SkGeometry.cpp revision dbaec7323f20c3a7e8a234dac9dfb8a9446a2717
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGeometry.h"
9#include "SkMatrix.h"
10#include "SkNx.h"
11
12#if 0
13static Sk2s from_point(const SkPoint& point) {
14    return Sk2s::Load(&point.fX);
15}
16
17static SkPoint to_point(const Sk2s& x) {
18    SkPoint point;
19    x.store(&point.fX);
20    return point;
21}
22#endif
23
24static SkVector to_vector(const Sk2s& x) {
25    SkVector vector;
26    x.store(&vector.fX);
27    return vector;
28}
29
30/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
31    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
32    May also introduce overflow of fixed when we compute our setup.
33*/
34//    #define DIRECT_EVAL_OF_POLYNOMIALS
35
36////////////////////////////////////////////////////////////////////////
37
38static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
39    SkScalar ab = a - b;
40    SkScalar bc = b - c;
41    if (ab < 0) {
42        bc = -bc;
43    }
44    return ab == 0 || bc < 0;
45}
46
47////////////////////////////////////////////////////////////////////////
48
49static bool is_unit_interval(SkScalar x) {
50    return x > 0 && x < SK_Scalar1;
51}
52
53static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
54    SkASSERT(ratio);
55
56    if (numer < 0) {
57        numer = -numer;
58        denom = -denom;
59    }
60
61    if (denom == 0 || numer == 0 || numer >= denom) {
62        return 0;
63    }
64
65    SkScalar r = numer / denom;
66    if (SkScalarIsNaN(r)) {
67        return 0;
68    }
69    SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
70    if (r == 0) { // catch underflow if numer <<<< denom
71        return 0;
72    }
73    *ratio = r;
74    return 1;
75}
76
77/** From Numerical Recipes in C.
78
79    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
80    x1 = Q / A
81    x2 = C / Q
82*/
83int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
84    SkASSERT(roots);
85
86    if (A == 0) {
87        return valid_unit_divide(-C, B, roots);
88    }
89
90    SkScalar* r = roots;
91
92    SkScalar R = B*B - 4*A*C;
93    if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
94        return 0;
95    }
96    R = SkScalarSqrt(R);
97
98    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
99    r += valid_unit_divide(Q, A, r);
100    r += valid_unit_divide(C, Q, r);
101    if (r - roots == 2) {
102        if (roots[0] > roots[1])
103            SkTSwap<SkScalar>(roots[0], roots[1]);
104        else if (roots[0] == roots[1])  // nearly-equal?
105            r -= 1; // skip the double root
106    }
107    return (int)(r - roots);
108}
109
110///////////////////////////////////////////////////////////////////////////////
111///////////////////////////////////////////////////////////////////////////////
112
113static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
114    return (A * t + B) * t + C;
115}
116
117static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
118    SkASSERT(src);
119    SkASSERT(t >= 0 && t <= SK_Scalar1);
120
121#ifdef DIRECT_EVAL_OF_POLYNOMIALS
122    SkScalar    C = src[0];
123    SkScalar    A = src[4] - 2 * src[2] + C;
124    SkScalar    B = 2 * (src[2] - C);
125    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
126#else
127    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
128    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
129    return SkScalarInterp(ab, bc, t);
130#endif
131}
132
133void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
134    Sk2s p0 = from_point(pts[0]);
135    Sk2s p1 = from_point(pts[1]);
136    Sk2s p2 = from_point(pts[2]);
137
138    Sk2s p1minus2 = p1 - p0;
139
140    coeff[0] = to_point(p2 - p1 - p1 + p0);     // A * t^2
141    coeff[1] = to_point(p1minus2 + p1minus2);   // B * t
142    coeff[2] = pts[0];                          // C
143}
144
145void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
146    SkASSERT(src);
147    SkASSERT(t >= 0 && t <= SK_Scalar1);
148
149    if (pt) {
150        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
151    }
152    if (tangent) {
153        *tangent = SkEvalQuadTangentAt(src, t);
154    }
155}
156
157SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
158    SkASSERT(src);
159    SkASSERT(t >= 0 && t <= SK_Scalar1);
160
161    const Sk2s t2(t);
162
163    Sk2s P0 = from_point(src[0]);
164    Sk2s P1 = from_point(src[1]);
165    Sk2s P2 = from_point(src[2]);
166
167    Sk2s B = P1 - P0;
168    Sk2s A = P2 - P1 - B;
169
170    return to_point((A * t2 + B+B) * t2 + P0);
171}
172
173SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
174    // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
175    // zero tangent vector when t is 0 or 1, and the control point is equal
176    // to the end point. In this case, use the quad end points to compute the tangent.
177    if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
178        return src[2] - src[0];
179    }
180    SkASSERT(src);
181    SkASSERT(t >= 0 && t <= SK_Scalar1);
182
183    Sk2s P0 = from_point(src[0]);
184    Sk2s P1 = from_point(src[1]);
185    Sk2s P2 = from_point(src[2]);
186
187    Sk2s B = P1 - P0;
188    Sk2s A = P2 - P1 - B;
189    Sk2s T = A * Sk2s(t) + B;
190
191    return to_vector(T + T);
192}
193
194static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
195    return v0 + (v1 - v0) * t;
196}
197
198void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
199    SkASSERT(t > 0 && t < SK_Scalar1);
200
201    Sk2s p0 = from_point(src[0]);
202    Sk2s p1 = from_point(src[1]);
203    Sk2s p2 = from_point(src[2]);
204    Sk2s tt(t);
205
206    Sk2s p01 = interp(p0, p1, tt);
207    Sk2s p12 = interp(p1, p2, tt);
208
209    dst[0] = to_point(p0);
210    dst[1] = to_point(p01);
211    dst[2] = to_point(interp(p01, p12, tt));
212    dst[3] = to_point(p12);
213    dst[4] = to_point(p2);
214}
215
216void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
217    SkChopQuadAt(src, dst, 0.5f); return;
218}
219
220/** Quad'(t) = At + B, where
221    A = 2(a - 2b + c)
222    B = 2(b - a)
223    Solve for t, only if it fits between 0 < t < 1
224*/
225int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
226    /*  At + B == 0
227        t = -B / A
228    */
229    return valid_unit_divide(a - b, a - b - b + c, tValue);
230}
231
232static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
233    coords[2] = coords[6] = coords[4];
234}
235
236/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
237 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
238 */
239int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
240    SkASSERT(src);
241    SkASSERT(dst);
242
243    SkScalar a = src[0].fY;
244    SkScalar b = src[1].fY;
245    SkScalar c = src[2].fY;
246
247    if (is_not_monotonic(a, b, c)) {
248        SkScalar    tValue;
249        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
250            SkChopQuadAt(src, dst, tValue);
251            flatten_double_quad_extrema(&dst[0].fY);
252            return 1;
253        }
254        // if we get here, we need to force dst to be monotonic, even though
255        // we couldn't compute a unit_divide value (probably underflow).
256        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
257    }
258    dst[0].set(src[0].fX, a);
259    dst[1].set(src[1].fX, b);
260    dst[2].set(src[2].fX, c);
261    return 0;
262}
263
264/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
265    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
266 */
267int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
268    SkASSERT(src);
269    SkASSERT(dst);
270
271    SkScalar a = src[0].fX;
272    SkScalar b = src[1].fX;
273    SkScalar c = src[2].fX;
274
275    if (is_not_monotonic(a, b, c)) {
276        SkScalar tValue;
277        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
278            SkChopQuadAt(src, dst, tValue);
279            flatten_double_quad_extrema(&dst[0].fX);
280            return 1;
281        }
282        // if we get here, we need to force dst to be monotonic, even though
283        // we couldn't compute a unit_divide value (probably underflow).
284        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
285    }
286    dst[0].set(a, src[0].fY);
287    dst[1].set(b, src[1].fY);
288    dst[2].set(c, src[2].fY);
289    return 0;
290}
291
292//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
293//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
294//  F''(t)  = 2 (a - 2b + c)
295//
296//  A = 2 (b - a)
297//  B = 2 (a - 2b + c)
298//
299//  Maximum curvature for a quadratic means solving
300//  Fx' Fx'' + Fy' Fy'' = 0
301//
302//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
303//
304SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
305    SkScalar    Ax = src[1].fX - src[0].fX;
306    SkScalar    Ay = src[1].fY - src[0].fY;
307    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
308    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
309    SkScalar    t = 0;  // 0 means don't chop
310
311    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
312    return t;
313}
314
315int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
316    SkScalar t = SkFindQuadMaxCurvature(src);
317    if (t == 0) {
318        memcpy(dst, src, 3 * sizeof(SkPoint));
319        return 1;
320    } else {
321        SkChopQuadAt(src, dst, t);
322        return 2;
323    }
324}
325
326void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
327    Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
328    Sk2s s0 = from_point(src[0]);
329    Sk2s s1 = from_point(src[1]);
330    Sk2s s2 = from_point(src[2]);
331
332    dst[0] = src[0];
333    dst[1] = to_point(s0 + (s1 - s0) * scale);
334    dst[2] = to_point(s2 + (s1 - s2) * scale);
335    dst[3] = src[2];
336}
337
338//////////////////////////////////////////////////////////////////////////////
339///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
340//////////////////////////////////////////////////////////////////////////////
341
342static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
343    SkASSERT(src);
344    SkASSERT(t >= 0 && t <= SK_Scalar1);
345
346    if (t == 0) {
347        return src[0];
348    }
349
350#ifdef DIRECT_EVAL_OF_POLYNOMIALS
351    SkScalar D = src[0];
352    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
353    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
354    SkScalar C = 3*(src[2] - D);
355
356    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
357#else
358    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
359    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
360    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
361    SkScalar    abc = SkScalarInterp(ab, bc, t);
362    SkScalar    bcd = SkScalarInterp(bc, cd, t);
363    return SkScalarInterp(abc, bcd, t);
364#endif
365}
366
367/** return At^2 + Bt + C
368*/
369static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
370    SkASSERT(t >= 0 && t <= SK_Scalar1);
371
372    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
373}
374
375static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
376    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
377    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
378    SkScalar C = src[2] - src[0];
379
380    return eval_quadratic(A, B, C, t);
381}
382
383static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
384    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
385    SkScalar B = src[4] - 2 * src[2] + src[0];
386
387    return SkScalarMulAdd(A, t, B);
388}
389
390void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
391                   SkVector* tangent, SkVector* curvature) {
392    SkASSERT(src);
393    SkASSERT(t >= 0 && t <= SK_Scalar1);
394
395    if (loc) {
396        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
397    }
398    if (tangent) {
399        // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
400        // adjacent control point is equal to the end point. In this case, use the
401        // next control point or the end points to compute the tangent.
402        if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
403            if (t == 0) {
404                *tangent = src[2] - src[0];
405            } else {
406                *tangent = src[3] - src[1];
407            }
408            if (!tangent->fX && !tangent->fY) {
409                *tangent = src[3] - src[0];
410            }
411        } else {
412            tangent->set(eval_cubic_derivative(&src[0].fX, t),
413                         eval_cubic_derivative(&src[0].fY, t));
414        }
415    }
416    if (curvature) {
417        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
418                       eval_cubic_2ndDerivative(&src[0].fY, t));
419    }
420}
421
422/** Cubic'(t) = At^2 + Bt + C, where
423    A = 3(-a + 3(b - c) + d)
424    B = 6(a - 2b + c)
425    C = 3(b - a)
426    Solve for t, keeping only those that fit betwee 0 < t < 1
427*/
428int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
429                       SkScalar tValues[2]) {
430    // we divide A,B,C by 3 to simplify
431    SkScalar A = d - a + 3*(b - c);
432    SkScalar B = 2*(a - b - b + c);
433    SkScalar C = b - a;
434
435    return SkFindUnitQuadRoots(A, B, C, tValues);
436}
437
438void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
439    SkASSERT(t > 0 && t < SK_Scalar1);
440
441    Sk2s    p0 = from_point(src[0]);
442    Sk2s    p1 = from_point(src[1]);
443    Sk2s    p2 = from_point(src[2]);
444    Sk2s    p3 = from_point(src[3]);
445    Sk2s    tt(t);
446
447    Sk2s    ab = interp(p0, p1, tt);
448    Sk2s    bc = interp(p1, p2, tt);
449    Sk2s    cd = interp(p2, p3, tt);
450    Sk2s    abc = interp(ab, bc, tt);
451    Sk2s    bcd = interp(bc, cd, tt);
452    Sk2s    abcd = interp(abc, bcd, tt);
453
454    dst[0] = src[0];
455    dst[1] = to_point(ab);
456    dst[2] = to_point(abc);
457    dst[3] = to_point(abcd);
458    dst[4] = to_point(bcd);
459    dst[5] = to_point(cd);
460    dst[6] = src[3];
461}
462
463void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
464    Sk2s p0 = from_point(pts[0]);
465    Sk2s p1 = from_point(pts[1]);
466    Sk2s p2 = from_point(pts[2]);
467    Sk2s p3 = from_point(pts[3]);
468
469    const Sk2s three(3);
470    Sk2s p1minusp2 = p1 - p2;
471
472    Sk2s D = p0;
473    Sk2s A = p3 + three * p1minusp2 - D;
474    Sk2s B = three * (D - p1minusp2 - p1);
475    Sk2s C = three * (p1 - D);
476
477    coeff[0] = to_point(A);
478    coeff[1] = to_point(B);
479    coeff[2] = to_point(C);
480    coeff[3] = to_point(D);
481}
482
483/*  http://code.google.com/p/skia/issues/detail?id=32
484
485    This test code would fail when we didn't check the return result of
486    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
487    that after the first chop, the parameters to valid_unit_divide are equal
488    (thanks to finite float precision and rounding in the subtracts). Thus
489    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
490    up with 1.0, hence the need to check and just return the last cubic as
491    a degenerate clump of 4 points in the sampe place.
492
493    static void test_cubic() {
494        SkPoint src[4] = {
495            { 556.25000, 523.03003 },
496            { 556.23999, 522.96002 },
497            { 556.21997, 522.89001 },
498            { 556.21997, 522.82001 }
499        };
500        SkPoint dst[10];
501        SkScalar tval[] = { 0.33333334f, 0.99999994f };
502        SkChopCubicAt(src, dst, tval, 2);
503    }
504 */
505
506void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
507                   const SkScalar tValues[], int roots) {
508#ifdef SK_DEBUG
509    {
510        for (int i = 0; i < roots - 1; i++)
511        {
512            SkASSERT(is_unit_interval(tValues[i]));
513            SkASSERT(is_unit_interval(tValues[i+1]));
514            SkASSERT(tValues[i] < tValues[i+1]);
515        }
516    }
517#endif
518
519    if (dst) {
520        if (roots == 0) { // nothing to chop
521            memcpy(dst, src, 4*sizeof(SkPoint));
522        } else {
523            SkScalar    t = tValues[0];
524            SkPoint     tmp[4];
525
526            for (int i = 0; i < roots; i++) {
527                SkChopCubicAt(src, dst, t);
528                if (i == roots - 1) {
529                    break;
530                }
531
532                dst += 3;
533                // have src point to the remaining cubic (after the chop)
534                memcpy(tmp, dst, 4 * sizeof(SkPoint));
535                src = tmp;
536
537                // watch out in case the renormalized t isn't in range
538                if (!valid_unit_divide(tValues[i+1] - tValues[i],
539                                       SK_Scalar1 - tValues[i], &t)) {
540                    // if we can't, just create a degenerate cubic
541                    dst[4] = dst[5] = dst[6] = src[3];
542                    break;
543                }
544            }
545        }
546    }
547}
548
549void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
550    SkChopCubicAt(src, dst, 0.5f);
551}
552
553static void flatten_double_cubic_extrema(SkScalar coords[14]) {
554    coords[4] = coords[8] = coords[6];
555}
556
557/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
558    the resulting beziers are monotonic in Y. This is called by the scan
559    converter.  Depending on what is returned, dst[] is treated as follows:
560    0   dst[0..3] is the original cubic
561    1   dst[0..3] and dst[3..6] are the two new cubics
562    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
563    If dst == null, it is ignored and only the count is returned.
564*/
565int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
566    SkScalar    tValues[2];
567    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
568                                           src[3].fY, tValues);
569
570    SkChopCubicAt(src, dst, tValues, roots);
571    if (dst && roots > 0) {
572        // we do some cleanup to ensure our Y extrema are flat
573        flatten_double_cubic_extrema(&dst[0].fY);
574        if (roots == 2) {
575            flatten_double_cubic_extrema(&dst[3].fY);
576        }
577    }
578    return roots;
579}
580
581int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
582    SkScalar    tValues[2];
583    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
584                                           src[3].fX, tValues);
585
586    SkChopCubicAt(src, dst, tValues, roots);
587    if (dst && roots > 0) {
588        // we do some cleanup to ensure our Y extrema are flat
589        flatten_double_cubic_extrema(&dst[0].fX);
590        if (roots == 2) {
591            flatten_double_cubic_extrema(&dst[3].fX);
592        }
593    }
594    return roots;
595}
596
597/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
598
599    Inflection means that curvature is zero.
600    Curvature is [F' x F''] / [F'^3]
601    So we solve F'x X F''y - F'y X F''y == 0
602    After some canceling of the cubic term, we get
603    A = b - a
604    B = c - 2b + a
605    C = d - 3c + 3b - a
606    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
607*/
608int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
609    SkScalar    Ax = src[1].fX - src[0].fX;
610    SkScalar    Ay = src[1].fY - src[0].fY;
611    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
612    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
613    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
614    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
615
616    return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
617                               Ax*Cy - Ay*Cx,
618                               Ax*By - Ay*Bx,
619                               tValues);
620}
621
622int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
623    SkScalar    tValues[2];
624    int         count = SkFindCubicInflections(src, tValues);
625
626    if (dst) {
627        if (count == 0) {
628            memcpy(dst, src, 4 * sizeof(SkPoint));
629        } else {
630            SkChopCubicAt(src, dst, tValues, count);
631        }
632    }
633    return count + 1;
634}
635
636// See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
637// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
638// Classification:
639// discr(I) > 0        Serpentine
640// discr(I) = 0        Cusp
641// discr(I) < 0        Loop
642// d0 = d1 = 0         Quadratic
643// d0 = d1 = d2 = 0    Line
644// p0 = p1 = p2 = p3   Point
645static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
646    if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
647        return kPoint_SkCubicType;
648    }
649    const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
650    if (discr > SK_ScalarNearlyZero) {
651        return kSerpentine_SkCubicType;
652    } else if (discr < -SK_ScalarNearlyZero) {
653        return kLoop_SkCubicType;
654    } else {
655        if (0.f == d[0] && 0.f == d[1]) {
656            return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
657        } else {
658            return kCusp_SkCubicType;
659        }
660    }
661}
662
663// Assumes the third component of points is 1.
664// Calcs p0 . (p1 x p2)
665static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
666    const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
667    const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
668    const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
669    return (xComp + yComp + wComp);
670}
671
672// Calc coefficients of I(s,t) where roots of I are inflection points of curve
673// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
674// d0 = a1 - 2*a2+3*a3
675// d1 = -a2 + 3*a3
676// d2 = 3*a3
677// a1 = p0 . (p3 x p2)
678// a2 = p1 . (p0 x p3)
679// a3 = p2 . (p1 x p0)
680// Places the values of d1, d2, d3 in array d passed in
681static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
682    SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
683    SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
684    SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
685
686    // need to scale a's or values in later calculations will grow to high
687    SkScalar max = SkScalarAbs(a1);
688    max = SkMaxScalar(max, SkScalarAbs(a2));
689    max = SkMaxScalar(max, SkScalarAbs(a3));
690    max = 1.f/max;
691    a1 = a1 * max;
692    a2 = a2 * max;
693    a3 = a3 * max;
694
695    d[2] = 3.f * a3;
696    d[1] = d[2] - a2;
697    d[0] = d[1] - a2 + a1;
698}
699
700SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
701    calc_cubic_inflection_func(src, d);
702    return classify_cubic(src, d);
703}
704
705template <typename T> void bubble_sort(T array[], int count) {
706    for (int i = count - 1; i > 0; --i)
707        for (int j = i; j > 0; --j)
708            if (array[j] < array[j-1])
709            {
710                T   tmp(array[j]);
711                array[j] = array[j-1];
712                array[j-1] = tmp;
713            }
714}
715
716/**
717 *  Given an array and count, remove all pair-wise duplicates from the array,
718 *  keeping the existing sorting, and return the new count
719 */
720static int collaps_duplicates(SkScalar array[], int count) {
721    for (int n = count; n > 1; --n) {
722        if (array[0] == array[1]) {
723            for (int i = 1; i < n; ++i) {
724                array[i - 1] = array[i];
725            }
726            count -= 1;
727        } else {
728            array += 1;
729        }
730    }
731    return count;
732}
733
734#ifdef SK_DEBUG
735
736#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
737
738static void test_collaps_duplicates() {
739    static bool gOnce;
740    if (gOnce) { return; }
741    gOnce = true;
742    const SkScalar src0[] = { 0 };
743    const SkScalar src1[] = { 0, 0 };
744    const SkScalar src2[] = { 0, 1 };
745    const SkScalar src3[] = { 0, 0, 0 };
746    const SkScalar src4[] = { 0, 0, 1 };
747    const SkScalar src5[] = { 0, 1, 1 };
748    const SkScalar src6[] = { 0, 1, 2 };
749    const struct {
750        const SkScalar* fData;
751        int fCount;
752        int fCollapsedCount;
753    } data[] = {
754        { TEST_COLLAPS_ENTRY(src0), 1 },
755        { TEST_COLLAPS_ENTRY(src1), 1 },
756        { TEST_COLLAPS_ENTRY(src2), 2 },
757        { TEST_COLLAPS_ENTRY(src3), 1 },
758        { TEST_COLLAPS_ENTRY(src4), 2 },
759        { TEST_COLLAPS_ENTRY(src5), 2 },
760        { TEST_COLLAPS_ENTRY(src6), 3 },
761    };
762    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
763        SkScalar dst[3];
764        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
765        int count = collaps_duplicates(dst, data[i].fCount);
766        SkASSERT(data[i].fCollapsedCount == count);
767        for (int j = 1; j < count; ++j) {
768            SkASSERT(dst[j-1] < dst[j]);
769        }
770    }
771}
772#endif
773
774static SkScalar SkScalarCubeRoot(SkScalar x) {
775    return SkScalarPow(x, 0.3333333f);
776}
777
778/*  Solve coeff(t) == 0, returning the number of roots that
779    lie withing 0 < t < 1.
780    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
781
782    Eliminates repeated roots (so that all tValues are distinct, and are always
783    in increasing order.
784*/
785static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
786    if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
787        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
788    }
789
790    SkScalar a, b, c, Q, R;
791
792    {
793        SkASSERT(coeff[0] != 0);
794
795        SkScalar inva = SkScalarInvert(coeff[0]);
796        a = coeff[1] * inva;
797        b = coeff[2] * inva;
798        c = coeff[3] * inva;
799    }
800    Q = (a*a - b*3) / 9;
801    R = (2*a*a*a - 9*a*b + 27*c) / 54;
802
803    SkScalar Q3 = Q * Q * Q;
804    SkScalar R2MinusQ3 = R * R - Q3;
805    SkScalar adiv3 = a / 3;
806
807    SkScalar*   roots = tValues;
808    SkScalar    r;
809
810    if (R2MinusQ3 < 0) { // we have 3 real roots
811        SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
812        SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
813
814        r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
815        if (is_unit_interval(r)) {
816            *roots++ = r;
817        }
818        r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
819        if (is_unit_interval(r)) {
820            *roots++ = r;
821        }
822        r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
823        if (is_unit_interval(r)) {
824            *roots++ = r;
825        }
826        SkDEBUGCODE(test_collaps_duplicates();)
827
828        // now sort the roots
829        int count = (int)(roots - tValues);
830        SkASSERT((unsigned)count <= 3);
831        bubble_sort(tValues, count);
832        count = collaps_duplicates(tValues, count);
833        roots = tValues + count;    // so we compute the proper count below
834    } else {              // we have 1 real root
835        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
836        A = SkScalarCubeRoot(A);
837        if (R > 0) {
838            A = -A;
839        }
840        if (A != 0) {
841            A += Q / A;
842        }
843        r = A - adiv3;
844        if (is_unit_interval(r)) {
845            *roots++ = r;
846        }
847    }
848
849    return (int)(roots - tValues);
850}
851
852/*  Looking for F' dot F'' == 0
853
854    A = b - a
855    B = c - 2b + a
856    C = d - 3c + 3b - a
857
858    F' = 3Ct^2 + 6Bt + 3A
859    F'' = 6Ct + 6B
860
861    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
862*/
863static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
864    SkScalar    a = src[2] - src[0];
865    SkScalar    b = src[4] - 2 * src[2] + src[0];
866    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
867
868    coeff[0] = c * c;
869    coeff[1] = 3 * b * c;
870    coeff[2] = 2 * b * b + c * a;
871    coeff[3] = a * b;
872}
873
874/*  Looking for F' dot F'' == 0
875
876    A = b - a
877    B = c - 2b + a
878    C = d - 3c + 3b - a
879
880    F' = 3Ct^2 + 6Bt + 3A
881    F'' = 6Ct + 6B
882
883    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
884*/
885int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
886    SkScalar coeffX[4], coeffY[4];
887    int      i;
888
889    formulate_F1DotF2(&src[0].fX, coeffX);
890    formulate_F1DotF2(&src[0].fY, coeffY);
891
892    for (i = 0; i < 4; i++) {
893        coeffX[i] += coeffY[i];
894    }
895
896    SkScalar    t[3];
897    int         count = solve_cubic_poly(coeffX, t);
898    int         maxCount = 0;
899
900    // now remove extrema where the curvature is zero (mins)
901    // !!!! need a test for this !!!!
902    for (i = 0; i < count; i++) {
903        // if (not_min_curvature())
904        if (t[i] > 0 && t[i] < SK_Scalar1) {
905            tValues[maxCount++] = t[i];
906        }
907    }
908    return maxCount;
909}
910
911int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
912                              SkScalar tValues[3]) {
913    SkScalar    t_storage[3];
914
915    if (tValues == nullptr) {
916        tValues = t_storage;
917    }
918
919    int count = SkFindCubicMaxCurvature(src, tValues);
920
921    if (dst) {
922        if (count == 0) {
923            memcpy(dst, src, 4 * sizeof(SkPoint));
924        } else {
925            SkChopCubicAt(src, dst, tValues, count);
926        }
927    }
928    return count + 1;
929}
930
931#include "../pathops/SkPathOpsCubic.h"
932
933typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
934
935static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
936                                     InterceptProc method) {
937    SkDCubic cubic;
938    double roots[3];
939    int count = (cubic.set(src).*method)(intercept, roots);
940    if (count > 0) {
941        SkDCubicPair pair = cubic.chopAt(roots[0]);
942        for (int i = 0; i < 7; ++i) {
943            dst[i] = pair.pts[i].asSkPoint();
944        }
945        return true;
946    }
947    return false;
948}
949
950bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
951    return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
952}
953
954bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
955    return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
956}
957
958///////////////////////////////////////////////////////////////////////////////
959
960/*  Find t value for quadratic [a, b, c] = d.
961    Return 0 if there is no solution within [0, 1)
962*/
963static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
964    // At^2 + Bt + C = d
965    SkScalar A = a - 2 * b + c;
966    SkScalar B = 2 * (b - a);
967    SkScalar C = a - d;
968
969    SkScalar    roots[2];
970    int         count = SkFindUnitQuadRoots(A, B, C, roots);
971
972    SkASSERT(count <= 1);
973    return count == 1 ? roots[0] : 0;
974}
975
976/*  given a quad-curve and a point (x,y), chop the quad at that point and place
977    the new off-curve point and endpoint into 'dest'.
978    Should only return false if the computed pos is the start of the curve
979    (i.e. root == 0)
980*/
981static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
982                                SkPoint* dest) {
983    const SkScalar* base;
984    SkScalar        value;
985
986    if (SkScalarAbs(x) < SkScalarAbs(y)) {
987        base = &quad[0].fX;
988        value = x;
989    } else {
990        base = &quad[0].fY;
991        value = y;
992    }
993
994    // note: this returns 0 if it thinks value is out of range, meaning the
995    // root might return something outside of [0, 1)
996    SkScalar t = quad_solve(base[0], base[2], base[4], value);
997
998    if (t > 0) {
999        SkPoint tmp[5];
1000        SkChopQuadAt(quad, tmp, t);
1001        dest[0] = tmp[1];
1002        dest[1].set(x, y);
1003        return true;
1004    } else {
1005        /*  t == 0 means either the value triggered a root outside of [0, 1)
1006            For our purposes, we can ignore the <= 0 roots, but we want to
1007            catch the >= 1 roots (which given our caller, will basically mean
1008            a root of 1, give-or-take numerical instability). If we are in the
1009            >= 1 case, return the existing offCurve point.
1010
1011            The test below checks to see if we are close to the "end" of the
1012            curve (near base[4]). Rather than specifying a tolerance, I just
1013            check to see if value is on to the right/left of the middle point
1014            (depending on the direction/sign of the end points).
1015        */
1016        if ((base[0] < base[4] && value > base[2]) ||
1017            (base[0] > base[4] && value < base[2]))   // should root have been 1
1018        {
1019            dest[0] = quad[1];
1020            dest[1].set(x, y);
1021            return true;
1022        }
1023    }
1024    return false;
1025}
1026
1027static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1028// The mid point of the quadratic arc approximation is half way between the two
1029// control points. The float epsilon adjustment moves the on curve point out by
1030// two bits, distributing the convex test error between the round rect
1031// approximation and the convex cross product sign equality test.
1032#define SK_MID_RRECT_OFFSET \
1033    (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1034    { SK_Scalar1,            0                      },
1035    { SK_Scalar1,            SK_ScalarTanPIOver8    },
1036    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
1037    { SK_ScalarTanPIOver8,   SK_Scalar1             },
1038
1039    { 0,                     SK_Scalar1             },
1040    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
1041    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
1042    { -SK_Scalar1,           SK_ScalarTanPIOver8    },
1043
1044    { -SK_Scalar1,           0                      },
1045    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
1046    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
1047    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
1048
1049    { 0,                     -SK_Scalar1            },
1050    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
1051    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
1052    { SK_Scalar1,            -SK_ScalarTanPIOver8   },
1053
1054    { SK_Scalar1,            0                      }
1055#undef SK_MID_RRECT_OFFSET
1056};
1057
1058int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1059                   SkRotationDirection dir, const SkMatrix* userMatrix,
1060                   SkPoint quadPoints[]) {
1061    // rotate by x,y so that uStart is (1.0)
1062    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1063    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1064
1065    SkScalar absX = SkScalarAbs(x);
1066    SkScalar absY = SkScalarAbs(y);
1067
1068    int pointCount;
1069
1070    // check for (effectively) coincident vectors
1071    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1072    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1073    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1074        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1075         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1076
1077        // just return the start-point
1078        quadPoints[0].set(SK_Scalar1, 0);
1079        pointCount = 1;
1080    } else {
1081        if (dir == kCCW_SkRotationDirection) {
1082            y = -y;
1083        }
1084        // what octant (quadratic curve) is [xy] in?
1085        int oct = 0;
1086        bool sameSign = true;
1087
1088        if (0 == y) {
1089            oct = 4;        // 180
1090            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1091        } else if (0 == x) {
1092            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1093            oct = y > 0 ? 2 : 6; // 90 : 270
1094        } else {
1095            if (y < 0) {
1096                oct += 4;
1097            }
1098            if ((x < 0) != (y < 0)) {
1099                oct += 2;
1100                sameSign = false;
1101            }
1102            if ((absX < absY) == sameSign) {
1103                oct += 1;
1104            }
1105        }
1106
1107        int wholeCount = oct << 1;
1108        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1109
1110        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1111        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
1112            wholeCount += 2;
1113        }
1114        pointCount = wholeCount + 1;
1115    }
1116
1117    // now handle counter-clockwise and the initial unitStart rotation
1118    SkMatrix    matrix;
1119    matrix.setSinCos(uStart.fY, uStart.fX);
1120    if (dir == kCCW_SkRotationDirection) {
1121        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1122    }
1123    if (userMatrix) {
1124        matrix.postConcat(*userMatrix);
1125    }
1126    matrix.mapPoints(quadPoints, pointCount);
1127    return pointCount;
1128}
1129
1130
1131///////////////////////////////////////////////////////////////////////////////
1132//
1133// NURB representation for conics.  Helpful explanations at:
1134//
1135// http://citeseerx.ist.psu.edu/viewdoc/
1136//   download?doi=10.1.1.44.5740&rep=rep1&type=ps
1137// and
1138// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1139//
1140// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1141//     ------------------------------------------
1142//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1143//
1144//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1145//     ------------------------------------------------
1146//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1147//
1148
1149// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1150//
1151//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1152//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1153//  t^0 : -2 P0 w + 2 P1 w
1154//
1155//  We disregard magnitude, so we can freely ignore the denominator of F', and
1156//  divide the numerator by 2
1157//
1158//    coeff[0] for t^2
1159//    coeff[1] for t^1
1160//    coeff[2] for t^0
1161//
1162static void conic_deriv_coeff(const SkScalar src[],
1163                              SkScalar w,
1164                              SkScalar coeff[3]) {
1165    const SkScalar P20 = src[4] - src[0];
1166    const SkScalar P10 = src[2] - src[0];
1167    const SkScalar wP10 = w * P10;
1168    coeff[0] = w * P20 - P20;
1169    coeff[1] = P20 - 2 * wP10;
1170    coeff[2] = wP10;
1171}
1172
1173static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1174    SkScalar coeff[3];
1175    conic_deriv_coeff(src, w, coeff);
1176
1177    SkScalar tValues[2];
1178    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1179    SkASSERT(0 == roots || 1 == roots);
1180
1181    if (1 == roots) {
1182        *t = tValues[0];
1183        return true;
1184    }
1185    return false;
1186}
1187
1188struct SkP3D {
1189    SkScalar fX, fY, fZ;
1190
1191    void set(SkScalar x, SkScalar y, SkScalar z) {
1192        fX = x; fY = y; fZ = z;
1193    }
1194
1195    void projectDown(SkPoint* dst) const {
1196        dst->set(fX / fZ, fY / fZ);
1197    }
1198};
1199
1200// We only interpolate one dimension at a time (the first, at +0, +3, +6).
1201static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1202    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1203    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1204    dst[0] = ab;
1205    dst[3] = SkScalarInterp(ab, bc, t);
1206    dst[6] = bc;
1207}
1208
1209static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1210    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1211    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1212    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1213}
1214
1215void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1216    SkP3D tmp[3], tmp2[3];
1217
1218    ratquad_mapTo3D(fPts, fW, tmp);
1219
1220    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1221    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1222    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1223
1224    dst[0].fPts[0] = fPts[0];
1225    tmp2[0].projectDown(&dst[0].fPts[1]);
1226    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1227    tmp2[2].projectDown(&dst[1].fPts[1]);
1228    dst[1].fPts[2] = fPts[2];
1229
1230    // to put in "standard form", where w0 and w2 are both 1, we compute the
1231    // new w1 as sqrt(w1*w1/w0*w2)
1232    // or
1233    // w1 /= sqrt(w0*w2)
1234    //
1235    // However, in our case, we know that for dst[0]:
1236    //     w0 == 1, and for dst[1], w2 == 1
1237    //
1238    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1239    dst[0].fW = tmp2[0].fZ / root;
1240    dst[1].fW = tmp2[2].fZ / root;
1241}
1242
1243static Sk2s times_2(const Sk2s& value) {
1244    return value + value;
1245}
1246
1247SkPoint SkConic::evalAt(SkScalar t) const {
1248    Sk2s p0 = from_point(fPts[0]);
1249    Sk2s p1 = from_point(fPts[1]);
1250    Sk2s p2 = from_point(fPts[2]);
1251    Sk2s tt(t);
1252    Sk2s ww(fW);
1253    Sk2s one(1);
1254
1255    Sk2s p1w = p1 * ww;
1256    Sk2s C = p0;
1257    Sk2s A = p2 - times_2(p1w) + p0;
1258    Sk2s B = times_2(p1w - C);
1259    Sk2s numer = quad_poly_eval(A, B, C, tt);
1260
1261    B = times_2(ww - one);
1262    A = Sk2s(0)-B;
1263    Sk2s denom = quad_poly_eval(A, B, one, tt);
1264
1265    return to_point(numer / denom);
1266}
1267
1268SkVector SkConic::evalTangentAt(SkScalar t) const {
1269    // The derivative equation returns a zero tangent vector when t is 0 or 1,
1270    // and the control point is equal to the end point.
1271    // In this case, use the conic endpoints to compute the tangent.
1272    if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1273        return fPts[2] - fPts[0];
1274    }
1275    Sk2s p0 = from_point(fPts[0]);
1276    Sk2s p1 = from_point(fPts[1]);
1277    Sk2s p2 = from_point(fPts[2]);
1278    Sk2s ww(fW);
1279
1280    Sk2s p20 = p2 - p0;
1281    Sk2s p10 = p1 - p0;
1282
1283    Sk2s C = ww * p10;
1284    Sk2s A = ww * p20 - p20;
1285    Sk2s B = p20 - C - C;
1286
1287    return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
1288}
1289
1290void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1291    SkASSERT(t >= 0 && t <= SK_Scalar1);
1292
1293    if (pt) {
1294        *pt = this->evalAt(t);
1295    }
1296    if (tangent) {
1297        *tangent = this->evalTangentAt(t);
1298    }
1299}
1300
1301static SkScalar subdivide_w_value(SkScalar w) {
1302    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1303}
1304
1305static Sk2s twice(const Sk2s& value) {
1306    return value + value;
1307}
1308
1309void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1310    Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1311    SkScalar newW = subdivide_w_value(fW);
1312
1313    Sk2s p0 = from_point(fPts[0]);
1314    Sk2s p1 = from_point(fPts[1]);
1315    Sk2s p2 = from_point(fPts[2]);
1316    Sk2s ww(fW);
1317
1318    Sk2s wp1 = ww * p1;
1319    Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
1320
1321    dst[0].fPts[0] = fPts[0];
1322    dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1323    dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1324    dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1325    dst[1].fPts[2] = fPts[2];
1326
1327    dst[0].fW = dst[1].fW = newW;
1328}
1329
1330/*
1331 *  "High order approximation of conic sections by quadratic splines"
1332 *      by Michael Floater, 1993
1333 */
1334#define AS_QUAD_ERROR_SETUP                                         \
1335    SkScalar a = fW - 1;                                            \
1336    SkScalar k = a / (4 * (2 + a));                                 \
1337    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1338    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1339
1340void SkConic::computeAsQuadError(SkVector* err) const {
1341    AS_QUAD_ERROR_SETUP
1342    err->set(x, y);
1343}
1344
1345bool SkConic::asQuadTol(SkScalar tol) const {
1346    AS_QUAD_ERROR_SETUP
1347    return (x * x + y * y) <= tol * tol;
1348}
1349
1350// Limit the number of suggested quads to approximate a conic
1351#define kMaxConicToQuadPOW2     5
1352
1353int SkConic::computeQuadPOW2(SkScalar tol) const {
1354    if (tol < 0 || !SkScalarIsFinite(tol)) {
1355        return 0;
1356    }
1357
1358    AS_QUAD_ERROR_SETUP
1359
1360    SkScalar error = SkScalarSqrt(x * x + y * y);
1361    int pow2;
1362    for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1363        if (error <= tol) {
1364            break;
1365        }
1366        error *= 0.25f;
1367    }
1368    // float version -- using ceil gives the same results as the above.
1369    if (false) {
1370        SkScalar err = SkScalarSqrt(x * x + y * y);
1371        if (err <= tol) {
1372            return 0;
1373        }
1374        SkScalar tol2 = tol * tol;
1375        if (tol2 == 0) {
1376            return kMaxConicToQuadPOW2;
1377        }
1378        SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1379        int altPow2 = SkScalarCeilToInt(fpow2);
1380        if (altPow2 != pow2) {
1381            SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1382        }
1383        pow2 = altPow2;
1384    }
1385    return pow2;
1386}
1387
1388static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1389    SkASSERT(level >= 0);
1390
1391    if (0 == level) {
1392        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1393        return pts + 2;
1394    } else {
1395        SkConic dst[2];
1396        src.chop(dst);
1397        --level;
1398        pts = subdivide(dst[0], pts, level);
1399        return subdivide(dst[1], pts, level);
1400    }
1401}
1402
1403int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1404    SkASSERT(pow2 >= 0);
1405    *pts = fPts[0];
1406    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1407    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1408    return 1 << pow2;
1409}
1410
1411bool SkConic::findXExtrema(SkScalar* t) const {
1412    return conic_find_extrema(&fPts[0].fX, fW, t);
1413}
1414
1415bool SkConic::findYExtrema(SkScalar* t) const {
1416    return conic_find_extrema(&fPts[0].fY, fW, t);
1417}
1418
1419bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1420    SkScalar t;
1421    if (this->findXExtrema(&t)) {
1422        this->chopAt(t, dst);
1423        // now clean-up the middle, since we know t was meant to be at
1424        // an X-extrema
1425        SkScalar value = dst[0].fPts[2].fX;
1426        dst[0].fPts[1].fX = value;
1427        dst[1].fPts[0].fX = value;
1428        dst[1].fPts[1].fX = value;
1429        return true;
1430    }
1431    return false;
1432}
1433
1434bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1435    SkScalar t;
1436    if (this->findYExtrema(&t)) {
1437        this->chopAt(t, dst);
1438        // now clean-up the middle, since we know t was meant to be at
1439        // an Y-extrema
1440        SkScalar value = dst[0].fPts[2].fY;
1441        dst[0].fPts[1].fY = value;
1442        dst[1].fPts[0].fY = value;
1443        dst[1].fPts[1].fY = value;
1444        return true;
1445    }
1446    return false;
1447}
1448
1449void SkConic::computeTightBounds(SkRect* bounds) const {
1450    SkPoint pts[4];
1451    pts[0] = fPts[0];
1452    pts[1] = fPts[2];
1453    int count = 2;
1454
1455    SkScalar t;
1456    if (this->findXExtrema(&t)) {
1457        this->evalAt(t, &pts[count++]);
1458    }
1459    if (this->findYExtrema(&t)) {
1460        this->evalAt(t, &pts[count++]);
1461    }
1462    bounds->set(pts, count);
1463}
1464
1465void SkConic::computeFastBounds(SkRect* bounds) const {
1466    bounds->set(fPts, 3);
1467}
1468
1469#if 0  // unimplemented
1470bool SkConic::findMaxCurvature(SkScalar* t) const {
1471    // TODO: Implement me
1472    return false;
1473}
1474#endif
1475
1476SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1477                             const SkMatrix& matrix) {
1478    if (!matrix.hasPerspective()) {
1479        return w;
1480    }
1481
1482    SkP3D src[3], dst[3];
1483
1484    ratquad_mapTo3D(pts, w, src);
1485
1486    matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1487
1488    // w' = sqrt(w1*w1/w0*w2)
1489    SkScalar w0 = dst[0].fZ;
1490    SkScalar w1 = dst[1].fZ;
1491    SkScalar w2 = dst[2].fZ;
1492    w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1493    return w;
1494}
1495
1496int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1497                          const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1498    // rotate by x,y so that uStart is (1.0)
1499    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1500    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1501
1502    SkScalar absY = SkScalarAbs(y);
1503
1504    // check for (effectively) coincident vectors
1505    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1506    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1507    if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1508                                                 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1509        return 0;
1510    }
1511
1512    if (dir == kCCW_SkRotationDirection) {
1513        y = -y;
1514    }
1515
1516    // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1517    //      0 == [0  .. 90)
1518    //      1 == [90 ..180)
1519    //      2 == [180..270)
1520    //      3 == [270..360)
1521    //
1522    int quadrant = 0;
1523    if (0 == y) {
1524        quadrant = 2;        // 180
1525        SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1526    } else if (0 == x) {
1527        SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1528        quadrant = y > 0 ? 1 : 3; // 90 : 270
1529    } else {
1530        if (y < 0) {
1531            quadrant += 2;
1532        }
1533        if ((x < 0) != (y < 0)) {
1534            quadrant += 1;
1535        }
1536    }
1537
1538    const SkPoint quadrantPts[] = {
1539        { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1540    };
1541    const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1542
1543    int conicCount = quadrant;
1544    for (int i = 0; i < conicCount; ++i) {
1545        dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1546    }
1547
1548    // Now compute any remaing (sub-90-degree) arc for the last conic
1549    const SkPoint finalP = { x, y };
1550    const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1551    const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1552    SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1553
1554    if (dot < 1) {
1555        SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1556        // compute the bisector vector, and then rescale to be the off-curve point.
1557        // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1558        // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1559        // This is nice, since our computed weight is cos(theta/2) as well!
1560        //
1561        const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1562        offCurve.setLength(SkScalarInvert(cosThetaOver2));
1563        dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1564        conicCount += 1;
1565    }
1566
1567    // now handle counter-clockwise and the initial unitStart rotation
1568    SkMatrix    matrix;
1569    matrix.setSinCos(uStart.fY, uStart.fX);
1570    if (dir == kCCW_SkRotationDirection) {
1571        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1572    }
1573    if (userMatrix) {
1574        matrix.postConcat(*userMatrix);
1575    }
1576    for (int i = 0; i < conicCount; ++i) {
1577        matrix.mapPoints(dst[i].fPts, 3);
1578    }
1579    return conicCount;
1580}
1581