SkPathOpsTypes.h revision 1597628fa38d24f23ad505bfb40e70e7c8617457
1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#ifndef SkPathOpsTypes_DEFINED
8#define SkPathOpsTypes_DEFINED
9
10#include <float.h>  // for FLT_EPSILON
11#include <math.h>   // for fabs, sqrt
12
13#include "SkFloatingPoint.h"
14#include "SkPath.h"
15#include "SkPathOps.h"
16#include "SkPathOpsDebug.h"
17#include "SkScalar.h"
18
19enum SkPathOpsMask {
20    kWinding_PathOpsMask = -1,
21    kNo_PathOpsMask = 0,
22    kEvenOdd_PathOpsMask = 1
23};
24
25class SkChunkAlloc;
26class SkOpCoincidence;
27class SkOpContour;
28class SkOpContourHead;
29class SkIntersections;
30class SkIntersectionHelper;
31
32class SkOpGlobalState {
33public:
34    SkOpGlobalState(SkOpContourHead* head,
35                    SkChunkAlloc* allocator  SkDEBUGPARAMS(bool debugSkipAssert)
36                    SkDEBUGPARAMS(const char* testName));
37
38    enum Phase {
39        kIntersecting,
40        kWalking,
41        kFixWinding,
42    };
43
44    enum {
45        kMaxWindingTries = 10
46    };
47
48    SkChunkAlloc* allocator() {
49        return fAllocator;
50    }
51
52    bool angleCoincidence() const {
53        return fAngleCoincidence;
54    }
55
56    void bumpNested() {
57        ++fNested;
58    }
59
60    void clearNested() {
61        fNested = 0;
62    }
63
64    SkOpCoincidence* coincidence() {
65        return fCoincidence;
66    }
67
68    SkOpContourHead* contourHead() {
69        return fContourHead;
70    }
71
72#ifdef SK_DEBUG
73    const class SkOpAngle* debugAngle(int id) const;
74    const SkOpCoincidence* debugCoincidence() const;
75    SkOpContour* debugContour(int id);
76    const class SkOpPtT* debugPtT(int id) const;
77    bool debugRunFail() const;
78    const class SkOpSegment* debugSegment(int id) const;
79    bool debugSkipAssert() const { return fDebugSkipAssert; }
80    const class SkOpSpanBase* debugSpan(int id) const;
81    const char* debugTestName() const { return fDebugTestName; }
82#endif
83
84#if DEBUG_T_SECT_LOOP_COUNT
85    void debugAddLoopCount(SkIntersections* , const SkIntersectionHelper& ,
86        const SkIntersectionHelper& );
87    void debugDoYourWorst(SkOpGlobalState* );
88    void debugLoopReport();
89    void debugResetLoopCounts();
90#endif
91
92#if DEBUG_COINCIDENCE
93    void debugSetCheckHealth(bool check) { fDebugCheckHealth = check; }
94    bool debugCheckHealth() const { return fDebugCheckHealth; }
95#endif
96
97    int nested() const {
98        return fNested;
99    }
100
101#ifdef SK_DEBUG
102    int nextAngleID() {
103        return ++fAngleID;
104    }
105
106    int nextCoinID() {
107        return ++fCoinID;
108    }
109
110    int nextContourID() {
111        return ++fContourID;
112    }
113
114    int nextPtTID() {
115        return ++fPtTID;
116    }
117
118    int nextSegmentID() {
119        return ++fSegmentID;
120    }
121
122    int nextSpanID() {
123        return ++fSpanID;
124    }
125#endif
126
127    Phase phase() const {
128        return fPhase;
129    }
130
131    void setAngleCoincidence() {
132        fAngleCoincidence = true;
133    }
134
135    void setCoincidence(SkOpCoincidence* coincidence) {
136        fCoincidence = coincidence;
137    }
138
139    void setContourHead(SkOpContourHead* contourHead) {
140        fContourHead = contourHead;
141    }
142
143    void setPhase(Phase phase) {
144        SkASSERT(fPhase != phase);
145        fPhase = phase;
146    }
147
148    // called in very rare cases where angles are sorted incorrectly -- signfies op will fail
149    void setWindingFailed() {
150        fWindingFailed = true;
151    }
152
153    bool windingFailed() const {
154        return fWindingFailed;
155    }
156
157private:
158    SkChunkAlloc* fAllocator;
159    SkOpCoincidence* fCoincidence;
160    SkOpContourHead* fContourHead;
161    int fNested;
162    bool fWindingFailed;
163    bool fAngleCoincidence;
164    Phase fPhase;
165#ifdef SK_DEBUG
166    const char* fDebugTestName;
167    int fAngleID;
168    int fCoinID;
169    int fContourID;
170    int fPtTID;
171    int fSegmentID;
172    int fSpanID;
173    bool fDebugSkipAssert;
174#endif
175#if DEBUG_T_SECT_LOOP_COUNT
176    int fDebugLoopCount[3];
177    SkPath::Verb fDebugWorstVerb[6];
178    SkPoint fDebugWorstPts[24];
179    float fDebugWorstWeight[6];
180#endif
181#if DEBUG_COINCIDENCE
182    bool fDebugCheckHealth;
183#endif
184};
185
186#define SkOPASSERT(cond) SkASSERT(this->globalState()->debugSkipAssert() || cond)
187#define SkOPOBJASSERT(obj, cond) SkASSERT((obj->debugGlobalState() && \
188        obj->debugGlobalState()->debugSkipAssert()) || cond)
189
190// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
191bool AlmostEqualUlps(float a, float b);
192inline bool AlmostEqualUlps(double a, double b) {
193    return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
194}
195
196bool AlmostEqualUlpsNoNormalCheck(float a, float b);
197inline bool AlmostEqualUlpsNoNormalCheck(double a, double b) {
198    return AlmostEqualUlpsNoNormalCheck(SkDoubleToScalar(a), SkDoubleToScalar(b));
199}
200
201bool AlmostEqualUlps_Pin(float a, float b);
202inline bool AlmostEqualUlps_Pin(double a, double b) {
203    return AlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b));
204}
205
206// Use Almost Dequal when comparing should not special case denormalized values.
207bool AlmostDequalUlps(float a, float b);
208bool AlmostDequalUlps(double a, double b);
209
210bool NotAlmostEqualUlps(float a, float b);
211inline bool NotAlmostEqualUlps(double a, double b) {
212    return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
213}
214
215bool NotAlmostEqualUlps_Pin(float a, float b);
216inline bool NotAlmostEqualUlps_Pin(double a, double b) {
217    return NotAlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b));
218}
219
220bool NotAlmostDequalUlps(float a, float b);
221inline bool NotAlmostDequalUlps(double a, double b) {
222    return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
223}
224
225// Use Almost Bequal when comparing coordinates in conjunction with between.
226bool AlmostBequalUlps(float a, float b);
227inline bool AlmostBequalUlps(double a, double b) {
228    return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
229}
230
231bool AlmostPequalUlps(float a, float b);
232inline bool AlmostPequalUlps(double a, double b) {
233    return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
234}
235
236bool RoughlyEqualUlps(float a, float b);
237inline bool RoughlyEqualUlps(double a, double b) {
238    return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
239}
240
241bool AlmostLessUlps(float a, float b);
242inline bool AlmostLessUlps(double a, double b) {
243    return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
244}
245
246bool AlmostLessOrEqualUlps(float a, float b);
247inline bool AlmostLessOrEqualUlps(double a, double b) {
248    return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
249}
250
251bool AlmostBetweenUlps(float a, float b, float c);
252inline bool AlmostBetweenUlps(double a, double b, double c) {
253    return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c));
254}
255
256int UlpsDistance(float a, float b);
257inline int UlpsDistance(double a, double b) {
258    return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b));
259}
260
261// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
262// DBL_EPSILON == 2.22045e-16
263const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
264const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
265const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2;
266const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16;
267const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
268const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
269const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
270const double DBL_EPSILON_ERR = DBL_EPSILON * 4;  // FIXME: tune -- allow a few bits of error
271const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16;
272const double ROUGH_EPSILON = FLT_EPSILON * 64;
273const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
274const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048;
275const double BUMP_EPSILON = FLT_EPSILON * 4096;
276
277const SkScalar INVERSE_NUMBER_RANGE = FLT_EPSILON_ORDERABLE_ERR;
278
279inline bool zero_or_one(double x) {
280    return x == 0 || x == 1;
281}
282
283inline bool approximately_zero(double x) {
284    return fabs(x) < FLT_EPSILON;
285}
286
287inline bool precisely_zero(double x) {
288    return fabs(x) < DBL_EPSILON_ERR;
289}
290
291inline bool precisely_subdivide_zero(double x) {
292    return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR;
293}
294
295inline bool approximately_zero(float x) {
296    return fabs(x) < FLT_EPSILON;
297}
298
299inline bool approximately_zero_cubed(double x) {
300    return fabs(x) < FLT_EPSILON_CUBED;
301}
302
303inline bool approximately_zero_half(double x) {
304    return fabs(x) < FLT_EPSILON_HALF;
305}
306
307inline bool approximately_zero_double(double x) {
308    return fabs(x) < FLT_EPSILON_DOUBLE;
309}
310
311inline bool approximately_zero_orderable(double x) {
312    return fabs(x) < FLT_EPSILON_ORDERABLE_ERR;
313}
314
315inline bool approximately_zero_squared(double x) {
316    return fabs(x) < FLT_EPSILON_SQUARED;
317}
318
319inline bool approximately_zero_sqrt(double x) {
320    return fabs(x) < FLT_EPSILON_SQRT;
321}
322
323inline bool roughly_zero(double x) {
324    return fabs(x) < ROUGH_EPSILON;
325}
326
327inline bool approximately_zero_inverse(double x) {
328    return fabs(x) > FLT_EPSILON_INVERSE;
329}
330
331inline bool approximately_zero_when_compared_to(double x, double y) {
332    return x == 0 || fabs(x) < fabs(y * FLT_EPSILON);
333}
334
335inline bool precisely_zero_when_compared_to(double x, double y) {
336    return x == 0 || fabs(x) < fabs(y * DBL_EPSILON);
337}
338
339inline bool roughly_zero_when_compared_to(double x, double y) {
340    return x == 0 || fabs(x) < fabs(y * ROUGH_EPSILON);
341}
342
343// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
344// AlmostEqualUlps instead.
345inline bool approximately_equal(double x, double y) {
346    return approximately_zero(x - y);
347}
348
349inline bool precisely_equal(double x, double y) {
350    return precisely_zero(x - y);
351}
352
353inline bool precisely_subdivide_equal(double x, double y) {
354    return precisely_subdivide_zero(x - y);
355}
356
357inline bool approximately_equal_half(double x, double y) {
358    return approximately_zero_half(x - y);
359}
360
361inline bool approximately_equal_double(double x, double y) {
362    return approximately_zero_double(x - y);
363}
364
365inline bool approximately_equal_orderable(double x, double y) {
366    return approximately_zero_orderable(x - y);
367}
368
369inline bool approximately_equal_squared(double x, double y) {
370    return approximately_equal(x, y);
371}
372
373inline bool approximately_greater(double x, double y) {
374    return x - FLT_EPSILON >= y;
375}
376
377inline bool approximately_greater_double(double x, double y) {
378    return x - FLT_EPSILON_DOUBLE >= y;
379}
380
381inline bool approximately_greater_orderable(double x, double y) {
382    return x - FLT_EPSILON_ORDERABLE_ERR >= y;
383}
384
385inline bool approximately_greater_or_equal(double x, double y) {
386    return x + FLT_EPSILON > y;
387}
388
389inline bool approximately_greater_or_equal_double(double x, double y) {
390    return x + FLT_EPSILON_DOUBLE > y;
391}
392
393inline bool approximately_greater_or_equal_orderable(double x, double y) {
394    return x + FLT_EPSILON_ORDERABLE_ERR > y;
395}
396
397inline bool approximately_lesser(double x, double y) {
398    return x + FLT_EPSILON <= y;
399}
400
401inline bool approximately_lesser_double(double x, double y) {
402    return x + FLT_EPSILON_DOUBLE <= y;
403}
404
405inline bool approximately_lesser_orderable(double x, double y) {
406    return x + FLT_EPSILON_ORDERABLE_ERR <= y;
407}
408
409inline bool approximately_lesser_or_equal(double x, double y) {
410    return x - FLT_EPSILON < y;
411}
412
413inline bool approximately_lesser_or_equal_double(double x, double y) {
414    return x - FLT_EPSILON_DOUBLE < y;
415}
416
417inline bool approximately_lesser_or_equal_orderable(double x, double y) {
418    return x - FLT_EPSILON_ORDERABLE_ERR < y;
419}
420
421inline bool approximately_greater_than_one(double x) {
422    return x > 1 - FLT_EPSILON;
423}
424
425inline bool precisely_greater_than_one(double x) {
426    return x > 1 - DBL_EPSILON_ERR;
427}
428
429inline bool approximately_less_than_zero(double x) {
430    return x < FLT_EPSILON;
431}
432
433inline bool precisely_less_than_zero(double x) {
434    return x < DBL_EPSILON_ERR;
435}
436
437inline bool approximately_negative(double x) {
438    return x < FLT_EPSILON;
439}
440
441inline bool approximately_negative_orderable(double x) {
442    return x < FLT_EPSILON_ORDERABLE_ERR;
443}
444
445inline bool precisely_negative(double x) {
446    return x < DBL_EPSILON_ERR;
447}
448
449inline bool approximately_one_or_less(double x) {
450    return x < 1 + FLT_EPSILON;
451}
452
453inline bool approximately_one_or_less_double(double x) {
454    return x < 1 + FLT_EPSILON_DOUBLE;
455}
456
457inline bool approximately_positive(double x) {
458    return x > -FLT_EPSILON;
459}
460
461inline bool approximately_positive_squared(double x) {
462    return x > -(FLT_EPSILON_SQUARED);
463}
464
465inline bool approximately_zero_or_more(double x) {
466    return x > -FLT_EPSILON;
467}
468
469inline bool approximately_zero_or_more_double(double x) {
470    return x > -FLT_EPSILON_DOUBLE;
471}
472
473inline bool approximately_between_orderable(double a, double b, double c) {
474    return a <= c
475            ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c)
476            : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b);
477}
478
479inline bool approximately_between(double a, double b, double c) {
480    return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
481            : approximately_negative(b - a) && approximately_negative(c - b);
482}
483
484inline bool precisely_between(double a, double b, double c) {
485    return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
486            : precisely_negative(b - a) && precisely_negative(c - b);
487}
488
489// returns true if (a <= b <= c) || (a >= b >= c)
490inline bool between(double a, double b, double c) {
491    SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
492            || (precisely_zero(a) && precisely_zero(b) && precisely_zero(c)));
493    return (a - b) * (c - b) <= 0;
494}
495
496inline bool roughly_equal(double x, double y) {
497    return fabs(x - y) < ROUGH_EPSILON;
498}
499
500inline bool roughly_negative(double x) {
501    return x < ROUGH_EPSILON;
502}
503
504inline bool roughly_between(double a, double b, double c) {
505    return a <= c ? roughly_negative(a - b) && roughly_negative(b - c)
506            : roughly_negative(b - a) && roughly_negative(c - b);
507}
508
509inline bool more_roughly_equal(double x, double y) {
510    return fabs(x - y) < MORE_ROUGH_EPSILON;
511}
512
513inline bool way_roughly_equal(double x, double y) {
514    return fabs(x - y) < WAY_ROUGH_EPSILON;
515}
516
517struct SkDPoint;
518struct SkDVector;
519struct SkDLine;
520struct SkDQuad;
521struct SkDConic;
522struct SkDCubic;
523struct SkDRect;
524
525inline SkPath::Verb SkPathOpsPointsToVerb(int points) {
526    int verb = (1 << points) >> 1;
527#ifdef SK_DEBUG
528    switch (points) {
529        case 0: SkASSERT(SkPath::kMove_Verb == verb); break;
530        case 1: SkASSERT(SkPath::kLine_Verb == verb); break;
531        case 2: SkASSERT(SkPath::kQuad_Verb == verb); break;
532        case 3: SkASSERT(SkPath::kCubic_Verb == verb); break;
533        default: SkDEBUGFAIL("should not be here");
534    }
535#endif
536    return (SkPath::Verb)verb;
537}
538
539inline int SkPathOpsVerbToPoints(SkPath::Verb verb) {
540    int points = (int) verb - (((int) verb + 1) >> 2);
541#ifdef SK_DEBUG
542    switch (verb) {
543        case SkPath::kLine_Verb: SkASSERT(1 == points); break;
544        case SkPath::kQuad_Verb: SkASSERT(2 == points); break;
545        case SkPath::kConic_Verb: SkASSERT(2 == points); break;
546        case SkPath::kCubic_Verb: SkASSERT(3 == points); break;
547        default: SkDEBUGFAIL("should not get here");
548    }
549#endif
550    return points;
551}
552
553inline double SkDInterp(double A, double B, double t) {
554    return A + (B - A) * t;
555}
556
557double SkDCubeRoot(double x);
558
559/* Returns -1 if negative, 0 if zero, 1 if positive
560*/
561inline int SkDSign(double x) {
562    return (x > 0) - (x < 0);
563}
564
565/* Returns 0 if negative, 1 if zero, 2 if positive
566*/
567inline int SKDSide(double x) {
568    return (x > 0) + (x >= 0);
569}
570
571/* Returns 1 if negative, 2 if zero, 4 if positive
572*/
573inline int SkDSideBit(double x) {
574    return 1 << SKDSide(x);
575}
576
577inline double SkPinT(double t) {
578    return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t;
579}
580
581#endif
582