SkGeometry.cpp revision b6474dd1a530a543ae799c3822e8bc60180761c0
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGeometry.h"
9#include "SkMatrix.h"
10#include "SkNx.h"
11
12static SkVector to_vector(const Sk2s& x) {
13    SkVector vector;
14    x.store(&vector.fX);
15    return vector;
16}
17
18/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
19    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
20    May also introduce overflow of fixed when we compute our setup.
21*/
22//    #define DIRECT_EVAL_OF_POLYNOMIALS
23
24////////////////////////////////////////////////////////////////////////
25
26static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
27    SkScalar ab = a - b;
28    SkScalar bc = b - c;
29    if (ab < 0) {
30        bc = -bc;
31    }
32    return ab == 0 || bc < 0;
33}
34
35////////////////////////////////////////////////////////////////////////
36
37static bool is_unit_interval(SkScalar x) {
38    return x > 0 && x < SK_Scalar1;
39}
40
41static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
42    SkASSERT(ratio);
43
44    if (numer < 0) {
45        numer = -numer;
46        denom = -denom;
47    }
48
49    if (denom == 0 || numer == 0 || numer >= denom) {
50        return 0;
51    }
52
53    SkScalar r = numer / denom;
54    if (SkScalarIsNaN(r)) {
55        return 0;
56    }
57    SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
58    if (r == 0) { // catch underflow if numer <<<< denom
59        return 0;
60    }
61    *ratio = r;
62    return 1;
63}
64
65/** From Numerical Recipes in C.
66
67    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
68    x1 = Q / A
69    x2 = C / Q
70*/
71int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
72    SkASSERT(roots);
73
74    if (A == 0) {
75        return valid_unit_divide(-C, B, roots);
76    }
77
78    SkScalar* r = roots;
79
80    SkScalar R = B*B - 4*A*C;
81    if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
82        // if R is infinite, it's possible that it may still produce
83        // useful results if the operation was repeated in doubles
84        // the flipside is determining if the more precise answer
85        // isn't useful because surrounding machinery (e.g., subtracting
86        // the axis offset from C) already discards the extra precision
87        // more investigation and unit tests required...
88        return 0;
89    }
90    R = SkScalarSqrt(R);
91
92    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
93    r += valid_unit_divide(Q, A, r);
94    r += valid_unit_divide(C, Q, r);
95    if (r - roots == 2) {
96        if (roots[0] > roots[1])
97            SkTSwap<SkScalar>(roots[0], roots[1]);
98        else if (roots[0] == roots[1])  // nearly-equal?
99            r -= 1; // skip the double root
100    }
101    return (int)(r - roots);
102}
103
104///////////////////////////////////////////////////////////////////////////////
105///////////////////////////////////////////////////////////////////////////////
106
107static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
108    return (A * t + B) * t + C;
109}
110
111static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
112    SkASSERT(src);
113    SkASSERT(t >= 0 && t <= SK_Scalar1);
114
115#ifdef DIRECT_EVAL_OF_POLYNOMIALS
116    SkScalar    C = src[0];
117    SkScalar    A = src[4] - 2 * src[2] + C;
118    SkScalar    B = 2 * (src[2] - C);
119    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
120#else
121    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
122    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
123    return SkScalarInterp(ab, bc, t);
124#endif
125}
126
127void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
128    Sk2s p0 = from_point(pts[0]);
129    Sk2s p1 = from_point(pts[1]);
130    Sk2s p2 = from_point(pts[2]);
131
132    Sk2s p1minus2 = p1 - p0;
133
134    coeff[0] = to_point(p2 - p1 - p1 + p0);     // A * t^2
135    coeff[1] = to_point(p1minus2 + p1minus2);   // B * t
136    coeff[2] = pts[0];                          // C
137}
138
139void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
140    SkASSERT(src);
141    SkASSERT(t >= 0 && t <= SK_Scalar1);
142
143    if (pt) {
144        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
145    }
146    if (tangent) {
147        *tangent = SkEvalQuadTangentAt(src, t);
148    }
149}
150
151SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
152    SkASSERT(src);
153    SkASSERT(t >= 0 && t <= SK_Scalar1);
154
155    const Sk2s t2(t);
156
157    Sk2s P0 = from_point(src[0]);
158    Sk2s P1 = from_point(src[1]);
159    Sk2s P2 = from_point(src[2]);
160
161    Sk2s B = P1 - P0;
162    Sk2s A = P2 - P1 - B;
163
164    return to_point((A * t2 + B+B) * t2 + P0);
165}
166
167SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
168    // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
169    // zero tangent vector when t is 0 or 1, and the control point is equal
170    // to the end point. In this case, use the quad end points to compute the tangent.
171    if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
172        return src[2] - src[0];
173    }
174    SkASSERT(src);
175    SkASSERT(t >= 0 && t <= SK_Scalar1);
176
177    Sk2s P0 = from_point(src[0]);
178    Sk2s P1 = from_point(src[1]);
179    Sk2s P2 = from_point(src[2]);
180
181    Sk2s B = P1 - P0;
182    Sk2s A = P2 - P1 - B;
183    Sk2s T = A * Sk2s(t) + B;
184
185    return to_vector(T + T);
186}
187
188static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
189    return v0 + (v1 - v0) * t;
190}
191
192void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
193    SkASSERT(t > 0 && t < SK_Scalar1);
194
195    Sk2s p0 = from_point(src[0]);
196    Sk2s p1 = from_point(src[1]);
197    Sk2s p2 = from_point(src[2]);
198    Sk2s tt(t);
199
200    Sk2s p01 = interp(p0, p1, tt);
201    Sk2s p12 = interp(p1, p2, tt);
202
203    dst[0] = to_point(p0);
204    dst[1] = to_point(p01);
205    dst[2] = to_point(interp(p01, p12, tt));
206    dst[3] = to_point(p12);
207    dst[4] = to_point(p2);
208}
209
210void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
211    SkChopQuadAt(src, dst, 0.5f);
212}
213
214/** Quad'(t) = At + B, where
215    A = 2(a - 2b + c)
216    B = 2(b - a)
217    Solve for t, only if it fits between 0 < t < 1
218*/
219int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
220    /*  At + B == 0
221        t = -B / A
222    */
223    return valid_unit_divide(a - b, a - b - b + c, tValue);
224}
225
226static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
227    coords[2] = coords[6] = coords[4];
228}
229
230/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
231 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
232 */
233int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
234    SkASSERT(src);
235    SkASSERT(dst);
236
237    SkScalar a = src[0].fY;
238    SkScalar b = src[1].fY;
239    SkScalar c = src[2].fY;
240
241    if (is_not_monotonic(a, b, c)) {
242        SkScalar    tValue;
243        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
244            SkChopQuadAt(src, dst, tValue);
245            flatten_double_quad_extrema(&dst[0].fY);
246            return 1;
247        }
248        // if we get here, we need to force dst to be monotonic, even though
249        // we couldn't compute a unit_divide value (probably underflow).
250        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
251    }
252    dst[0].set(src[0].fX, a);
253    dst[1].set(src[1].fX, b);
254    dst[2].set(src[2].fX, c);
255    return 0;
256}
257
258/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
259    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
260 */
261int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
262    SkASSERT(src);
263    SkASSERT(dst);
264
265    SkScalar a = src[0].fX;
266    SkScalar b = src[1].fX;
267    SkScalar c = src[2].fX;
268
269    if (is_not_monotonic(a, b, c)) {
270        SkScalar tValue;
271        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
272            SkChopQuadAt(src, dst, tValue);
273            flatten_double_quad_extrema(&dst[0].fX);
274            return 1;
275        }
276        // if we get here, we need to force dst to be monotonic, even though
277        // we couldn't compute a unit_divide value (probably underflow).
278        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
279    }
280    dst[0].set(a, src[0].fY);
281    dst[1].set(b, src[1].fY);
282    dst[2].set(c, src[2].fY);
283    return 0;
284}
285
286//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
287//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
288//  F''(t)  = 2 (a - 2b + c)
289//
290//  A = 2 (b - a)
291//  B = 2 (a - 2b + c)
292//
293//  Maximum curvature for a quadratic means solving
294//  Fx' Fx'' + Fy' Fy'' = 0
295//
296//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
297//
298SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
299    SkScalar    Ax = src[1].fX - src[0].fX;
300    SkScalar    Ay = src[1].fY - src[0].fY;
301    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
302    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
303    SkScalar    t = 0;  // 0 means don't chop
304
305    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
306    return t;
307}
308
309int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
310    SkScalar t = SkFindQuadMaxCurvature(src);
311    if (t == 0) {
312        memcpy(dst, src, 3 * sizeof(SkPoint));
313        return 1;
314    } else {
315        SkChopQuadAt(src, dst, t);
316        return 2;
317    }
318}
319
320void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
321    Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
322    Sk2s s0 = from_point(src[0]);
323    Sk2s s1 = from_point(src[1]);
324    Sk2s s2 = from_point(src[2]);
325
326    dst[0] = src[0];
327    dst[1] = to_point(s0 + (s1 - s0) * scale);
328    dst[2] = to_point(s2 + (s1 - s2) * scale);
329    dst[3] = src[2];
330}
331
332//////////////////////////////////////////////////////////////////////////////
333///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
334//////////////////////////////////////////////////////////////////////////////
335
336static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
337    SkASSERT(src);
338    SkASSERT(t >= 0 && t <= SK_Scalar1);
339
340    if (t == 0) {
341        return src[0];
342    }
343
344#ifdef DIRECT_EVAL_OF_POLYNOMIALS
345    SkScalar D = src[0];
346    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
347    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
348    SkScalar C = 3*(src[2] - D);
349
350    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
351#else
352    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
353    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
354    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
355    SkScalar    abc = SkScalarInterp(ab, bc, t);
356    SkScalar    bcd = SkScalarInterp(bc, cd, t);
357    return SkScalarInterp(abc, bcd, t);
358#endif
359}
360
361/** return At^2 + Bt + C
362*/
363static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
364    SkASSERT(t >= 0 && t <= SK_Scalar1);
365
366    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
367}
368
369static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
370    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
371    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
372    SkScalar C = src[2] - src[0];
373
374    return eval_quadratic(A, B, C, t);
375}
376
377static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
378    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
379    SkScalar B = src[4] - 2 * src[2] + src[0];
380
381    return SkScalarMulAdd(A, t, B);
382}
383
384void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
385                   SkVector* tangent, SkVector* curvature) {
386    SkASSERT(src);
387    SkASSERT(t >= 0 && t <= SK_Scalar1);
388
389    if (loc) {
390        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
391    }
392    if (tangent) {
393        // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
394        // adjacent control point is equal to the end point. In this case, use the
395        // next control point or the end points to compute the tangent.
396        if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
397            if (t == 0) {
398                *tangent = src[2] - src[0];
399            } else {
400                *tangent = src[3] - src[1];
401            }
402            if (!tangent->fX && !tangent->fY) {
403                *tangent = src[3] - src[0];
404            }
405        } else {
406            tangent->set(eval_cubic_derivative(&src[0].fX, t),
407                         eval_cubic_derivative(&src[0].fY, t));
408        }
409    }
410    if (curvature) {
411        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
412                       eval_cubic_2ndDerivative(&src[0].fY, t));
413    }
414}
415
416/** Cubic'(t) = At^2 + Bt + C, where
417    A = 3(-a + 3(b - c) + d)
418    B = 6(a - 2b + c)
419    C = 3(b - a)
420    Solve for t, keeping only those that fit betwee 0 < t < 1
421*/
422int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
423                       SkScalar tValues[2]) {
424    // we divide A,B,C by 3 to simplify
425    SkScalar A = d - a + 3*(b - c);
426    SkScalar B = 2*(a - b - b + c);
427    SkScalar C = b - a;
428
429    return SkFindUnitQuadRoots(A, B, C, tValues);
430}
431
432void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
433    SkASSERT(t > 0 && t < SK_Scalar1);
434
435    Sk2s    p0 = from_point(src[0]);
436    Sk2s    p1 = from_point(src[1]);
437    Sk2s    p2 = from_point(src[2]);
438    Sk2s    p3 = from_point(src[3]);
439    Sk2s    tt(t);
440
441    Sk2s    ab = interp(p0, p1, tt);
442    Sk2s    bc = interp(p1, p2, tt);
443    Sk2s    cd = interp(p2, p3, tt);
444    Sk2s    abc = interp(ab, bc, tt);
445    Sk2s    bcd = interp(bc, cd, tt);
446    Sk2s    abcd = interp(abc, bcd, tt);
447
448    dst[0] = src[0];
449    dst[1] = to_point(ab);
450    dst[2] = to_point(abc);
451    dst[3] = to_point(abcd);
452    dst[4] = to_point(bcd);
453    dst[5] = to_point(cd);
454    dst[6] = src[3];
455}
456
457void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
458    Sk2s p0 = from_point(pts[0]);
459    Sk2s p1 = from_point(pts[1]);
460    Sk2s p2 = from_point(pts[2]);
461    Sk2s p3 = from_point(pts[3]);
462
463    const Sk2s three(3);
464    Sk2s p1minusp2 = p1 - p2;
465
466    Sk2s D = p0;
467    Sk2s A = p3 + three * p1minusp2 - D;
468    Sk2s B = three * (D - p1minusp2 - p1);
469    Sk2s C = three * (p1 - D);
470
471    coeff[0] = to_point(A);
472    coeff[1] = to_point(B);
473    coeff[2] = to_point(C);
474    coeff[3] = to_point(D);
475}
476
477/*  http://code.google.com/p/skia/issues/detail?id=32
478
479    This test code would fail when we didn't check the return result of
480    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
481    that after the first chop, the parameters to valid_unit_divide are equal
482    (thanks to finite float precision and rounding in the subtracts). Thus
483    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
484    up with 1.0, hence the need to check and just return the last cubic as
485    a degenerate clump of 4 points in the sampe place.
486
487    static void test_cubic() {
488        SkPoint src[4] = {
489            { 556.25000, 523.03003 },
490            { 556.23999, 522.96002 },
491            { 556.21997, 522.89001 },
492            { 556.21997, 522.82001 }
493        };
494        SkPoint dst[10];
495        SkScalar tval[] = { 0.33333334f, 0.99999994f };
496        SkChopCubicAt(src, dst, tval, 2);
497    }
498 */
499
500void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
501                   const SkScalar tValues[], int roots) {
502#ifdef SK_DEBUG
503    {
504        for (int i = 0; i < roots - 1; i++)
505        {
506            SkASSERT(is_unit_interval(tValues[i]));
507            SkASSERT(is_unit_interval(tValues[i+1]));
508            SkASSERT(tValues[i] < tValues[i+1]);
509        }
510    }
511#endif
512
513    if (dst) {
514        if (roots == 0) { // nothing to chop
515            memcpy(dst, src, 4*sizeof(SkPoint));
516        } else {
517            SkScalar    t = tValues[0];
518            SkPoint     tmp[4];
519
520            for (int i = 0; i < roots; i++) {
521                SkChopCubicAt(src, dst, t);
522                if (i == roots - 1) {
523                    break;
524                }
525
526                dst += 3;
527                // have src point to the remaining cubic (after the chop)
528                memcpy(tmp, dst, 4 * sizeof(SkPoint));
529                src = tmp;
530
531                // watch out in case the renormalized t isn't in range
532                if (!valid_unit_divide(tValues[i+1] - tValues[i],
533                                       SK_Scalar1 - tValues[i], &t)) {
534                    // if we can't, just create a degenerate cubic
535                    dst[4] = dst[5] = dst[6] = src[3];
536                    break;
537                }
538            }
539        }
540    }
541}
542
543void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
544    SkChopCubicAt(src, dst, 0.5f);
545}
546
547static void flatten_double_cubic_extrema(SkScalar coords[14]) {
548    coords[4] = coords[8] = coords[6];
549}
550
551/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
552    the resulting beziers are monotonic in Y. This is called by the scan
553    converter.  Depending on what is returned, dst[] is treated as follows:
554    0   dst[0..3] is the original cubic
555    1   dst[0..3] and dst[3..6] are the two new cubics
556    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
557    If dst == null, it is ignored and only the count is returned.
558*/
559int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
560    SkScalar    tValues[2];
561    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
562                                           src[3].fY, tValues);
563
564    SkChopCubicAt(src, dst, tValues, roots);
565    if (dst && roots > 0) {
566        // we do some cleanup to ensure our Y extrema are flat
567        flatten_double_cubic_extrema(&dst[0].fY);
568        if (roots == 2) {
569            flatten_double_cubic_extrema(&dst[3].fY);
570        }
571    }
572    return roots;
573}
574
575int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
576    SkScalar    tValues[2];
577    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
578                                           src[3].fX, tValues);
579
580    SkChopCubicAt(src, dst, tValues, roots);
581    if (dst && roots > 0) {
582        // we do some cleanup to ensure our Y extrema are flat
583        flatten_double_cubic_extrema(&dst[0].fX);
584        if (roots == 2) {
585            flatten_double_cubic_extrema(&dst[3].fX);
586        }
587    }
588    return roots;
589}
590
591/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
592
593    Inflection means that curvature is zero.
594    Curvature is [F' x F''] / [F'^3]
595    So we solve F'x X F''y - F'y X F''y == 0
596    After some canceling of the cubic term, we get
597    A = b - a
598    B = c - 2b + a
599    C = d - 3c + 3b - a
600    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
601*/
602int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
603    SkScalar    Ax = src[1].fX - src[0].fX;
604    SkScalar    Ay = src[1].fY - src[0].fY;
605    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
606    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
607    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
608    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
609
610    return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
611                               Ax*Cy - Ay*Cx,
612                               Ax*By - Ay*Bx,
613                               tValues);
614}
615
616int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
617    SkScalar    tValues[2];
618    int         count = SkFindCubicInflections(src, tValues);
619
620    if (dst) {
621        if (count == 0) {
622            memcpy(dst, src, 4 * sizeof(SkPoint));
623        } else {
624            SkChopCubicAt(src, dst, tValues, count);
625        }
626    }
627    return count + 1;
628}
629
630// See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
631// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
632// Classification:
633// discr(I) > 0        Serpentine
634// discr(I) = 0        Cusp
635// discr(I) < 0        Loop
636// d0 = d1 = 0         Quadratic
637// d0 = d1 = d2 = 0    Line
638// p0 = p1 = p2 = p3   Point
639static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
640    if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
641        return kPoint_SkCubicType;
642    }
643    const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
644    if (discr > SK_ScalarNearlyZero) {
645        return kSerpentine_SkCubicType;
646    } else if (discr < -SK_ScalarNearlyZero) {
647        return kLoop_SkCubicType;
648    } else {
649        if (0.f == d[0] && 0.f == d[1]) {
650            return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
651        } else {
652            return kCusp_SkCubicType;
653        }
654    }
655}
656
657// Assumes the third component of points is 1.
658// Calcs p0 . (p1 x p2)
659static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
660    const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
661    const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
662    const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
663    return (xComp + yComp + wComp);
664}
665
666// Calc coefficients of I(s,t) where roots of I are inflection points of curve
667// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
668// d0 = a1 - 2*a2+3*a3
669// d1 = -a2 + 3*a3
670// d2 = 3*a3
671// a1 = p0 . (p3 x p2)
672// a2 = p1 . (p0 x p3)
673// a3 = p2 . (p1 x p0)
674// Places the values of d1, d2, d3 in array d passed in
675static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
676    SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
677    SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
678    SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
679
680    // need to scale a's or values in later calculations will grow to high
681    SkScalar max = SkScalarAbs(a1);
682    max = SkMaxScalar(max, SkScalarAbs(a2));
683    max = SkMaxScalar(max, SkScalarAbs(a3));
684    max = 1.f/max;
685    a1 = a1 * max;
686    a2 = a2 * max;
687    a3 = a3 * max;
688
689    d[2] = 3.f * a3;
690    d[1] = d[2] - a2;
691    d[0] = d[1] - a2 + a1;
692}
693
694SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
695    calc_cubic_inflection_func(src, d);
696    return classify_cubic(src, d);
697}
698
699template <typename T> void bubble_sort(T array[], int count) {
700    for (int i = count - 1; i > 0; --i)
701        for (int j = i; j > 0; --j)
702            if (array[j] < array[j-1])
703            {
704                T   tmp(array[j]);
705                array[j] = array[j-1];
706                array[j-1] = tmp;
707            }
708}
709
710/**
711 *  Given an array and count, remove all pair-wise duplicates from the array,
712 *  keeping the existing sorting, and return the new count
713 */
714static int collaps_duplicates(SkScalar array[], int count) {
715    for (int n = count; n > 1; --n) {
716        if (array[0] == array[1]) {
717            for (int i = 1; i < n; ++i) {
718                array[i - 1] = array[i];
719            }
720            count -= 1;
721        } else {
722            array += 1;
723        }
724    }
725    return count;
726}
727
728#ifdef SK_DEBUG
729
730#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
731
732static void test_collaps_duplicates() {
733    static bool gOnce;
734    if (gOnce) { return; }
735    gOnce = true;
736    const SkScalar src0[] = { 0 };
737    const SkScalar src1[] = { 0, 0 };
738    const SkScalar src2[] = { 0, 1 };
739    const SkScalar src3[] = { 0, 0, 0 };
740    const SkScalar src4[] = { 0, 0, 1 };
741    const SkScalar src5[] = { 0, 1, 1 };
742    const SkScalar src6[] = { 0, 1, 2 };
743    const struct {
744        const SkScalar* fData;
745        int fCount;
746        int fCollapsedCount;
747    } data[] = {
748        { TEST_COLLAPS_ENTRY(src0), 1 },
749        { TEST_COLLAPS_ENTRY(src1), 1 },
750        { TEST_COLLAPS_ENTRY(src2), 2 },
751        { TEST_COLLAPS_ENTRY(src3), 1 },
752        { TEST_COLLAPS_ENTRY(src4), 2 },
753        { TEST_COLLAPS_ENTRY(src5), 2 },
754        { TEST_COLLAPS_ENTRY(src6), 3 },
755    };
756    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
757        SkScalar dst[3];
758        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
759        int count = collaps_duplicates(dst, data[i].fCount);
760        SkASSERT(data[i].fCollapsedCount == count);
761        for (int j = 1; j < count; ++j) {
762            SkASSERT(dst[j-1] < dst[j]);
763        }
764    }
765}
766#endif
767
768static SkScalar SkScalarCubeRoot(SkScalar x) {
769    return SkScalarPow(x, 0.3333333f);
770}
771
772/*  Solve coeff(t) == 0, returning the number of roots that
773    lie withing 0 < t < 1.
774    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
775
776    Eliminates repeated roots (so that all tValues are distinct, and are always
777    in increasing order.
778*/
779static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
780    if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
781        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
782    }
783
784    SkScalar a, b, c, Q, R;
785
786    {
787        SkASSERT(coeff[0] != 0);
788
789        SkScalar inva = SkScalarInvert(coeff[0]);
790        a = coeff[1] * inva;
791        b = coeff[2] * inva;
792        c = coeff[3] * inva;
793    }
794    Q = (a*a - b*3) / 9;
795    R = (2*a*a*a - 9*a*b + 27*c) / 54;
796
797    SkScalar Q3 = Q * Q * Q;
798    SkScalar R2MinusQ3 = R * R - Q3;
799    SkScalar adiv3 = a / 3;
800
801    SkScalar*   roots = tValues;
802    SkScalar    r;
803
804    if (R2MinusQ3 < 0) { // we have 3 real roots
805        SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
806        SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
807
808        r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
809        if (is_unit_interval(r)) {
810            *roots++ = r;
811        }
812        r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
813        if (is_unit_interval(r)) {
814            *roots++ = r;
815        }
816        r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
817        if (is_unit_interval(r)) {
818            *roots++ = r;
819        }
820        SkDEBUGCODE(test_collaps_duplicates();)
821
822        // now sort the roots
823        int count = (int)(roots - tValues);
824        SkASSERT((unsigned)count <= 3);
825        bubble_sort(tValues, count);
826        count = collaps_duplicates(tValues, count);
827        roots = tValues + count;    // so we compute the proper count below
828    } else {              // we have 1 real root
829        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
830        A = SkScalarCubeRoot(A);
831        if (R > 0) {
832            A = -A;
833        }
834        if (A != 0) {
835            A += Q / A;
836        }
837        r = A - adiv3;
838        if (is_unit_interval(r)) {
839            *roots++ = r;
840        }
841    }
842
843    return (int)(roots - tValues);
844}
845
846/*  Looking for F' dot F'' == 0
847
848    A = b - a
849    B = c - 2b + a
850    C = d - 3c + 3b - a
851
852    F' = 3Ct^2 + 6Bt + 3A
853    F'' = 6Ct + 6B
854
855    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
856*/
857static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
858    SkScalar    a = src[2] - src[0];
859    SkScalar    b = src[4] - 2 * src[2] + src[0];
860    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
861
862    coeff[0] = c * c;
863    coeff[1] = 3 * b * c;
864    coeff[2] = 2 * b * b + c * a;
865    coeff[3] = a * b;
866}
867
868/*  Looking for F' dot F'' == 0
869
870    A = b - a
871    B = c - 2b + a
872    C = d - 3c + 3b - a
873
874    F' = 3Ct^2 + 6Bt + 3A
875    F'' = 6Ct + 6B
876
877    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
878*/
879int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
880    SkScalar coeffX[4], coeffY[4];
881    int      i;
882
883    formulate_F1DotF2(&src[0].fX, coeffX);
884    formulate_F1DotF2(&src[0].fY, coeffY);
885
886    for (i = 0; i < 4; i++) {
887        coeffX[i] += coeffY[i];
888    }
889
890    SkScalar    t[3];
891    int         count = solve_cubic_poly(coeffX, t);
892    int         maxCount = 0;
893
894    // now remove extrema where the curvature is zero (mins)
895    // !!!! need a test for this !!!!
896    for (i = 0; i < count; i++) {
897        // if (not_min_curvature())
898        if (t[i] > 0 && t[i] < SK_Scalar1) {
899            tValues[maxCount++] = t[i];
900        }
901    }
902    return maxCount;
903}
904
905int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
906                              SkScalar tValues[3]) {
907    SkScalar    t_storage[3];
908
909    if (tValues == nullptr) {
910        tValues = t_storage;
911    }
912
913    int count = SkFindCubicMaxCurvature(src, tValues);
914
915    if (dst) {
916        if (count == 0) {
917            memcpy(dst, src, 4 * sizeof(SkPoint));
918        } else {
919            SkChopCubicAt(src, dst, tValues, count);
920        }
921    }
922    return count + 1;
923}
924
925#include "../pathops/SkPathOpsCubic.h"
926
927typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
928
929static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
930                                     InterceptProc method) {
931    SkDCubic cubic;
932    double roots[3];
933    int count = (cubic.set(src).*method)(intercept, roots);
934    if (count > 0) {
935        SkDCubicPair pair = cubic.chopAt(roots[0]);
936        for (int i = 0; i < 7; ++i) {
937            dst[i] = pair.pts[i].asSkPoint();
938        }
939        return true;
940    }
941    return false;
942}
943
944bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
945    return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
946}
947
948bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
949    return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
950}
951
952///////////////////////////////////////////////////////////////////////////////
953
954/*  Find t value for quadratic [a, b, c] = d.
955    Return 0 if there is no solution within [0, 1)
956*/
957static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
958    // At^2 + Bt + C = d
959    SkScalar A = a - 2 * b + c;
960    SkScalar B = 2 * (b - a);
961    SkScalar C = a - d;
962
963    SkScalar    roots[2];
964    int         count = SkFindUnitQuadRoots(A, B, C, roots);
965
966    SkASSERT(count <= 1);
967    return count == 1 ? roots[0] : 0;
968}
969
970/*  given a quad-curve and a point (x,y), chop the quad at that point and place
971    the new off-curve point and endpoint into 'dest'.
972    Should only return false if the computed pos is the start of the curve
973    (i.e. root == 0)
974*/
975static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
976                                SkPoint* dest) {
977    const SkScalar* base;
978    SkScalar        value;
979
980    if (SkScalarAbs(x) < SkScalarAbs(y)) {
981        base = &quad[0].fX;
982        value = x;
983    } else {
984        base = &quad[0].fY;
985        value = y;
986    }
987
988    // note: this returns 0 if it thinks value is out of range, meaning the
989    // root might return something outside of [0, 1)
990    SkScalar t = quad_solve(base[0], base[2], base[4], value);
991
992    if (t > 0) {
993        SkPoint tmp[5];
994        SkChopQuadAt(quad, tmp, t);
995        dest[0] = tmp[1];
996        dest[1].set(x, y);
997        return true;
998    } else {
999        /*  t == 0 means either the value triggered a root outside of [0, 1)
1000            For our purposes, we can ignore the <= 0 roots, but we want to
1001            catch the >= 1 roots (which given our caller, will basically mean
1002            a root of 1, give-or-take numerical instability). If we are in the
1003            >= 1 case, return the existing offCurve point.
1004
1005            The test below checks to see if we are close to the "end" of the
1006            curve (near base[4]). Rather than specifying a tolerance, I just
1007            check to see if value is on to the right/left of the middle point
1008            (depending on the direction/sign of the end points).
1009        */
1010        if ((base[0] < base[4] && value > base[2]) ||
1011            (base[0] > base[4] && value < base[2]))   // should root have been 1
1012        {
1013            dest[0] = quad[1];
1014            dest[1].set(x, y);
1015            return true;
1016        }
1017    }
1018    return false;
1019}
1020
1021static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1022// The mid point of the quadratic arc approximation is half way between the two
1023// control points. The float epsilon adjustment moves the on curve point out by
1024// two bits, distributing the convex test error between the round rect
1025// approximation and the convex cross product sign equality test.
1026#define SK_MID_RRECT_OFFSET \
1027    (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1028    { SK_Scalar1,            0                      },
1029    { SK_Scalar1,            SK_ScalarTanPIOver8    },
1030    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
1031    { SK_ScalarTanPIOver8,   SK_Scalar1             },
1032
1033    { 0,                     SK_Scalar1             },
1034    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
1035    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
1036    { -SK_Scalar1,           SK_ScalarTanPIOver8    },
1037
1038    { -SK_Scalar1,           0                      },
1039    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
1040    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
1041    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
1042
1043    { 0,                     -SK_Scalar1            },
1044    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
1045    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
1046    { SK_Scalar1,            -SK_ScalarTanPIOver8   },
1047
1048    { SK_Scalar1,            0                      }
1049#undef SK_MID_RRECT_OFFSET
1050};
1051
1052int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1053                   SkRotationDirection dir, const SkMatrix* userMatrix,
1054                   SkPoint quadPoints[]) {
1055    // rotate by x,y so that uStart is (1.0)
1056    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1057    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1058
1059    SkScalar absX = SkScalarAbs(x);
1060    SkScalar absY = SkScalarAbs(y);
1061
1062    int pointCount;
1063
1064    // check for (effectively) coincident vectors
1065    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1066    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1067    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1068        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1069         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1070
1071        // just return the start-point
1072        quadPoints[0].set(SK_Scalar1, 0);
1073        pointCount = 1;
1074    } else {
1075        if (dir == kCCW_SkRotationDirection) {
1076            y = -y;
1077        }
1078        // what octant (quadratic curve) is [xy] in?
1079        int oct = 0;
1080        bool sameSign = true;
1081
1082        if (0 == y) {
1083            oct = 4;        // 180
1084            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1085        } else if (0 == x) {
1086            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1087            oct = y > 0 ? 2 : 6; // 90 : 270
1088        } else {
1089            if (y < 0) {
1090                oct += 4;
1091            }
1092            if ((x < 0) != (y < 0)) {
1093                oct += 2;
1094                sameSign = false;
1095            }
1096            if ((absX < absY) == sameSign) {
1097                oct += 1;
1098            }
1099        }
1100
1101        int wholeCount = oct << 1;
1102        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1103
1104        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1105        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
1106            wholeCount += 2;
1107        }
1108        pointCount = wholeCount + 1;
1109    }
1110
1111    // now handle counter-clockwise and the initial unitStart rotation
1112    SkMatrix    matrix;
1113    matrix.setSinCos(uStart.fY, uStart.fX);
1114    if (dir == kCCW_SkRotationDirection) {
1115        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1116    }
1117    if (userMatrix) {
1118        matrix.postConcat(*userMatrix);
1119    }
1120    matrix.mapPoints(quadPoints, pointCount);
1121    return pointCount;
1122}
1123
1124
1125///////////////////////////////////////////////////////////////////////////////
1126//
1127// NURB representation for conics.  Helpful explanations at:
1128//
1129// http://citeseerx.ist.psu.edu/viewdoc/
1130//   download?doi=10.1.1.44.5740&rep=rep1&type=ps
1131// and
1132// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1133//
1134// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1135//     ------------------------------------------
1136//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1137//
1138//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1139//     ------------------------------------------------
1140//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1141//
1142
1143// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1144//
1145//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1146//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1147//  t^0 : -2 P0 w + 2 P1 w
1148//
1149//  We disregard magnitude, so we can freely ignore the denominator of F', and
1150//  divide the numerator by 2
1151//
1152//    coeff[0] for t^2
1153//    coeff[1] for t^1
1154//    coeff[2] for t^0
1155//
1156static void conic_deriv_coeff(const SkScalar src[],
1157                              SkScalar w,
1158                              SkScalar coeff[3]) {
1159    const SkScalar P20 = src[4] - src[0];
1160    const SkScalar P10 = src[2] - src[0];
1161    const SkScalar wP10 = w * P10;
1162    coeff[0] = w * P20 - P20;
1163    coeff[1] = P20 - 2 * wP10;
1164    coeff[2] = wP10;
1165}
1166
1167static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1168    SkScalar coeff[3];
1169    conic_deriv_coeff(src, w, coeff);
1170
1171    SkScalar tValues[2];
1172    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1173    SkASSERT(0 == roots || 1 == roots);
1174
1175    if (1 == roots) {
1176        *t = tValues[0];
1177        return true;
1178    }
1179    return false;
1180}
1181
1182struct SkP3D {
1183    SkScalar fX, fY, fZ;
1184
1185    void set(SkScalar x, SkScalar y, SkScalar z) {
1186        fX = x; fY = y; fZ = z;
1187    }
1188
1189    void projectDown(SkPoint* dst) const {
1190        dst->set(fX / fZ, fY / fZ);
1191    }
1192};
1193
1194// We only interpolate one dimension at a time (the first, at +0, +3, +6).
1195static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1196    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1197    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1198    dst[0] = ab;
1199    dst[3] = SkScalarInterp(ab, bc, t);
1200    dst[6] = bc;
1201}
1202
1203static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1204    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1205    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1206    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1207}
1208
1209void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1210    SkP3D tmp[3], tmp2[3];
1211
1212    ratquad_mapTo3D(fPts, fW, tmp);
1213
1214    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1215    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1216    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1217
1218    dst[0].fPts[0] = fPts[0];
1219    tmp2[0].projectDown(&dst[0].fPts[1]);
1220    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1221    tmp2[2].projectDown(&dst[1].fPts[1]);
1222    dst[1].fPts[2] = fPts[2];
1223
1224    // to put in "standard form", where w0 and w2 are both 1, we compute the
1225    // new w1 as sqrt(w1*w1/w0*w2)
1226    // or
1227    // w1 /= sqrt(w0*w2)
1228    //
1229    // However, in our case, we know that for dst[0]:
1230    //     w0 == 1, and for dst[1], w2 == 1
1231    //
1232    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1233    dst[0].fW = tmp2[0].fZ / root;
1234    dst[1].fW = tmp2[2].fZ / root;
1235}
1236
1237void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1238    if (0 == t1 || 1 == t2) {
1239        if (0 == t1 && 1 == t2) {
1240            *dst = *this;
1241        } else {
1242            SkConic pair[2];
1243            this->chopAt(t1 ? t1 : t2, pair);
1244            *dst = pair[SkToBool(t1)];
1245        }
1246        return;
1247    }
1248    SkConicCoeff coeff(*this);
1249    Sk2s tt1(t1);
1250    Sk2s aXY = coeff.fNumer.eval(tt1);
1251    Sk2s aZZ = coeff.fDenom.eval(tt1);
1252    Sk2s midTT((t1 + t2) / 2);
1253    Sk2s dXY = coeff.fNumer.eval(midTT);
1254    Sk2s dZZ = coeff.fDenom.eval(midTT);
1255    Sk2s tt2(t2);
1256    Sk2s cXY = coeff.fNumer.eval(tt2);
1257    Sk2s cZZ = coeff.fDenom.eval(tt2);
1258    Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1259    Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1260    dst->fPts[0] = to_point(aXY / aZZ);
1261    dst->fPts[1] = to_point(bXY / bZZ);
1262    dst->fPts[2] = to_point(cXY / cZZ);
1263    Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1264    dst->fW = ww.kth<0>();
1265}
1266
1267SkPoint SkConic::evalAt(SkScalar t) const {
1268    Sk2s p0 = from_point(fPts[0]);
1269    Sk2s p1 = from_point(fPts[1]);
1270    Sk2s p2 = from_point(fPts[2]);
1271    Sk2s tt(t);
1272    Sk2s ww(fW);
1273    Sk2s one(1);
1274
1275    Sk2s p1w = p1 * ww;
1276    Sk2s C = p0;
1277    Sk2s A = p2 - times_2(p1w) + p0;
1278    Sk2s B = times_2(p1w - C);
1279    Sk2s numer = quad_poly_eval(A, B, C, tt);
1280
1281    B = times_2(ww - one);
1282    A = Sk2s(0)-B;
1283    Sk2s denom = quad_poly_eval(A, B, one, tt);
1284
1285    return to_point(numer / denom);
1286}
1287
1288SkVector SkConic::evalTangentAt(SkScalar t) const {
1289    // The derivative equation returns a zero tangent vector when t is 0 or 1,
1290    // and the control point is equal to the end point.
1291    // In this case, use the conic endpoints to compute the tangent.
1292    if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1293        return fPts[2] - fPts[0];
1294    }
1295    Sk2s p0 = from_point(fPts[0]);
1296    Sk2s p1 = from_point(fPts[1]);
1297    Sk2s p2 = from_point(fPts[2]);
1298    Sk2s ww(fW);
1299
1300    Sk2s p20 = p2 - p0;
1301    Sk2s p10 = p1 - p0;
1302
1303    Sk2s C = ww * p10;
1304    Sk2s A = ww * p20 - p20;
1305    Sk2s B = p20 - C - C;
1306
1307    return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
1308}
1309
1310void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1311    SkASSERT(t >= 0 && t <= SK_Scalar1);
1312
1313    if (pt) {
1314        *pt = this->evalAt(t);
1315    }
1316    if (tangent) {
1317        *tangent = this->evalTangentAt(t);
1318    }
1319}
1320
1321static SkScalar subdivide_w_value(SkScalar w) {
1322    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1323}
1324
1325static Sk2s twice(const Sk2s& value) {
1326    return value + value;
1327}
1328
1329void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1330    Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1331    SkScalar newW = subdivide_w_value(fW);
1332
1333    Sk2s p0 = from_point(fPts[0]);
1334    Sk2s p1 = from_point(fPts[1]);
1335    Sk2s p2 = from_point(fPts[2]);
1336    Sk2s ww(fW);
1337
1338    Sk2s wp1 = ww * p1;
1339    Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
1340
1341    dst[0].fPts[0] = fPts[0];
1342    dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1343    dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1344    dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1345    dst[1].fPts[2] = fPts[2];
1346
1347    dst[0].fW = dst[1].fW = newW;
1348}
1349
1350/*
1351 *  "High order approximation of conic sections by quadratic splines"
1352 *      by Michael Floater, 1993
1353 */
1354#define AS_QUAD_ERROR_SETUP                                         \
1355    SkScalar a = fW - 1;                                            \
1356    SkScalar k = a / (4 * (2 + a));                                 \
1357    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1358    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1359
1360void SkConic::computeAsQuadError(SkVector* err) const {
1361    AS_QUAD_ERROR_SETUP
1362    err->set(x, y);
1363}
1364
1365bool SkConic::asQuadTol(SkScalar tol) const {
1366    AS_QUAD_ERROR_SETUP
1367    return (x * x + y * y) <= tol * tol;
1368}
1369
1370// Limit the number of suggested quads to approximate a conic
1371#define kMaxConicToQuadPOW2     5
1372
1373int SkConic::computeQuadPOW2(SkScalar tol) const {
1374    if (tol < 0 || !SkScalarIsFinite(tol)) {
1375        return 0;
1376    }
1377
1378    AS_QUAD_ERROR_SETUP
1379
1380    SkScalar error = SkScalarSqrt(x * x + y * y);
1381    int pow2;
1382    for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1383        if (error <= tol) {
1384            break;
1385        }
1386        error *= 0.25f;
1387    }
1388    // float version -- using ceil gives the same results as the above.
1389    if (false) {
1390        SkScalar err = SkScalarSqrt(x * x + y * y);
1391        if (err <= tol) {
1392            return 0;
1393        }
1394        SkScalar tol2 = tol * tol;
1395        if (tol2 == 0) {
1396            return kMaxConicToQuadPOW2;
1397        }
1398        SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1399        int altPow2 = SkScalarCeilToInt(fpow2);
1400        if (altPow2 != pow2) {
1401            SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1402        }
1403        pow2 = altPow2;
1404    }
1405    return pow2;
1406}
1407
1408static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1409    SkASSERT(level >= 0);
1410
1411    if (0 == level) {
1412        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1413        return pts + 2;
1414    } else {
1415        SkConic dst[2];
1416        src.chop(dst);
1417        --level;
1418        pts = subdivide(dst[0], pts, level);
1419        return subdivide(dst[1], pts, level);
1420    }
1421}
1422
1423int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1424    SkASSERT(pow2 >= 0);
1425    *pts = fPts[0];
1426    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1427    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1428    return 1 << pow2;
1429}
1430
1431bool SkConic::findXExtrema(SkScalar* t) const {
1432    return conic_find_extrema(&fPts[0].fX, fW, t);
1433}
1434
1435bool SkConic::findYExtrema(SkScalar* t) const {
1436    return conic_find_extrema(&fPts[0].fY, fW, t);
1437}
1438
1439bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1440    SkScalar t;
1441    if (this->findXExtrema(&t)) {
1442        this->chopAt(t, dst);
1443        // now clean-up the middle, since we know t was meant to be at
1444        // an X-extrema
1445        SkScalar value = dst[0].fPts[2].fX;
1446        dst[0].fPts[1].fX = value;
1447        dst[1].fPts[0].fX = value;
1448        dst[1].fPts[1].fX = value;
1449        return true;
1450    }
1451    return false;
1452}
1453
1454bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1455    SkScalar t;
1456    if (this->findYExtrema(&t)) {
1457        this->chopAt(t, dst);
1458        // now clean-up the middle, since we know t was meant to be at
1459        // an Y-extrema
1460        SkScalar value = dst[0].fPts[2].fY;
1461        dst[0].fPts[1].fY = value;
1462        dst[1].fPts[0].fY = value;
1463        dst[1].fPts[1].fY = value;
1464        return true;
1465    }
1466    return false;
1467}
1468
1469void SkConic::computeTightBounds(SkRect* bounds) const {
1470    SkPoint pts[4];
1471    pts[0] = fPts[0];
1472    pts[1] = fPts[2];
1473    int count = 2;
1474
1475    SkScalar t;
1476    if (this->findXExtrema(&t)) {
1477        this->evalAt(t, &pts[count++]);
1478    }
1479    if (this->findYExtrema(&t)) {
1480        this->evalAt(t, &pts[count++]);
1481    }
1482    bounds->set(pts, count);
1483}
1484
1485void SkConic::computeFastBounds(SkRect* bounds) const {
1486    bounds->set(fPts, 3);
1487}
1488
1489#if 0  // unimplemented
1490bool SkConic::findMaxCurvature(SkScalar* t) const {
1491    // TODO: Implement me
1492    return false;
1493}
1494#endif
1495
1496SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1497                             const SkMatrix& matrix) {
1498    if (!matrix.hasPerspective()) {
1499        return w;
1500    }
1501
1502    SkP3D src[3], dst[3];
1503
1504    ratquad_mapTo3D(pts, w, src);
1505
1506    matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1507
1508    // w' = sqrt(w1*w1/w0*w2)
1509    SkScalar w0 = dst[0].fZ;
1510    SkScalar w1 = dst[1].fZ;
1511    SkScalar w2 = dst[2].fZ;
1512    w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1513    return w;
1514}
1515
1516int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1517                          const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1518    // rotate by x,y so that uStart is (1.0)
1519    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1520    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1521
1522    SkScalar absY = SkScalarAbs(y);
1523
1524    // check for (effectively) coincident vectors
1525    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1526    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1527    if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1528                                                 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1529        return 0;
1530    }
1531
1532    if (dir == kCCW_SkRotationDirection) {
1533        y = -y;
1534    }
1535
1536    // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1537    //      0 == [0  .. 90)
1538    //      1 == [90 ..180)
1539    //      2 == [180..270)
1540    //      3 == [270..360)
1541    //
1542    int quadrant = 0;
1543    if (0 == y) {
1544        quadrant = 2;        // 180
1545        SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1546    } else if (0 == x) {
1547        SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1548        quadrant = y > 0 ? 1 : 3; // 90 : 270
1549    } else {
1550        if (y < 0) {
1551            quadrant += 2;
1552        }
1553        if ((x < 0) != (y < 0)) {
1554            quadrant += 1;
1555        }
1556    }
1557
1558    const SkPoint quadrantPts[] = {
1559        { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1560    };
1561    const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1562
1563    int conicCount = quadrant;
1564    for (int i = 0; i < conicCount; ++i) {
1565        dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1566    }
1567
1568    // Now compute any remaing (sub-90-degree) arc for the last conic
1569    const SkPoint finalP = { x, y };
1570    const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1571    const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1572    SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1573
1574    if (dot < 1) {
1575        SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1576        // compute the bisector vector, and then rescale to be the off-curve point.
1577        // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1578        // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1579        // This is nice, since our computed weight is cos(theta/2) as well!
1580        //
1581        const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1582        offCurve.setLength(SkScalarInvert(cosThetaOver2));
1583        dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1584        conicCount += 1;
1585    }
1586
1587    // now handle counter-clockwise and the initial unitStart rotation
1588    SkMatrix    matrix;
1589    matrix.setSinCos(uStart.fY, uStart.fX);
1590    if (dir == kCCW_SkRotationDirection) {
1591        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1592    }
1593    if (userMatrix) {
1594        matrix.postConcat(*userMatrix);
1595    }
1596    for (int i = 0; i < conicCount; ++i) {
1597        matrix.mapPoints(dst[i].fPts, 3);
1598    }
1599    return conicCount;
1600}
1601