarMulAdd(A, t, B);
423}
424
425void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
426                   SkVector* tangent, SkVector* curvature) {
427    SkASSERT(src);
428    SkASSERT(t >= 0 && t <= SK_Scalar1);
429
430    if (loc) {
431        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
432    }
433    if (tangent) {
434        tangent->set(eval_cubic_derivative(&src[0].fX, t),
435                     eval_cubic_derivative(&src[0].fY, t));
436    }
437    if (curvature) {
438        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
439                       eval_cubic_2ndDerivative(&src[0].fY, t));
440    }
441}
442
443/** Cubic'(t) = At^2 + Bt + C, where
444    A = 3(-a + 3(b - c) + d)
445    B = 6(a - 2b + c)
446    C = 3(b - a)
447    Solve for t, keeping only those that fit betwee 0 < t < 1
448*/
449int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
450                       SkScalar tValues[2]) {
451    // we divide A,B,C by 3 to simplify
452    SkScalar A = d - a + 3*(b - c);
453    SkScalar B = 2*(a - b - b + c);
454    SkScalar C = b - a;
455
456    return SkFindUnitQuadRoots(A, B, C, tValues);
457}
458
459static void interp_cubic_coords(const SkScalar* src, SkScalar* dst,
460                                SkScalar t) {
461    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
462    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
463    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
464    SkScalar    abc = SkScalarInterp(ab, bc, t);
465    SkScalar    bcd = SkScalarInterp(bc, cd, t);
466    SkScalar    abcd = SkScalarInterp(abc, bcd, t);
467
468    dst[0] = src[0];
469    dst[2] = ab;
470    dst[4] = abc;
471    dst[6] = abcd;
472    dst[8] = bcd;
473    dst[10] = cd;
474    dst[12] = src[6];
475}
476
477void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
478    SkASSERT(t > 0 && t < SK_Scalar1);
479
480    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
481    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
482}
483
484/*  http://code.google.com/p/skia/issues/detail?id=32
485
486    This test code would fail when we didn't check the return result of
487    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
488    that after the first chop, the parameters to valid_unit_divide are equal
489    (thanks to finite float precision and rounding in the subtracts). Thus
490    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
491    up with 1.0, hence the need to check and just return the last cubic as
492    a degenerate clump of 4 points in the sampe place.
493
494    static void test_cubic() {
495        SkPoint src[4] = {
496            { 556.25000, 523.03003 },
497            { 556.23999, 522.96002 },
498            { 556.21997, 522.89001 },
499            { 556.21997, 522.82001 }
500        };
501        SkPoint dst[10];
502        SkScalar tval[] = { 0.33333334f, 0.99999994f };
503        SkChopCubicAt(src, dst, tval, 2);
504    }
505 */
506
507void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
508                   const SkScalar tValues[], int roots) {
509#ifdef SK_DEBUG
510    {
511        for (int i = 0; i < roots - 1; i++)
512        {
513            SkASSERT(is_unit_interval(tValues[i]));
514            SkASSERT(is_unit_interval(tValues[i+1]));
515            SkASSERT(tValues[i] < tValues[i+1]);
516        }
517    }
518#endif
519
520    if (dst) {
521        if (roots == 0) { // nothing to chop
522            memcpy(dst, src, 4*sizeof(SkPoint));
523        } else {
524            SkScalar    t = tValues[0];
525            SkPoint     tmp[4];
526
527            for (int i = 0; i < roots; i++) {
528                SkChopCubicAt(src, dst, t);
529                if (i == roots - 1) {
530                    break;
531                }
532
533                dst += 3;
534                // have src point to the remaining cubic (after the chop)
535                memcpy(tmp, dst, 4 * sizeof(SkPoint));
536                src = tmp;
537
538                // watch out in case the renormalized t isn't in range
539                if (!valid_unit_divide(tValues[i+1] - tValues[i],
540                                       SK_Scalar1 - tValues[i], &t)) {
541                    // if we can't, just create a degenerate cubic
542                    dst[4] = dst[5] = dst[6] = src[3];
543                    break;
544                }
545            }
546        }
547    }
548}
549
550void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
551    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
552    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
553    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
554    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
555    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
556    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
557
558    SkScalar x012 = SkScalarAve(x01, x12);
559    SkScalar y012 = SkScalarAve(y01, y12);
560    SkScalar x123 = SkScalarAve(x12, x23);
561    SkScalar y123 = SkScalarAve(y12, y23);
562
563    dst[0] = src[0];
564    dst[1].set(x01, y01);
565    dst[2].set(x012, y012);
566    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
567    dst[4].set(x123, y123);
568    dst[5].set(x23, y23);
569    dst[6] = src[3];
570}
571
572static void flatten_double_cubic_extrema(SkScalar coords[14]) {
573    coords[4] = coords[8] = coords[6];
574}
575
576/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
577    the resulting beziers are monotonic in Y. This is called by the scan converter.
578    Depending on what is returned, dst[] is treated as follows
579    0   dst[0..3] is the original cubic
580    1   dst[0..3] and dst[3..6] are the two new cubics
581    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
582    If dst == null, it is ignored and only the count is returned.
583*/
584int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
585    SkScalar    tValues[2];
586    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
587                                           src[3].fY, tValues);
588
589    SkChopCubicAt(src, dst, tValues, roots);
590    if (dst && roots > 0) {
591        // we do some cleanup to ensure our Y extrema are flat
592        flatten_double_cubic_extrema(&dst[0].fY);
593        if (roots == 2) {
594            flatten_double_cubic_extrema(&dst[3].fY);
595        }
596    }
597    return roots;
598}
599
600int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
601    SkScalar    tValues[2];
602    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
603                                           src[3].fX, tValues);
604
605    SkChopCubicAt(src, dst, tValues, roots);
606    if (dst && roots > 0) {
607        // we do some cleanup to ensure our Y extrema are flat
608        flatten_double_cubic_extrema(&dst[0].fX);
609        if (roots == 2) {
610            flatten_double_cubic_extrema(&dst[3].fX);
611        }
612    }
613    return roots;
614}
615
616/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
617
618    Inflection means that curvature is zero.
619    Curvature is [F' x F''] / [F'^3]
620    So we solve F'x X F''y - F'y X F''y == 0
621    After some canceling of the cubic term, we get
622    A = b - a
623    B = c - 2b + a
624    C = d - 3c + 3b - a
625    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
626*/
627int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
628    SkScalar    Ax = src[1].fX - src[0].fX;
629    SkScalar    Ay = src[1].fY - src[0].fY;
630    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
631    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
632    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
633    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
634
635    return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
636}
637
638int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
639    SkScalar    tValues[2];
640    int         count = SkFindCubicInflections(src, tValues);
641
642    if (dst) {
643        if (count == 0) {
644            memcpy(dst, src, 4 * sizeof(SkPoint));
645        } else {
646            SkChopCubicAt(src, dst, tValues, count);
647        }
648    }
649    return count + 1;
650}
651
652template <typename T> void bubble_sort(T array[], int count) {
653    for (int i = count - 1; i > 0; --i)
654        for (int j = i; j > 0; --j)
655            if (array[j] < array[j-1])
656            {
657                T   tmp(array[j]);
658                array[j] = array[j-1];
659                array[j-1] = tmp;
660            }
661}
662
663/**
664 *  Given an array and count, remove all pair-wise duplicates from the array,
665 *  keeping the existing sorting, and return the new count
666 */
667static int collaps_duplicates(SkScalar array[], int count) {
668    for (int n = count; n > 1; --n) {
669        if (array[0] == array[1]) {
670            for (int i = 1; i < n; ++i) {
671                array[i - 1] = array[i];
672            }
673            count -= 1;
674        } else {
675            array += 1;
676        }
677    }
678    return count;
679}
680
681#ifdef SK_DEBUG
682
683#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
684
685static void test_collaps_duplicates() {
686    static bool gOnce;
687    if (gOnce) { return; }
688    gOnce = true;
689    const SkScalar src0[] = { 0 };
690    const SkScalar src1[] = { 0, 0 };
691    const SkScalar src2[] = { 0, 1 };
692    const SkScalar src3[] = { 0, 0, 0 };
693    const SkScalar src4[] = { 0, 0, 1 };
694    const SkScalar src5[] = { 0, 1, 1 };
695    const SkScalar src6[] = { 0, 1, 2 };
696    const struct {
697        const SkScalar* fData;
698        int fCount;
699        int fCollapsedCount;
700    } data[] = {
701        { TEST_COLLAPS_ENTRY(src0), 1 },
702        { TEST_COLLAPS_ENTRY(src1), 1 },
703        { TEST_COLLAPS_ENTRY(src2), 2 },
704        { TEST_COLLAPS_ENTRY(src3), 1 },
705        { TEST_COLLAPS_ENTRY(src4), 2 },
706        { TEST_COLLAPS_ENTRY(src5), 2 },
707        { TEST_COLLAPS_ENTRY(src6), 3 },
708    };
709    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
710        SkScalar dst[3];
711        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
712        int count = collaps_duplicates(dst, data[i].fCount);
713        SkASSERT(data[i].fCollapsedCount == count);
714        for (int j = 1; j < count; ++j) {
715            SkASSERT(dst[j-1] < dst[j]);
716        }
717    }
718}
719#endif
720
721static SkScalar SkScalarCubeRoot(SkScalar x) {
722    return SkScalarPow(x, 0.3333333f);
723}
724
725/*  Solve coeff(t) == 0, returning the number of roots that
726    lie withing 0 < t < 1.
727    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
728
729    Eliminates repeated roots (so that all tValues are distinct, and are always
730    in increasing order.
731*/
732static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
733    if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
734        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
735    }
736
737    SkScalar a, b, c, Q, R;
738
739    {
740        SkASSERT(coeff[0] != 0);
741
742        SkScalar inva = SkScalarInvert(coeff[0]);
743        a = coeff[1] * inva;
744        b = coeff[2] * inva;
745        c = coeff[3] * inva;
746    }
747    Q = (a*a - b*3) / 9;
748    R = (2*a*a*a - 9*a*b + 27*c) / 54;
749
750    SkScalar Q3 = Q * Q * Q;
751    SkScalar R2MinusQ3 = R * R - Q3;
752    SkScalar adiv3 = a / 3;
753
754    SkScalar*   roots = tValues;
755    SkScalar    r;
756
757    if (R2MinusQ3 < 0) { // we have 3 real roots
758        SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
759        SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
760
761        r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
762        if (is_unit_interval(r)) {
763            *roots++ = r;
764        }
765        r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
766        if (is_unit_interval(r)) {
767            *roots++ = r;
768        }
769        r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
770        if (is_unit_interval(r)) {
771            *roots++ = r;
772        }
773        SkDEBUGCODE(test_collaps_duplicates();)
774
775        // now sort the roots
776        int count = (int)(roots - tValues);
777        SkASSERT((unsigned)count <= 3);
778        bubble_sort(tValues, count);
779        count = collaps_duplicates(tValues, count);
780        roots = tValues + count;    // so we compute the proper count below
781    } else {              // we have 1 real root
782        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
783        A = SkScalarCubeRoot(A);
784        if (R > 0) {
785            A = -A;
786        }
787        if (A != 0) {
788            A += Q / A;
789        }
790        r = A - adiv3;
791        if (is_unit_interval(r)) {
792            *roots++ = r;
793        }
794    }
795
796    return (int)(roots - tValues);
797}
798
799/*  Looking for F' dot F'' == 0
800
801    A = b - a
802    B = c - 2b + a
803    C = d - 3c + 3b - a
804
805    F' = 3Ct^2 + 6Bt + 3A
806    F'' = 6Ct + 6B
807
808    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
809*/
810static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
811    SkScalar    a = src[2] - src[0];
812    SkScalar    b = src[4] - 2 * src[2] + src[0];
813    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
814
815    coeff[0] = c * c;
816    coeff[1] = 3 * b * c;
817    coeff[2] = 2 * b * b + c * a;
818    coeff[3] = a * b;
819}
820
821/*  Looking for F' dot F'' == 0
822
823    A = b - a
824    B = c - 2b + a
825    C = d - 3c + 3b - a
826
827    F' = 3Ct^2 + 6Bt + 3A
828    F'' = 6Ct + 6B
829
830    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
831*/
832int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
833    SkScalar coeffX[4], coeffY[4];
834    int      i;
835
836    formulate_F1DotF2(&src[0].fX, coeffX);
837    formulate_F1DotF2(&src[0].fY, coeffY);
838
839    for (i = 0; i < 4; i++) {
840        coeffX[i] += coeffY[i];
841    }
842
843    SkScalar    t[3];
844    int         count = solve_cubic_poly(coeffX, t);
845    int         maxCount = 0;
846
847    // now remove extrema where the curvature is zero (mins)
848    // !!!! need a test for this !!!!
849    for (i = 0; i < count; i++) {
850        // if (not_min_curvature())
851        if (t[i] > 0 && t[i] < SK_Scalar1) {
852            tValues[maxCount++] = t[i];
853        }
854    }
855    return maxCount;
856}
857
858int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
859                              SkScalar tValues[3]) {
860    SkScalar    t_storage[3];
861
862    if (tValues == NULL) {
863        tValues = t_storage;
864    }
865
866    int count = SkFindCubicMaxCurvature(src, tValues);
867
868    if (dst) {
869        if (count == 0) {
870            memcpy(dst, src, 4 * sizeof(SkPoint));
871        } else {
872            SkChopCubicAt(src, dst, tValues, count);
873        }
874    }
875    return count + 1;
876}
877
878bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
879                                 bool* ambiguous) {
880    if (ambiguous) {
881        *ambiguous = false;
882    }
883
884    // Find the minimum and maximum y of the extrema, which are the
885    // first and last points since this cubic is monotonic
886    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
887    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
888
889    if (pt.fY == cubic[0].fY
890        || pt.fY < min_y
891        || pt.fY > max_y) {
892        // The query line definitely does not cross the curve
893        if (ambiguous) {
894            *ambiguous = (pt.fY == cubic[0].fY);
895        }
896        return false;
897    }
898
899    bool pt_at_extremum = (pt.fY == cubic[3].fY);
900
901    SkScalar min_x =
902        SkMinScalar(
903            SkMinScalar(
904                SkMinScalar(cubic[0].fX, cubic[1].fX),
905                cubic[2].fX),
906            cubic[3].fX);
907    if (pt.fX < min_x) {
908        // The query line definitely crosses the curve
909        if (ambiguous) {
910            *ambiguous = pt_at_extremum;
911        }
912        return true;
913    }
914
915    SkScalar max_x =
916        SkMaxScalar(
917            SkMaxScalar(
918                SkMaxScalar(cubic[0].fX, cubic[1].fX),
919                cubic[2].fX),
920            cubic[3].fX);
921    if (pt.fX > max_x) {
922        // The query line definitely does not cross the curve
923        return false;
924    }
925
926    // Do a binary search to find the parameter value which makes y as
927    // close as possible to the query point. See whether the query
928    // line's origin is to the left of the associated x coordinate.
929
930    // kMaxIter is chosen as the number of mantissa bits for a float,
931    // since there's no way we are going to get more precision by
932    // iterating more times than that.
933    const int kMaxIter = 23;
934    SkPoint eval;
935    int iter = 0;
936    SkScalar upper_t;
937    SkScalar lower_t;
938    // Need to invert direction of t parameter if cubic goes up
939    // instead of down
940    if (cubic[3].fY > cubic[0].fY) {
941        upper_t = SK_Scalar1;
942        lower_t = 0;
943    } else {
944        upper_t = 0;
945        lower_t = SK_Scalar1;
946    }
947    do {
948        SkScalar t = SkScalarAve(upper_t, lower_t);
949        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
950        if (pt.fY > eval.fY) {
951            lower_t = t;
952        } else {
953            upper_t = t;
954        }
955    } while (++iter < kMaxIter
956             && !SkScalarNearlyZero(eval.fY - pt.fY));
957    if (pt.fX <= eval.fX) {
958        if (ambiguous) {
959            *ambiguous = pt_at_extremum;
960        }
961        return true;
962    }
963    return false;
964}
965
966int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
967    int num_crossings = 0;
968    SkPoint monotonic_cubics[10];
969    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
970    if (ambiguous) {
971        *ambiguous = false;
972    }
973    bool locally_ambiguous;
974    if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
975        ++num_crossings;
976    if (ambiguous) {
977        *ambiguous |= locally_ambiguous;
978    }
979    if (num_monotonic_cubics > 0)
980        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
981            ++num_crossings;
982    if (ambiguous) {
983        *ambiguous |= locally_ambiguous;
984    }
985    if (num_monotonic_cubics > 1)
986        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
987            ++num_crossings;
988    if (ambiguous) {
989        *ambiguous |= locally_ambiguous;
990    }
991    return num_crossings;
992}
993
994///////////////////////////////////////////////////////////////////////////////
995
996/*  Find t value for quadratic [a, b, c] = d.
997    Return 0 if there is no solution within [0, 1)
998*/
999static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
1000    // At^2 + Bt + C = d
1001    SkScalar A = a - 2 * b + c;
1002    SkScalar B = 2 * (b - a);
1003    SkScalar C = a - d;
1004
1005    SkScalar    roots[2];
1006    int         count = SkFindUnitQuadRoots(A, B, C, roots);
1007
1008    SkASSERT(count <= 1);
1009    return count == 1 ? roots[0] : 0;
1010}
1011
1012/*  given a quad-curve and a point (x,y), chop the quad at that point and place
1013    the new off-curve point and endpoint into 'dest'.
1014    Should only return false if the computed pos is the start of the curve
1015    (i.e. root == 0)
1016*/
1017static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
1018                                SkPoint* dest) {
1019    const SkScalar* base;
1020    SkScalar        value;
1021
1022    if (SkScalarAbs(x) < SkScalarAbs(y)) {
1023        base = &quad[0].fX;
1024        value = x;
1025    } else {
1026        base = &quad[0].fY;
1027        value = y;
1028    }
1029
1030    // note: this returns 0 if it thinks value is out of range, meaning the
1031    // root might return something outside of [0, 1)
1032    SkScalar t = quad_solve(base[0], base[2], base[4], value);
1033
1034    if (t > 0) {
1035        SkPoint tmp[5];
1036        SkChopQuadAt(quad, tmp, t);
1037        dest[0] = tmp[1];
1038        dest[1].set(x, y);
1039        return true;
1040    } else {
1041        /*  t == 0 means either the value triggered a root outside of [0, 1)
1042            For our purposes, we can ignore the <= 0 roots, but we want to
1043            catch the >= 1 roots (which given our caller, will basically mean
1044            a root of 1, give-or-take numerical instability). If we are in the
1045            >= 1 case, return the existing offCurve point.
1046
1047            The test below checks to see if we are close to the "end" of the
1048            curve (near base[4]). Rather than specifying a tolerance, I just
1049            check to see if value is on to the right/left of the middle point
1050            (depending on the direction/sign of the end points).
1051        */
1052        if ((base[0] < base[4] && value > base[2]) ||
1053            (base[0] > base[4] && value < base[2]))   // should root have been 1
1054        {
1055            dest[0] = quad[1];
1056            dest[1].set(x, y);
1057            return true;
1058        }
1059    }
1060    return false;
1061}
1062
1063static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1064// The mid point of the quadratic arc approximation is half way between the two
1065// control points. The float epsilon adjustment moves the on curve point out by
1066// two bits, distributing the convex test error between the round rect approximation
1067// and the convex cross product sign equality test.
1068#define SK_MID_RRECT_OFFSET (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1069    { SK_Scalar1,            0                      },
1070    { SK_Scalar1,            SK_ScalarTanPIOver8    },
1071    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
1072    { SK_ScalarTanPIOver8,   SK_Scalar1             },
1073
1074    { 0,                     SK_Scalar1             },
1075    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
1076    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
1077    { -SK_Scalar1,           SK_ScalarTanPIOver8    },
1078
1079    { -SK_Scalar1,           0                      },
1080    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
1081    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
1082    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
1083
1084    { 0,                     -SK_Scalar1            },
1085    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
1086    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
1087    { SK_Scalar1,            -SK_ScalarTanPIOver8   },
1088
1089    { SK_Scalar1,            0                      }
1090#undef SK_MID_RRECT_OFFSET
1091};
1092
1093int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1094                   SkRotationDirection dir, const SkMatrix* userMatrix,
1095                   SkPoint quadPoints[]) {
1096    // rotate by x,y so that uStart is (1.0)
1097    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1098    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1099
1100    SkScalar absX = SkScalarAbs(x);
1101    SkScalar absY = SkScalarAbs(y);
1102
1103    int pointCount;
1104
1105    // check for (effectively) coincident vectors
1106    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1107    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1108    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1109        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1110         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1111
1112        // just return the start-point
1113        quadPoints[0].set(SK_Scalar1, 0);
1114        pointCount = 1;
1115    } else {
1116        if (dir == kCCW_SkRotationDirection) {
1117            y = -y;
1118        }
1119        // what octant (quadratic curve) is [xy] in?
1120        int oct = 0;
1121        bool sameSign = true;
1122
1123        if (0 == y) {
1124            oct = 4;        // 180
1125            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1126        } else if (0 == x) {
1127            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1128            oct = y > 0 ? 2 : 6; // 90 : 270
1129        } else {
1130            if (y < 0) {
1131                oct += 4;
1132            }
1133            if ((x < 0) != (y < 0)) {
1134                oct += 2;
1135                sameSign = false;
1136            }
1137            if ((absX < absY) == sameSign) {
1138                oct += 1;
1139            }
1140        }
1141
1142        int wholeCount = oct << 1;
1143        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1144
1145        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1146        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
1147            wholeCount += 2;
1148        }
1149        pointCount = wholeCount + 1;
1150    }
1151
1152    // now handle counter-clockwise and the initial unitStart rotation
1153    SkMatrix    matrix;
1154    matrix.setSinCos(uStart.fY, uStart.fX);
1155    if (dir == kCCW_SkRotationDirection) {
1156        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1157    }
1158    if (userMatrix) {
1159        matrix.postConcat(*userMatrix);
1160    }
1161    matrix.mapPoints(quadPoints, pointCount);
1162    return pointCount;
1163}
1164
1165///////////////////////////////////////////////////////////////////////////////
1166
1167// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1168//     ------------------------------------------
1169//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1170//
1171//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1172//     ------------------------------------------------
1173//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1174//
1175
1176// Take the parametric specification for the conic (either X or Y) and return
1177// in coeff[] the coefficients for the simple quadratic polynomial
1178//    coeff[0] for t^2
1179//    coeff[1] for t
1180//    coeff[2] for constant term
1181//
1182static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
1183    SkASSERT(src);
1184    SkASSERT(t >= 0 && t <= SK_Scalar1);
1185
1186    SkScalar    src2w = SkScalarMul(src[2], w);
1187    SkScalar    C = src[0];
1188    SkScalar    A = src[4] - 2 * src2w + C;
1189    SkScalar    B = 2 * (src2w - C);
1190    SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1191
1192    B = 2 * (w - SK_Scalar1);
1193    C = SK_Scalar1;
1194    A = -B;
1195    SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1196
1197    return SkScalarDiv(numer, denom);
1198}
1199
1200// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1201//
1202//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1203//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1204//  t^0 : -2 P0 w + 2 P1 w
1205//
1206//  We disregard magnitude, so we can freely ignore the denominator of F', and
1207//  divide the numerator by 2
1208//
1209//    coeff[0] for t^2
1210//    coeff[1] for t^1
1211//    coeff[2] for t^0
1212//
1213static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
1214    const SkScalar P20 = src[4] - src[0];
1215    const SkScalar P10 = src[2] - src[0];
1216    const SkScalar wP10 = w * P10;
1217    coeff[0] = w * P20 - P20;
1218    coeff[1] = P20 - 2 * wP10;
1219    coeff[2] = wP10;
1220}
1221
1222static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
1223    SkScalar coeff[3];
1224    conic_deriv_coeff(coord, w, coeff);
1225    return t * (t * coeff[0] + coeff[1]) + coeff[2];
1226}
1227
1228static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1229    SkScalar coeff[3];
1230    conic_deriv_coeff(src, w, coeff);
1231
1232    SkScalar tValues[2];
1233    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1234    SkASSERT(0 == roots || 1 == roots);
1235
1236    if (1 == roots) {
1237        *t = tValues[0];
1238        return true;
1239    }
1240    return false;
1241}
1242
1243struct SkP3D {
1244    SkScalar fX, fY, fZ;
1245
1246    void set(SkScalar x, SkScalar y, SkScalar z) {
1247        fX = x; fY = y; fZ = z;
1248    }
1249
1250    void projectDown(SkPoint* dst) const {
1251        dst->set(fX / fZ, fY / fZ);
1252    }
1253};
1254
1255// We only interpolate one dimension at a time (the first, at +0, +3, +6).
1256static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1257    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1258    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1259    dst[0] = ab;
1260    dst[3] = SkScalarInterp(ab, bc, t);
1261    dst[6] = bc;
1262}
1263
1264static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1265    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1266    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1267    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1268}
1269
1270void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1271    SkASSERT(t >= 0 && t <= SK_Scalar1);
1272
1273    if (pt) {
1274        pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1275                conic_eval_pos(&fPts[0].fY, fW, t));
1276    }
1277    if (tangent) {
1278        tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1279                     conic_eval_tan(&fPts[0].fY, fW, t));
1280    }
1281}
1282
1283void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1284    SkP3D tmp[3], tmp2[3];
1285
1286    ratquad_mapTo3D(fPts, fW, tmp);
1287
1288    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1289    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1290    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1291
1292    dst[0].fPts[0] = fPts[0];
1293    tmp2[0].projectDown(&dst[0].fPts[1]);
1294    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1295    tmp2[2].projectDown(&dst[1].fPts[1]);
1296    dst[1].fPts[2] = fPts[2];
1297
1298    // to put in "standard form", where w0 and w2 are both 1, we compute the
1299    // new w1 as sqrt(w1*w1/w0*w2)
1300    // or
1301    // w1 /= sqrt(w0*w2)
1302    //
1303    // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
1304    //
1305    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1306    dst[0].fW = tmp2[0].fZ / root;
1307    dst[1].fW = tmp2[2].fZ / root;
1308}
1309
1310static SkScalar subdivide_w_value(SkScalar w) {
1311    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1312}
1313
1314void SkConic::chop(SkConic dst[2]) const {
1315    SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
1316    SkScalar p1x = fW * fPts[1].fX;
1317    SkScalar p1y = fW * fPts[1].fY;
1318    SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
1319    SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
1320
1321    dst[0].fPts[0] = fPts[0];
1322    dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
1323                       (fPts[0].fY + p1y) * scale);
1324    dst[0].fPts[2].set(mx, my);
1325
1326    dst[1].fPts[0].set(mx, my);
1327    dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
1328                       (p1y + fPts[2].fY) * scale);
1329    dst[1].fPts[2] = fPts[2];
1330
1331    dst[0].fW = dst[1].fW = subdivide_w_value(fW);
1332}
1333
1334/*
1335 *  "High order approximation of conic sections by quadratic splines"
1336 *      by Michael Floater, 1993
1337 */
1338#define AS_QUAD_ERROR_SETUP                                         \
1339    SkScalar a = fW - 1;                                            \
1340    SkScalar k = a / (4 * (2 + a));                                 \
1341    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1342    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1343
1344void SkConic::computeAsQuadError(SkVector* err) const {
1345    AS_QUAD_ERROR_SETUP
1346    err->set(x, y);
1347}
1348
1349bool SkConic::asQuadTol(SkScalar tol) const {
1350    AS_QUAD_ERROR_SETUP
1351    return (x * x + y * y) <= tol * tol;
1352}
1353
1354int SkConic::computeQuadPOW2(SkScalar tol) const {
1355    AS_QUAD_ERROR_SETUP
1356    SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
1357
1358    if (error <= 0) {
1359        return 0;
1360    }
1361    uint32_t ierr = (uint32_t)error;
1362    return (34 - SkCLZ(ierr)) >> 1;
1363}
1364
1365static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1366    SkASSERT(level >= 0);
1367
1368    if (0 == level) {
1369        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1370        return pts + 2;
1371    } else {
1372        SkConic dst[2];
1373        src.chop(dst);
1374        --level;
1375        pts = subdivide(dst[0], pts, level);
1376        return subdivide(dst[1], pts, level);
1377    }
1378}
1379
1380int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1381    SkASSERT(pow2 >= 0);
1382    *pts = fPts[0];
1383    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1384    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1385    return 1 << pow2;
1386}
1387
1388bool SkConic::findXExtrema(SkScalar* t) const {
1389    return conic_find_extrema(&fPts[0].fX, fW, t);
1390}
1391
1392bool SkConic::findYExtrema(SkScalar* t) const {
1393    return conic_find_extrema(&fPts[0].fY, fW, t);
1394}
1395
1396bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1397    SkScalar t;
1398    if (this->findXExtrema(&t)) {
1399        this->chopAt(t, dst);
1400        // now clean-up the middle, since we know t was meant to be at
1401        // an X-extrema
1402        SkScalar value = dst[0].fPts[2].fX;
1403        dst[0].fPts[1].fX = value;
1404        dst[1].fPts[0].fX = value;
1405        dst[1].fPts[1].fX = value;
1406        return true;
1407    }
1408    return false;
1409}
1410
1411bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1412    SkScalar t;
1413    if (this->findYExtrema(&t)) {
1414        this->chopAt(t, dst);
1415        // now clean-up the middle, since we know t was meant to be at
1416        // an Y-extrema
1417        SkScalar value = dst[0].fPts[2].fY;
1418        dst[0].fPts[1].fY = value;
1419        dst[1].fPts[0].fY = value;
1420        dst[1].fPts[1].fY = value;
1421        return true;
1422    }
1423    return false;
1424}
1425
1426void SkConic::computeTightBounds(SkRect* bounds) const {
1427    SkPoint pts[4];
1428    pts[0] = fPts[0];
1429    pts[1] = fPts[2];
1430    int count = 2;
1431
1432    SkScalar t;
1433    if (this->findXExtrema(&t)) {
1434        this->evalAt(t, &pts[count++]);
1435    }
1436    if (this->findYExtrema(&t)) {
1437        this->evalAt(t, &pts[count++]);
1438    }
1439    bounds->set(pts, count);
1440}
1441
1442void SkConic::computeFastBounds(SkRect* bounds) const {
1443    bounds->set(fPts, 3);
1444}
1445