SkGeometry.cpp revision bf0001d0472d727266762c5967ec0d919a6df083
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGeometry.h"
9#include "SkMatrix.h"
10
11bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
12    if (ambiguous) {
13        *ambiguous = false;
14    }
15    // Determine quick discards.
16    // Consider query line going exactly through point 0 to not
17    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
18    if (pt.fY == pts[0].fY) {
19        if (ambiguous) {
20            *ambiguous = true;
21        }
22        return false;
23    }
24    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
25        return false;
26    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
27        return false;
28    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
29        return false;
30    // Determine degenerate cases
31    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
32        return false;
33    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
34        // We've already determined the query point lies within the
35        // vertical range of the line segment.
36        if (pt.fX <= pts[0].fX) {
37            if (ambiguous) {
38                *ambiguous = (pt.fY == pts[1].fY);
39            }
40            return true;
41        }
42        return false;
43    }
44    // Ambiguity check
45    if (pt.fY == pts[1].fY) {
46        if (pt.fX <= pts[1].fX) {
47            if (ambiguous) {
48                *ambiguous = true;
49            }
50            return true;
51        }
52        return false;
53    }
54    // Full line segment evaluation
55    SkScalar delta_y = pts[1].fY - pts[0].fY;
56    SkScalar delta_x = pts[1].fX - pts[0].fX;
57    SkScalar slope = SkScalarDiv(delta_y, delta_x);
58    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
59    // Solve for x coordinate at y = pt.fY
60    SkScalar x = SkScalarDiv(pt.fY - b, slope);
61    return pt.fX <= x;
62}
63
64/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
65    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
66    May also introduce overflow of fixed when we compute our setup.
67*/
68//    #define DIRECT_EVAL_OF_POLYNOMIALS
69
70////////////////////////////////////////////////////////////////////////
71
72static int is_not_monotonic(float a, float b, float c) {
73    float ab = a - b;
74    float bc = b - c;
75    if (ab < 0) {
76        bc = -bc;
77    }
78    return ab == 0 || bc < 0;
79}
80
81////////////////////////////////////////////////////////////////////////
82
83static bool is_unit_interval(SkScalar x)
84{
85    return x > 0 && x < SK_Scalar1;
86}
87
88static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
89{
90    SkASSERT(ratio);
91
92    if (numer < 0)
93    {
94        numer = -numer;
95        denom = -denom;
96    }
97
98    if (denom == 0 || numer == 0 || numer >= denom)
99        return 0;
100
101    SkScalar r = SkScalarDiv(numer, denom);
102    if (SkScalarIsNaN(r)) {
103        return 0;
104    }
105    SkASSERT(r >= 0 && r < SK_Scalar1);
106    if (r == 0) // catch underflow if numer <<<< denom
107        return 0;
108    *ratio = r;
109    return 1;
110}
111
112/** From Numerical Recipes in C.
113
114    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
115    x1 = Q / A
116    x2 = C / Q
117*/
118int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
119{
120    SkASSERT(roots);
121
122    if (A == 0)
123        return valid_unit_divide(-C, B, roots);
124
125    SkScalar* r = roots;
126
127    float R = B*B - 4*A*C;
128    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
129        return 0;
130    }
131    R = sk_float_sqrt(R);
132
133    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
134    r += valid_unit_divide(Q, A, r);
135    r += valid_unit_divide(C, Q, r);
136    if (r - roots == 2)
137    {
138        if (roots[0] > roots[1])
139            SkTSwap<SkScalar>(roots[0], roots[1]);
140        else if (roots[0] == roots[1])  // nearly-equal?
141            r -= 1; // skip the double root
142    }
143    return (int)(r - roots);
144}
145
146///////////////////////////////////////////////////////////////////////////////
147///////////////////////////////////////////////////////////////////////////////
148
149static SkScalar eval_quad(const SkScalar src[], SkScalar t)
150{
151    SkASSERT(src);
152    SkASSERT(t >= 0 && t <= SK_Scalar1);
153
154#ifdef DIRECT_EVAL_OF_POLYNOMIALS
155    SkScalar    C = src[0];
156    SkScalar    A = src[4] - 2 * src[2] + C;
157    SkScalar    B = 2 * (src[2] - C);
158    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
159#else
160    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
161    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
162    return SkScalarInterp(ab, bc, t);
163#endif
164}
165
166static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
167{
168    SkScalar A = src[4] - 2 * src[2] + src[0];
169    SkScalar B = src[2] - src[0];
170
171    return 2 * SkScalarMulAdd(A, t, B);
172}
173
174static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
175{
176    SkScalar A = src[4] - 2 * src[2] + src[0];
177    SkScalar B = src[2] - src[0];
178    return A + 2 * B;
179}
180
181void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
182{
183    SkASSERT(src);
184    SkASSERT(t >= 0 && t <= SK_Scalar1);
185
186    if (pt)
187        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
188    if (tangent)
189        tangent->set(eval_quad_derivative(&src[0].fX, t),
190                     eval_quad_derivative(&src[0].fY, t));
191}
192
193void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
194{
195    SkASSERT(src);
196
197    if (pt)
198    {
199        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
200        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
201        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
202        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
203        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
204    }
205    if (tangent)
206        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
207                     eval_quad_derivative_at_half(&src[0].fY));
208}
209
210static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
211{
212    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
213    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
214
215    dst[0] = src[0];
216    dst[2] = ab;
217    dst[4] = SkScalarInterp(ab, bc, t);
218    dst[6] = bc;
219    dst[8] = src[4];
220}
221
222void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
223{
224    SkASSERT(t > 0 && t < SK_Scalar1);
225
226    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
227    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
228}
229
230void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
231{
232    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
233    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
234    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
235    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
236
237    dst[0] = src[0];
238    dst[1].set(x01, y01);
239    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
240    dst[3].set(x12, y12);
241    dst[4] = src[2];
242}
243
244/** Quad'(t) = At + B, where
245    A = 2(a - 2b + c)
246    B = 2(b - a)
247    Solve for t, only if it fits between 0 < t < 1
248*/
249int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
250{
251    /*  At + B == 0
252        t = -B / A
253    */
254    return valid_unit_divide(a - b, a - b - b + c, tValue);
255}
256
257static inline void flatten_double_quad_extrema(SkScalar coords[14])
258{
259    coords[2] = coords[6] = coords[4];
260}
261
262/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
263 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
264 */
265int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
266{
267    SkASSERT(src);
268    SkASSERT(dst);
269
270#if 0
271    static bool once = true;
272    if (once)
273    {
274        once = false;
275        SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
276        SkPoint d[6];
277
278        int n = SkChopQuadAtYExtrema(s, d);
279        SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
280    }
281#endif
282
283    SkScalar a = src[0].fY;
284    SkScalar b = src[1].fY;
285    SkScalar c = src[2].fY;
286
287    if (is_not_monotonic(a, b, c))
288    {
289        SkScalar    tValue;
290        if (valid_unit_divide(a - b, a - b - b + c, &tValue))
291        {
292            SkChopQuadAt(src, dst, tValue);
293            flatten_double_quad_extrema(&dst[0].fY);
294            return 1;
295        }
296        // if we get here, we need to force dst to be monotonic, even though
297        // we couldn't compute a unit_divide value (probably underflow).
298        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
299    }
300    dst[0].set(src[0].fX, a);
301    dst[1].set(src[1].fX, b);
302    dst[2].set(src[2].fX, c);
303    return 0;
304}
305
306/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
307    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
308 */
309int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
310{
311    SkASSERT(src);
312    SkASSERT(dst);
313
314    SkScalar a = src[0].fX;
315    SkScalar b = src[1].fX;
316    SkScalar c = src[2].fX;
317
318    if (is_not_monotonic(a, b, c)) {
319        SkScalar tValue;
320        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
321            SkChopQuadAt(src, dst, tValue);
322            flatten_double_quad_extrema(&dst[0].fX);
323            return 1;
324        }
325        // if we get here, we need to force dst to be monotonic, even though
326        // we couldn't compute a unit_divide value (probably underflow).
327        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
328    }
329    dst[0].set(a, src[0].fY);
330    dst[1].set(b, src[1].fY);
331    dst[2].set(c, src[2].fY);
332    return 0;
333}
334
335//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
336//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
337//  F''(t)  = 2 (a - 2b + c)
338//
339//  A = 2 (b - a)
340//  B = 2 (a - 2b + c)
341//
342//  Maximum curvature for a quadratic means solving
343//  Fx' Fx'' + Fy' Fy'' = 0
344//
345//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
346//
347float SkFindQuadMaxCurvature(const SkPoint src[3]) {
348    SkScalar    Ax = src[1].fX - src[0].fX;
349    SkScalar    Ay = src[1].fY - src[0].fY;
350    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
351    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
352    SkScalar    t = 0;  // 0 means don't chop
353
354    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
355    return t;
356}
357
358int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
359{
360    SkScalar t = SkFindQuadMaxCurvature(src);
361    if (t == 0) {
362        memcpy(dst, src, 3 * sizeof(SkPoint));
363        return 1;
364    } else {
365        SkChopQuadAt(src, dst, t);
366        return 2;
367    }
368}
369
370#define SK_ScalarTwoThirds  (0.666666666f)
371
372void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
373    const SkScalar scale = SK_ScalarTwoThirds;
374    dst[0] = src[0];
375    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
376               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
377    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
378               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
379    dst[3] = src[2];
380}
381
382////////////////////////////////////////////////////////////////////////////////////////
383///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
384////////////////////////////////////////////////////////////////////////////////////////
385
386static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
387{
388    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
389    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
390    coeff[2] = 3*(pt[2] - pt[0]);
391    coeff[3] = pt[0];
392}
393
394void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
395{
396    SkASSERT(pts);
397
398    if (cx)
399        get_cubic_coeff(&pts[0].fX, cx);
400    if (cy)
401        get_cubic_coeff(&pts[0].fY, cy);
402}
403
404static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
405{
406    SkASSERT(src);
407    SkASSERT(t >= 0 && t <= SK_Scalar1);
408
409    if (t == 0)
410        return src[0];
411
412#ifdef DIRECT_EVAL_OF_POLYNOMIALS
413    SkScalar D = src[0];
414    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
415    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
416    SkScalar C = 3*(src[2] - D);
417
418    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
419#else
420    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
421    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
422    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
423    SkScalar    abc = SkScalarInterp(ab, bc, t);
424    SkScalar    bcd = SkScalarInterp(bc, cd, t);
425    return SkScalarInterp(abc, bcd, t);
426#endif
427}
428
429/** return At^2 + Bt + C
430*/
431static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
432{
433    SkASSERT(t >= 0 && t <= SK_Scalar1);
434
435    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
436}
437
438static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
439{
440    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
441    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
442    SkScalar C = src[2] - src[0];
443
444    return eval_quadratic(A, B, C, t);
445}
446
447static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
448{
449    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
450    SkScalar B = src[4] - 2 * src[2] + src[0];
451
452    return SkScalarMulAdd(A, t, B);
453}
454
455void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
456{
457    SkASSERT(src);
458    SkASSERT(t >= 0 && t <= SK_Scalar1);
459
460    if (loc)
461        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
462    if (tangent)
463        tangent->set(eval_cubic_derivative(&src[0].fX, t),
464                     eval_cubic_derivative(&src[0].fY, t));
465    if (curvature)
466        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
467                       eval_cubic_2ndDerivative(&src[0].fY, t));
468}
469
470/** Cubic'(t) = At^2 + Bt + C, where
471    A = 3(-a + 3(b - c) + d)
472    B = 6(a - 2b + c)
473    C = 3(b - a)
474    Solve for t, keeping only those that fit betwee 0 < t < 1
475*/
476int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
477{
478    // we divide A,B,C by 3 to simplify
479    SkScalar A = d - a + 3*(b - c);
480    SkScalar B = 2*(a - b - b + c);
481    SkScalar C = b - a;
482
483    return SkFindUnitQuadRoots(A, B, C, tValues);
484}
485
486static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
487{
488    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
489    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
490    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
491    SkScalar    abc = SkScalarInterp(ab, bc, t);
492    SkScalar    bcd = SkScalarInterp(bc, cd, t);
493    SkScalar    abcd = SkScalarInterp(abc, bcd, t);
494
495    dst[0] = src[0];
496    dst[2] = ab;
497    dst[4] = abc;
498    dst[6] = abcd;
499    dst[8] = bcd;
500    dst[10] = cd;
501    dst[12] = src[6];
502}
503
504void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
505{
506    SkASSERT(t > 0 && t < SK_Scalar1);
507
508    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
509    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
510}
511
512/*  http://code.google.com/p/skia/issues/detail?id=32
513
514    This test code would fail when we didn't check the return result of
515    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
516    that after the first chop, the parameters to valid_unit_divide are equal
517    (thanks to finite float precision and rounding in the subtracts). Thus
518    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
519    up with 1.0, hence the need to check and just return the last cubic as
520    a degenerate clump of 4 points in the sampe place.
521
522    static void test_cubic() {
523        SkPoint src[4] = {
524            { 556.25000, 523.03003 },
525            { 556.23999, 522.96002 },
526            { 556.21997, 522.89001 },
527            { 556.21997, 522.82001 }
528        };
529        SkPoint dst[10];
530        SkScalar tval[] = { 0.33333334f, 0.99999994f };
531        SkChopCubicAt(src, dst, tval, 2);
532    }
533 */
534
535void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
536{
537#ifdef SK_DEBUG
538    {
539        for (int i = 0; i < roots - 1; i++)
540        {
541            SkASSERT(is_unit_interval(tValues[i]));
542            SkASSERT(is_unit_interval(tValues[i+1]));
543            SkASSERT(tValues[i] < tValues[i+1]);
544        }
545    }
546#endif
547
548    if (dst)
549    {
550        if (roots == 0) // nothing to chop
551            memcpy(dst, src, 4*sizeof(SkPoint));
552        else
553        {
554            SkScalar    t = tValues[0];
555            SkPoint     tmp[4];
556
557            for (int i = 0; i < roots; i++)
558            {
559                SkChopCubicAt(src, dst, t);
560                if (i == roots - 1)
561                    break;
562
563                dst += 3;
564                // have src point to the remaining cubic (after the chop)
565                memcpy(tmp, dst, 4 * sizeof(SkPoint));
566                src = tmp;
567
568                // watch out in case the renormalized t isn't in range
569                if (!valid_unit_divide(tValues[i+1] - tValues[i],
570                                       SK_Scalar1 - tValues[i], &t)) {
571                    // if we can't, just create a degenerate cubic
572                    dst[4] = dst[5] = dst[6] = src[3];
573                    break;
574                }
575            }
576        }
577    }
578}
579
580void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
581{
582    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
583    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
584    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
585    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
586    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
587    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
588
589    SkScalar x012 = SkScalarAve(x01, x12);
590    SkScalar y012 = SkScalarAve(y01, y12);
591    SkScalar x123 = SkScalarAve(x12, x23);
592    SkScalar y123 = SkScalarAve(y12, y23);
593
594    dst[0] = src[0];
595    dst[1].set(x01, y01);
596    dst[2].set(x012, y012);
597    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
598    dst[4].set(x123, y123);
599    dst[5].set(x23, y23);
600    dst[6] = src[3];
601}
602
603static void flatten_double_cubic_extrema(SkScalar coords[14])
604{
605    coords[4] = coords[8] = coords[6];
606}
607
608/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
609    the resulting beziers are monotonic in Y. This is called by the scan converter.
610    Depending on what is returned, dst[] is treated as follows
611    0   dst[0..3] is the original cubic
612    1   dst[0..3] and dst[3..6] are the two new cubics
613    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
614    If dst == null, it is ignored and only the count is returned.
615*/
616int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
617    SkScalar    tValues[2];
618    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
619                                           src[3].fY, tValues);
620
621    SkChopCubicAt(src, dst, tValues, roots);
622    if (dst && roots > 0) {
623        // we do some cleanup to ensure our Y extrema are flat
624        flatten_double_cubic_extrema(&dst[0].fY);
625        if (roots == 2) {
626            flatten_double_cubic_extrema(&dst[3].fY);
627        }
628    }
629    return roots;
630}
631
632int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
633    SkScalar    tValues[2];
634    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
635                                           src[3].fX, tValues);
636
637    SkChopCubicAt(src, dst, tValues, roots);
638    if (dst && roots > 0) {
639        // we do some cleanup to ensure our Y extrema are flat
640        flatten_double_cubic_extrema(&dst[0].fX);
641        if (roots == 2) {
642            flatten_double_cubic_extrema(&dst[3].fX);
643        }
644    }
645    return roots;
646}
647
648/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
649
650    Inflection means that curvature is zero.
651    Curvature is [F' x F''] / [F'^3]
652    So we solve F'x X F''y - F'y X F''y == 0
653    After some canceling of the cubic term, we get
654    A = b - a
655    B = c - 2b + a
656    C = d - 3c + 3b - a
657    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
658*/
659int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
660{
661    SkScalar    Ax = src[1].fX - src[0].fX;
662    SkScalar    Ay = src[1].fY - src[0].fY;
663    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
664    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
665    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
666    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
667
668    return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
669}
670
671int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
672{
673    SkScalar    tValues[2];
674    int         count = SkFindCubicInflections(src, tValues);
675
676    if (dst)
677    {
678        if (count == 0)
679            memcpy(dst, src, 4 * sizeof(SkPoint));
680        else
681            SkChopCubicAt(src, dst, tValues, count);
682    }
683    return count + 1;
684}
685
686template <typename T> void bubble_sort(T array[], int count)
687{
688    for (int i = count - 1; i > 0; --i)
689        for (int j = i; j > 0; --j)
690            if (array[j] < array[j-1])
691            {
692                T   tmp(array[j]);
693                array[j] = array[j-1];
694                array[j-1] = tmp;
695            }
696}
697
698// newton refinement
699#if 0
700static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
701{
702    //  x1 = x0 - f(t) / f'(t)
703
704    SkFP    T = SkScalarToFloat(root);
705    SkFP    N, D;
706
707    // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
708    D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
709    D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
710    D = SkFPAdd(D, coeff[2]);
711
712    if (D == 0)
713        return root;
714
715    // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
716    N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
717    N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
718    N = SkFPAdd(N, SkFPMul(T, coeff[2]));
719    N = SkFPAdd(N, coeff[3]);
720
721    if (N)
722    {
723        SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
724
725        if (delta)
726            root -= delta;
727    }
728    return root;
729}
730#endif
731
732/**
733 *  Given an array and count, remove all pair-wise duplicates from the array,
734 *  keeping the existing sorting, and return the new count
735 */
736static int collaps_duplicates(float array[], int count) {
737    for (int n = count; n > 1; --n) {
738        if (array[0] == array[1]) {
739            for (int i = 1; i < n; ++i) {
740                array[i - 1] = array[i];
741            }
742            count -= 1;
743        } else {
744            array += 1;
745        }
746    }
747    return count;
748}
749
750#ifdef SK_DEBUG
751
752#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
753
754static void test_collaps_duplicates() {
755    static bool gOnce;
756    if (gOnce) { return; }
757    gOnce = true;
758    const float src0[] = { 0 };
759    const float src1[] = { 0, 0 };
760    const float src2[] = { 0, 1 };
761    const float src3[] = { 0, 0, 0 };
762    const float src4[] = { 0, 0, 1 };
763    const float src5[] = { 0, 1, 1 };
764    const float src6[] = { 0, 1, 2 };
765    const struct {
766        const float* fData;
767        int fCount;
768        int fCollapsedCount;
769    } data[] = {
770        { TEST_COLLAPS_ENTRY(src0), 1 },
771        { TEST_COLLAPS_ENTRY(src1), 1 },
772        { TEST_COLLAPS_ENTRY(src2), 2 },
773        { TEST_COLLAPS_ENTRY(src3), 1 },
774        { TEST_COLLAPS_ENTRY(src4), 2 },
775        { TEST_COLLAPS_ENTRY(src5), 2 },
776        { TEST_COLLAPS_ENTRY(src6), 3 },
777    };
778    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
779        float dst[3];
780        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
781        int count = collaps_duplicates(dst, data[i].fCount);
782        SkASSERT(data[i].fCollapsedCount == count);
783        for (int j = 1; j < count; ++j) {
784            SkASSERT(dst[j-1] < dst[j]);
785        }
786    }
787}
788#endif
789
790static SkScalar SkScalarCubeRoot(SkScalar x) {
791    return sk_float_pow(x, 0.3333333f);
792}
793
794/*  Solve coeff(t) == 0, returning the number of roots that
795    lie withing 0 < t < 1.
796    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
797
798    Eliminates repeated roots (so that all tValues are distinct, and are always
799    in increasing order.
800*/
801static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3])
802{
803    if (SkScalarNearlyZero(coeff[0]))   // we're just a quadratic
804    {
805        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
806    }
807
808    SkScalar a, b, c, Q, R;
809
810    {
811        SkASSERT(coeff[0] != 0);
812
813        SkScalar inva = SkScalarInvert(coeff[0]);
814        a = coeff[1] * inva;
815        b = coeff[2] * inva;
816        c = coeff[3] * inva;
817    }
818    Q = (a*a - b*3) / 9;
819    R = (2*a*a*a - 9*a*b + 27*c) / 54;
820
821    SkScalar Q3 = Q * Q * Q;
822    SkScalar R2MinusQ3 = R * R - Q3;
823    SkScalar adiv3 = a / 3;
824
825    SkScalar*   roots = tValues;
826    SkScalar    r;
827
828    if (R2MinusQ3 < 0)   // we have 3 real roots
829    {
830        float theta = sk_float_acos(R / sk_float_sqrt(Q3));
831        float neg2RootQ = -2 * sk_float_sqrt(Q);
832
833        r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
834        if (is_unit_interval(r))
835            *roots++ = r;
836
837        r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
838        if (is_unit_interval(r))
839            *roots++ = r;
840
841        r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
842        if (is_unit_interval(r))
843            *roots++ = r;
844
845        SkDEBUGCODE(test_collaps_duplicates();)
846
847        // now sort the roots
848        int count = (int)(roots - tValues);
849        SkASSERT((unsigned)count <= 3);
850        bubble_sort(tValues, count);
851        count = collaps_duplicates(tValues, count);
852        roots = tValues + count;    // so we compute the proper count below
853    }
854    else                // we have 1 real root
855    {
856        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
857        A = SkScalarCubeRoot(A);
858        if (R > 0)
859            A = -A;
860
861        if (A != 0)
862            A += Q / A;
863        r = A - adiv3;
864        if (is_unit_interval(r))
865            *roots++ = r;
866    }
867
868    return (int)(roots - tValues);
869}
870
871/*  Looking for F' dot F'' == 0
872
873    A = b - a
874    B = c - 2b + a
875    C = d - 3c + 3b - a
876
877    F' = 3Ct^2 + 6Bt + 3A
878    F'' = 6Ct + 6B
879
880    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
881*/
882static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4])
883{
884    SkScalar    a = src[2] - src[0];
885    SkScalar    b = src[4] - 2 * src[2] + src[0];
886    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
887
888    coeff[0] = c * c;
889    coeff[1] = 3 * b * c;
890    coeff[2] = 2 * b * b + c * a;
891    coeff[3] = a * b;
892}
893
894// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
895//#define kMinTValueForChopping (SK_Scalar1 / 256)
896#define kMinTValueForChopping   0
897
898/*  Looking for F' dot F'' == 0
899
900    A = b - a
901    B = c - 2b + a
902    C = d - 3c + 3b - a
903
904    F' = 3Ct^2 + 6Bt + 3A
905    F'' = 6Ct + 6B
906
907    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
908*/
909int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
910{
911    SkScalar coeffX[4], coeffY[4];
912    int      i;
913
914    formulate_F1DotF2(&src[0].fX, coeffX);
915    formulate_F1DotF2(&src[0].fY, coeffY);
916
917    for (i = 0; i < 4; i++)
918        coeffX[i] += coeffY[i];
919
920    SkScalar    t[3];
921    int         count = solve_cubic_polynomial(coeffX, t);
922    int         maxCount = 0;
923
924    // now remove extrema where the curvature is zero (mins)
925    // !!!! need a test for this !!!!
926    for (i = 0; i < count; i++)
927    {
928        // if (not_min_curvature())
929        if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
930            tValues[maxCount++] = t[i];
931    }
932    return maxCount;
933}
934
935int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
936{
937    SkScalar    t_storage[3];
938
939    if (tValues == NULL)
940        tValues = t_storage;
941
942    int count = SkFindCubicMaxCurvature(src, tValues);
943
944    if (dst) {
945        if (count == 0)
946            memcpy(dst, src, 4 * sizeof(SkPoint));
947        else
948            SkChopCubicAt(src, dst, tValues, count);
949    }
950    return count + 1;
951}
952
953bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
954    if (ambiguous) {
955        *ambiguous = false;
956    }
957
958    // Find the minimum and maximum y of the extrema, which are the
959    // first and last points since this cubic is monotonic
960    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
961    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
962
963    if (pt.fY == cubic[0].fY
964        || pt.fY < min_y
965        || pt.fY > max_y) {
966        // The query line definitely does not cross the curve
967        if (ambiguous) {
968            *ambiguous = (pt.fY == cubic[0].fY);
969        }
970        return false;
971    }
972
973    bool pt_at_extremum = (pt.fY == cubic[3].fY);
974
975    SkScalar min_x =
976        SkMinScalar(
977            SkMinScalar(
978                SkMinScalar(cubic[0].fX, cubic[1].fX),
979                cubic[2].fX),
980            cubic[3].fX);
981    if (pt.fX < min_x) {
982        // The query line definitely crosses the curve
983        if (ambiguous) {
984            *ambiguous = pt_at_extremum;
985        }
986        return true;
987    }
988
989    SkScalar max_x =
990        SkMaxScalar(
991            SkMaxScalar(
992                SkMaxScalar(cubic[0].fX, cubic[1].fX),
993                cubic[2].fX),
994            cubic[3].fX);
995    if (pt.fX > max_x) {
996        // The query line definitely does not cross the curve
997        return false;
998    }
999
1000    // Do a binary search to find the parameter value which makes y as
1001    // close as possible to the query point. See whether the query
1002    // line's origin is to the left of the associated x coordinate.
1003
1004    // kMaxIter is chosen as the number of mantissa bits for a float,
1005    // since there's no way we are going to get more precision by
1006    // iterating more times than that.
1007    const int kMaxIter = 23;
1008    SkPoint eval;
1009    int iter = 0;
1010    SkScalar upper_t;
1011    SkScalar lower_t;
1012    // Need to invert direction of t parameter if cubic goes up
1013    // instead of down
1014    if (cubic[3].fY > cubic[0].fY) {
1015        upper_t = SK_Scalar1;
1016        lower_t = 0;
1017    } else {
1018        upper_t = 0;
1019        lower_t = SK_Scalar1;
1020    }
1021    do {
1022        SkScalar t = SkScalarAve(upper_t, lower_t);
1023        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
1024        if (pt.fY > eval.fY) {
1025            lower_t = t;
1026        } else {
1027            upper_t = t;
1028        }
1029    } while (++iter < kMaxIter
1030             && !SkScalarNearlyZero(eval.fY - pt.fY));
1031    if (pt.fX <= eval.fX) {
1032        if (ambiguous) {
1033            *ambiguous = pt_at_extremum;
1034        }
1035        return true;
1036    }
1037    return false;
1038}
1039
1040int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
1041    int num_crossings = 0;
1042    SkPoint monotonic_cubics[10];
1043    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
1044    if (ambiguous) {
1045        *ambiguous = false;
1046    }
1047    bool locally_ambiguous;
1048    if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
1049        ++num_crossings;
1050    if (ambiguous) {
1051        *ambiguous |= locally_ambiguous;
1052    }
1053    if (num_monotonic_cubics > 0)
1054        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
1055            ++num_crossings;
1056    if (ambiguous) {
1057        *ambiguous |= locally_ambiguous;
1058    }
1059    if (num_monotonic_cubics > 1)
1060        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
1061            ++num_crossings;
1062    if (ambiguous) {
1063        *ambiguous |= locally_ambiguous;
1064    }
1065    return num_crossings;
1066}
1067////////////////////////////////////////////////////////////////////////////////
1068
1069/*  Find t value for quadratic [a, b, c] = d.
1070    Return 0 if there is no solution within [0, 1)
1071*/
1072static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
1073{
1074    // At^2 + Bt + C = d
1075    SkScalar A = a - 2 * b + c;
1076    SkScalar B = 2 * (b - a);
1077    SkScalar C = a - d;
1078
1079    SkScalar    roots[2];
1080    int         count = SkFindUnitQuadRoots(A, B, C, roots);
1081
1082    SkASSERT(count <= 1);
1083    return count == 1 ? roots[0] : 0;
1084}
1085
1086/*  given a quad-curve and a point (x,y), chop the quad at that point and place
1087    the new off-curve point and endpoint into 'dest'.
1088    Should only return false if the computed pos is the start of the curve
1089    (i.e. root == 0)
1090*/
1091static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest)
1092{
1093    const SkScalar* base;
1094    SkScalar        value;
1095
1096    if (SkScalarAbs(x) < SkScalarAbs(y)) {
1097        base = &quad[0].fX;
1098        value = x;
1099    } else {
1100        base = &quad[0].fY;
1101        value = y;
1102    }
1103
1104    // note: this returns 0 if it thinks value is out of range, meaning the
1105    // root might return something outside of [0, 1)
1106    SkScalar t = quad_solve(base[0], base[2], base[4], value);
1107
1108    if (t > 0)
1109    {
1110        SkPoint tmp[5];
1111        SkChopQuadAt(quad, tmp, t);
1112        dest[0] = tmp[1];
1113        dest[1].set(x, y);
1114        return true;
1115    } else {
1116        /*  t == 0 means either the value triggered a root outside of [0, 1)
1117            For our purposes, we can ignore the <= 0 roots, but we want to
1118            catch the >= 1 roots (which given our caller, will basically mean
1119            a root of 1, give-or-take numerical instability). If we are in the
1120            >= 1 case, return the existing offCurve point.
1121
1122            The test below checks to see if we are close to the "end" of the
1123            curve (near base[4]). Rather than specifying a tolerance, I just
1124            check to see if value is on to the right/left of the middle point
1125            (depending on the direction/sign of the end points).
1126        */
1127        if ((base[0] < base[4] && value > base[2]) ||
1128            (base[0] > base[4] && value < base[2]))   // should root have been 1
1129        {
1130            dest[0] = quad[1];
1131            dest[1].set(x, y);
1132            return true;
1133        }
1134    }
1135    return false;
1136}
1137
1138static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1139// The mid point of the quadratic arc approximation is half way between the two
1140// control points. The float epsilon adjustment moves the on curve point out by
1141// two bits, distributing the convex test error between the round rect approximation
1142// and the convex cross product sign equality test.
1143#define SK_MID_RRECT_OFFSET (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1144    { SK_Scalar1,            0                      },
1145    { SK_Scalar1,            SK_ScalarTanPIOver8    },
1146    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
1147    { SK_ScalarTanPIOver8,   SK_Scalar1             },
1148
1149    { 0,                     SK_Scalar1             },
1150    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
1151    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
1152    { -SK_Scalar1,           SK_ScalarTanPIOver8    },
1153
1154    { -SK_Scalar1,           0                      },
1155    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
1156    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
1157    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
1158
1159    { 0,                     -SK_Scalar1            },
1160    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
1161    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
1162    { SK_Scalar1,            -SK_ScalarTanPIOver8   },
1163
1164    { SK_Scalar1,            0                      }
1165#undef SK_MID_RRECT_OFFSET
1166};
1167
1168int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1169                   SkRotationDirection dir, const SkMatrix* userMatrix,
1170                   SkPoint quadPoints[])
1171{
1172    // rotate by x,y so that uStart is (1.0)
1173    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1174    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1175
1176    SkScalar absX = SkScalarAbs(x);
1177    SkScalar absY = SkScalarAbs(y);
1178
1179    int pointCount;
1180
1181    // check for (effectively) coincident vectors
1182    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1183    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1184    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1185        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1186         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1187
1188        // just return the start-point
1189        quadPoints[0].set(SK_Scalar1, 0);
1190        pointCount = 1;
1191    } else {
1192        if (dir == kCCW_SkRotationDirection)
1193            y = -y;
1194
1195        // what octant (quadratic curve) is [xy] in?
1196        int oct = 0;
1197        bool sameSign = true;
1198
1199        if (0 == y)
1200        {
1201            oct = 4;        // 180
1202            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1203        }
1204        else if (0 == x)
1205        {
1206            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1207            if (y > 0)
1208                oct = 2;    // 90
1209            else
1210                oct = 6;    // 270
1211        }
1212        else
1213        {
1214            if (y < 0)
1215                oct += 4;
1216            if ((x < 0) != (y < 0))
1217            {
1218                oct += 2;
1219                sameSign = false;
1220            }
1221            if ((absX < absY) == sameSign)
1222                oct += 1;
1223        }
1224
1225        int wholeCount = oct << 1;
1226        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1227
1228        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1229        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1]))
1230        {
1231            wholeCount += 2;
1232        }
1233        pointCount = wholeCount + 1;
1234    }
1235
1236    // now handle counter-clockwise and the initial unitStart rotation
1237    SkMatrix    matrix;
1238    matrix.setSinCos(uStart.fY, uStart.fX);
1239    if (dir == kCCW_SkRotationDirection) {
1240        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1241    }
1242    if (userMatrix) {
1243        matrix.postConcat(*userMatrix);
1244    }
1245    matrix.mapPoints(quadPoints, pointCount);
1246    return pointCount;
1247}
1248
1249///////////////////////////////////////////////////////////////////////////////
1250
1251// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1252//     ------------------------------------------
1253//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1254//
1255//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1256//     ------------------------------------------------
1257//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1258//
1259
1260// Take the parametric specification for the conic (either X or Y) and return
1261// in coeff[] the coefficients for the simple quadratic polynomial
1262//    coeff[0] for t^2
1263//    coeff[1] for t
1264//    coeff[2] for constant term
1265//
1266static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
1267    SkASSERT(src);
1268    SkASSERT(t >= 0 && t <= SK_Scalar1);
1269
1270    SkScalar    src2w = SkScalarMul(src[2], w);
1271    SkScalar    C = src[0];
1272    SkScalar    A = src[4] - 2 * src2w + C;
1273    SkScalar    B = 2 * (src2w - C);
1274    SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1275
1276    B = 2 * (w - SK_Scalar1);
1277    C = SK_Scalar1;
1278    A = -B;
1279    SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1280
1281    return SkScalarDiv(numer, denom);
1282}
1283
1284// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1285//
1286//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1287//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1288//  t^0 : -2 P0 w + 2 P1 w
1289//
1290//  We disregard magnitude, so we can freely ignore the denominator of F', and
1291//  divide the numerator by 2
1292//
1293//    coeff[0] for t^2
1294//    coeff[1] for t^1
1295//    coeff[2] for t^0
1296//
1297static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
1298    const SkScalar P20 = src[4] - src[0];
1299    const SkScalar P10 = src[2] - src[0];
1300    const SkScalar wP10 = w * P10;
1301    coeff[0] = w * P20 - P20;
1302    coeff[1] = P20 - 2 * wP10;
1303    coeff[2] = wP10;
1304}
1305
1306static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
1307    SkScalar coeff[3];
1308    conic_deriv_coeff(coord, w, coeff);
1309    return t * (t * coeff[0] + coeff[1]) + coeff[2];
1310}
1311
1312static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1313    SkScalar coeff[3];
1314    conic_deriv_coeff(src, w, coeff);
1315
1316    SkScalar tValues[2];
1317    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1318    SkASSERT(0 == roots || 1 == roots);
1319
1320    if (1 == roots) {
1321        *t = tValues[0];
1322        return true;
1323    }
1324    return false;
1325}
1326
1327struct SkP3D {
1328    SkScalar fX, fY, fZ;
1329
1330    void set(SkScalar x, SkScalar y, SkScalar z) {
1331        fX = x; fY = y; fZ = z;
1332    }
1333
1334    void projectDown(SkPoint* dst) const {
1335        dst->set(fX / fZ, fY / fZ);
1336    }
1337};
1338
1339// we just return the middle 3 points, since the first and last are dups of src
1340//
1341static void p3d_interp(const SkScalar src[3], SkScalar dst[3], SkScalar t) {
1342    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1343    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1344    dst[0] = ab;
1345    dst[3] = SkScalarInterp(ab, bc, t);
1346    dst[6] = bc;
1347}
1348
1349static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1350    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1351    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1352    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1353}
1354
1355void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1356    SkASSERT(t >= 0 && t <= SK_Scalar1);
1357
1358    if (pt) {
1359        pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1360                conic_eval_pos(&fPts[0].fY, fW, t));
1361    }
1362    if (tangent) {
1363        tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1364                     conic_eval_tan(&fPts[0].fY, fW, t));
1365    }
1366}
1367
1368void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1369    SkP3D tmp[3], tmp2[3];
1370
1371    ratquad_mapTo3D(fPts, fW, tmp);
1372
1373    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1374    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1375    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1376
1377    dst[0].fPts[0] = fPts[0];
1378    tmp2[0].projectDown(&dst[0].fPts[1]);
1379    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1380    tmp2[2].projectDown(&dst[1].fPts[1]);
1381    dst[1].fPts[2] = fPts[2];
1382
1383    // to put in "standard form", where w0 and w2 are both 1, we compute the
1384    // new w1 as sqrt(w1*w1/w0*w2)
1385    // or
1386    // w1 /= sqrt(w0*w2)
1387    //
1388    // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
1389    //
1390    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1391    dst[0].fW = tmp2[0].fZ / root;
1392    dst[1].fW = tmp2[2].fZ / root;
1393}
1394
1395static SkScalar subdivide_w_value(SkScalar w) {
1396    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1397}
1398
1399void SkConic::chop(SkConic dst[2]) const {
1400    SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
1401    SkScalar p1x = fW * fPts[1].fX;
1402    SkScalar p1y = fW * fPts[1].fY;
1403    SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
1404    SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
1405
1406    dst[0].fPts[0] = fPts[0];
1407    dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
1408                       (fPts[0].fY + p1y) * scale);
1409    dst[0].fPts[2].set(mx, my);
1410
1411    dst[1].fPts[0].set(mx, my);
1412    dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
1413                       (p1y + fPts[2].fY) * scale);
1414    dst[1].fPts[2] = fPts[2];
1415
1416    dst[0].fW = dst[1].fW = subdivide_w_value(fW);
1417}
1418
1419/*
1420 *  "High order approximation of conic sections by quadratic splines"
1421 *      by Michael Floater, 1993
1422 */
1423#define AS_QUAD_ERROR_SETUP                                         \
1424    SkScalar a = fW - 1;                                            \
1425    SkScalar k = a / (4 * (2 + a));                                 \
1426    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1427    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1428
1429void SkConic::computeAsQuadError(SkVector* err) const {
1430    AS_QUAD_ERROR_SETUP
1431    err->set(x, y);
1432}
1433
1434bool SkConic::asQuadTol(SkScalar tol) const {
1435    AS_QUAD_ERROR_SETUP
1436    return (x * x + y * y) <= tol * tol;
1437}
1438
1439int SkConic::computeQuadPOW2(SkScalar tol) const {
1440    AS_QUAD_ERROR_SETUP
1441    SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
1442
1443    if (error <= 0) {
1444        return 0;
1445    }
1446    uint32_t ierr = (uint32_t)error;
1447    return (34 - SkCLZ(ierr)) >> 1;
1448}
1449
1450static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1451    SkASSERT(level >= 0);
1452
1453    if (0 == level) {
1454        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1455        return pts + 2;
1456    } else {
1457        SkConic dst[2];
1458        src.chop(dst);
1459        --level;
1460        pts = subdivide(dst[0], pts, level);
1461        return subdivide(dst[1], pts, level);
1462    }
1463}
1464
1465int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1466    SkASSERT(pow2 >= 0);
1467    *pts = fPts[0];
1468    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1469    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1470    return 1 << pow2;
1471}
1472
1473bool SkConic::findXExtrema(SkScalar* t) const {
1474    return conic_find_extrema(&fPts[0].fX, fW, t);
1475}
1476
1477bool SkConic::findYExtrema(SkScalar* t) const {
1478    return conic_find_extrema(&fPts[0].fY, fW, t);
1479}
1480
1481bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1482    SkScalar t;
1483    if (this->findXExtrema(&t)) {
1484        this->chopAt(t, dst);
1485        // now clean-up the middle, since we know t was meant to be at
1486        // an X-extrema
1487        SkScalar value = dst[0].fPts[2].fX;
1488        dst[0].fPts[1].fX = value;
1489        dst[1].fPts[0].fX = value;
1490        dst[1].fPts[1].fX = value;
1491        return true;
1492    }
1493    return false;
1494}
1495
1496bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1497    SkScalar t;
1498    if (this->findYExtrema(&t)) {
1499        this->chopAt(t, dst);
1500        // now clean-up the middle, since we know t was meant to be at
1501        // an Y-extrema
1502        SkScalar value = dst[0].fPts[2].fY;
1503        dst[0].fPts[1].fY = value;
1504        dst[1].fPts[0].fY = value;
1505        dst[1].fPts[1].fY = value;
1506        return true;
1507    }
1508    return false;
1509}
1510
1511void SkConic::computeTightBounds(SkRect* bounds) const {
1512    SkPoint pts[4];
1513    pts[0] = fPts[0];
1514    pts[1] = fPts[2];
1515    int count = 2;
1516
1517    SkScalar t;
1518    if (this->findXExtrema(&t)) {
1519        this->evalAt(t, &pts[count++]);
1520    }
1521    if (this->findYExtrema(&t)) {
1522        this->evalAt(t, &pts[count++]);
1523    }
1524    bounds->set(pts, count);
1525}
1526
1527void SkConic::computeFastBounds(SkRect* bounds) const {
1528    bounds->set(fPts, 3);
1529}
1530