1//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates PHI instructions by aggressively coalescing the copies
11// that would be inserted by a naive algorithm and only inserting the copies
12// that are necessary. The coalescing technique initially assumes that all
13// registers appearing in a PHI instruction do not interfere. It then eliminates
14// proven interferences, using dominators to only perform a linear number of
15// interference tests instead of the quadratic number of interference tests
16// that this would naively require. This is a technique derived from:
17//
18//    Budimlic, et al. Fast copy coalescing and live-range identification.
19//    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20//    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21//    PLDI '02. ACM, New York, NY, 25-32.
22//
23// The original implementation constructs a data structure they call a dominance
24// forest for this purpose. The dominance forest was shown to be unnecessary,
25// as it is possible to emulate the creation and traversal of a dominance forest
26// by directly using the dominator tree, rather than actually constructing the
27// dominance forest.  This technique is explained in:
28//
29//   Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30//     Quality and Efficiency,
31//   In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32//   Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33//   CGO '09. IEEE, Washington, DC, 114-125.
34//
35// Careful implementation allows for all of the dominator forest interference
36// checks to be performed at once in a single depth-first traversal of the
37// dominator tree, which is what is implemented here.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "strongphielim"
42#include "PHIEliminationUtils.h"
43#include "llvm/CodeGen/Passes.h"
44#include "llvm/CodeGen/LiveIntervalAnalysis.h"
45#include "llvm/CodeGen/MachineDominators.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineRegisterInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/ADT/DenseSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/Support/Debug.h"
53using namespace llvm;
54
55namespace {
56  class StrongPHIElimination : public MachineFunctionPass {
57  public:
58    static char ID; // Pass identification, replacement for typeid
59    StrongPHIElimination() : MachineFunctionPass(ID) {
60      initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
61    }
62
63    virtual void getAnalysisUsage(AnalysisUsage&) const;
64    bool runOnMachineFunction(MachineFunction&);
65
66  private:
67    /// This struct represents a single node in the union-find data structure
68    /// representing the variable congruence classes. There is one difference
69    /// from a normal union-find data structure. We steal two bits from the parent
70    /// pointer . One of these bits is used to represent whether the register
71    /// itself has been isolated, and the other is used to represent whether the
72    /// PHI with that register as its destination has been isolated.
73    ///
74    /// Note that this leads to the strange situation where the leader of a
75    /// congruence class may no longer logically be a member, due to being
76    /// isolated.
77    struct Node {
78      enum Flags {
79        kRegisterIsolatedFlag = 1,
80        kPHIIsolatedFlag = 2
81      };
82      Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
83
84      Node *getLeader();
85
86      PointerIntPair<Node*, 2> parent;
87      unsigned value;
88      unsigned rank;
89    };
90
91    /// Add a register in a new congruence class containing only itself.
92    void addReg(unsigned);
93
94    /// Join the congruence classes of two registers. This function is biased
95    /// towards the left argument, i.e. after
96    ///
97    /// addReg(r2);
98    /// unionRegs(r1, r2);
99    ///
100    /// the leader of the unioned congruence class is the same as the leader of
101    /// r1's congruence class prior to the union. This is actually relied upon
102    /// in the copy insertion code.
103    void unionRegs(unsigned, unsigned);
104
105    /// Get the color of a register. The color is 0 if the register has been
106    /// isolated.
107    unsigned getRegColor(unsigned);
108
109    // Isolate a register.
110    void isolateReg(unsigned);
111
112    /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
113    /// isolated. Otherwise, it is the original color of its destination and
114    /// all of its operands (before they were isolated, if they were).
115    unsigned getPHIColor(MachineInstr*);
116
117    /// Isolate a PHI.
118    void isolatePHI(MachineInstr*);
119
120    /// Traverses a basic block, splitting any interferences found between
121    /// registers in the same congruence class. It takes two DenseMaps as
122    /// arguments that it also updates: CurrentDominatingParent, which maps
123    /// a color to the register in that congruence class whose definition was
124    /// most recently seen, and ImmediateDominatingParent, which maps a register
125    /// to the register in the same congruence class that most immediately
126    /// dominates it.
127    ///
128    /// This function assumes that it is being called in a depth-first traversal
129    /// of the dominator tree.
130    void SplitInterferencesForBasicBlock(
131      MachineBasicBlock&,
132      DenseMap<unsigned, unsigned> &CurrentDominatingParent,
133      DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
134
135    // Lowers a PHI instruction, inserting copies of the source and destination
136    // registers as necessary.
137    void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
138
139    // Merges the live interval of Reg into NewReg and renames Reg to NewReg
140    // everywhere that Reg appears. Requires Reg and NewReg to have non-
141    // overlapping lifetimes.
142    void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
143
144    MachineRegisterInfo *MRI;
145    const TargetInstrInfo *TII;
146    MachineDominatorTree *DT;
147    LiveIntervals *LI;
148
149    BumpPtrAllocator Allocator;
150
151    DenseMap<unsigned, Node*> RegNodeMap;
152
153    // Maps a basic block to a list of its defs of registers that appear as PHI
154    // sources.
155    DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
156
157    // Maps a color to a pair of a MachineInstr* and a virtual register, which
158    // is the operand of that PHI corresponding to the current basic block.
159    DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
160
161    // FIXME: Can these two data structures be combined? Would a std::multimap
162    // be any better?
163
164    // Stores pairs of predecessor basic blocks and the source registers of
165    // inserted copy instructions.
166    typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
167    SrcCopySet InsertedSrcCopySet;
168
169    // Maps pairs of predecessor basic blocks and colors to their defining copy
170    // instructions.
171    typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
172      SrcCopyMap;
173    SrcCopyMap InsertedSrcCopyMap;
174
175    // Maps inserted destination copy registers to their defining copy
176    // instructions.
177    typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
178    DestCopyMap InsertedDestCopies;
179  };
180
181  struct MIIndexCompare {
182    MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
183
184    bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
185      return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
186    }
187
188    LiveIntervals *LI;
189  };
190} // namespace
191
192STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
193STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
194STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
195
196char StrongPHIElimination::ID = 0;
197INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
198  "Eliminate PHI nodes for register allocation, intelligently", false, false)
199INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
200INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
201INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
202INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
203  "Eliminate PHI nodes for register allocation, intelligently", false, false)
204
205char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
206
207void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
208  AU.setPreservesCFG();
209  AU.addRequired<MachineDominatorTree>();
210  AU.addRequired<SlotIndexes>();
211  AU.addPreserved<SlotIndexes>();
212  AU.addRequired<LiveIntervals>();
213  AU.addPreserved<LiveIntervals>();
214  MachineFunctionPass::getAnalysisUsage(AU);
215}
216
217static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
218  // FIXME: This only needs to check from the first terminator, as only the
219  // first terminator can use a virtual register.
220  for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
221    assert (RI != MBB->rend());
222    MachineInstr *MI = &*RI;
223
224    for (MachineInstr::mop_iterator OI = MI->operands_begin(),
225         OE = MI->operands_end(); OI != OE; ++OI) {
226      MachineOperand &MO = *OI;
227      if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
228        return &MO;
229    }
230  }
231  return NULL;
232}
233
234bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
235  MRI = &MF.getRegInfo();
236  TII = MF.getTarget().getInstrInfo();
237  DT = &getAnalysis<MachineDominatorTree>();
238  LI = &getAnalysis<LiveIntervals>();
239
240  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
241       I != E; ++I) {
242    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
243         BBI != BBE && BBI->isPHI(); ++BBI) {
244      unsigned DestReg = BBI->getOperand(0).getReg();
245      addReg(DestReg);
246      PHISrcDefs[I].push_back(BBI);
247
248      for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
249        MachineOperand &SrcMO = BBI->getOperand(i);
250        unsigned SrcReg = SrcMO.getReg();
251        addReg(SrcReg);
252        unionRegs(DestReg, SrcReg);
253
254        MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
255        if (DefMI)
256          PHISrcDefs[DefMI->getParent()].push_back(DefMI);
257      }
258    }
259  }
260
261  // Perform a depth-first traversal of the dominator tree, splitting
262  // interferences amongst PHI-congruence classes.
263  DenseMap<unsigned, unsigned> CurrentDominatingParent;
264  DenseMap<unsigned, unsigned> ImmediateDominatingParent;
265  for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
266       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
267    SplitInterferencesForBasicBlock(*DI->getBlock(),
268                                    CurrentDominatingParent,
269                                    ImmediateDominatingParent);
270  }
271
272  // Insert copies for all PHI source and destination registers.
273  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
274       I != E; ++I) {
275    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
276         BBI != BBE && BBI->isPHI(); ++BBI) {
277      InsertCopiesForPHI(BBI, I);
278    }
279  }
280
281  // FIXME: Preserve the equivalence classes during copy insertion and use
282  // the preversed equivalence classes instead of recomputing them.
283  RegNodeMap.clear();
284  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
285       I != E; ++I) {
286    for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
287         BBI != BBE && BBI->isPHI(); ++BBI) {
288      unsigned DestReg = BBI->getOperand(0).getReg();
289      addReg(DestReg);
290
291      for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
292        unsigned SrcReg = BBI->getOperand(i).getReg();
293        addReg(SrcReg);
294        unionRegs(DestReg, SrcReg);
295      }
296    }
297  }
298
299  DenseMap<unsigned, unsigned> RegRenamingMap;
300  bool Changed = false;
301  for (MachineFunction::iterator I = MF.begin(), E = MF.end();
302       I != E; ++I) {
303    MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
304    while (BBI != BBE && BBI->isPHI()) {
305      MachineInstr *PHI = BBI;
306
307      assert(PHI->getNumOperands() > 0);
308
309      unsigned SrcReg = PHI->getOperand(1).getReg();
310      unsigned SrcColor = getRegColor(SrcReg);
311      unsigned NewReg = RegRenamingMap[SrcColor];
312      if (!NewReg) {
313        NewReg = SrcReg;
314        RegRenamingMap[SrcColor] = SrcReg;
315      }
316      MergeLIsAndRename(SrcReg, NewReg);
317
318      unsigned DestReg = PHI->getOperand(0).getReg();
319      if (!InsertedDestCopies.count(DestReg))
320        MergeLIsAndRename(DestReg, NewReg);
321
322      for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
323        unsigned SrcReg = PHI->getOperand(i).getReg();
324        MergeLIsAndRename(SrcReg, NewReg);
325      }
326
327      ++BBI;
328      LI->RemoveMachineInstrFromMaps(PHI);
329      PHI->eraseFromParent();
330      Changed = true;
331    }
332  }
333
334  // Due to the insertion of copies to split live ranges, the live intervals are
335  // guaranteed to not overlap, except in one case: an original PHI source and a
336  // PHI destination copy. In this case, they have the same value and thus don't
337  // truly intersect, so we merge them into the value live at that point.
338  // FIXME: Is there some better way we can handle this?
339  for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
340       E = InsertedDestCopies.end(); I != E; ++I) {
341    unsigned DestReg = I->first;
342    unsigned DestColor = getRegColor(DestReg);
343    unsigned NewReg = RegRenamingMap[DestColor];
344
345    LiveInterval &DestLI = LI->getInterval(DestReg);
346    LiveInterval &NewLI = LI->getInterval(NewReg);
347
348    assert(DestLI.ranges.size() == 1
349           && "PHI destination copy's live interval should be a single live "
350               "range from the beginning of the BB to the copy instruction.");
351    LiveRange *DestLR = DestLI.begin();
352    VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
353    if (!NewVNI) {
354      NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
355      MachineInstr *CopyInstr = I->second;
356      CopyInstr->getOperand(1).setIsKill(true);
357    }
358
359    LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
360    NewLI.addRange(NewLR);
361
362    LI->removeInterval(DestReg);
363    MRI->replaceRegWith(DestReg, NewReg);
364  }
365
366  // Adjust the live intervals of all PHI source registers to handle the case
367  // where the PHIs in successor blocks were the only later uses of the source
368  // register.
369  for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
370       E = InsertedSrcCopySet.end(); I != E; ++I) {
371    MachineBasicBlock *MBB = I->first;
372    unsigned SrcReg = I->second;
373    if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
374      SrcReg = RenamedRegister;
375
376    LiveInterval &SrcLI = LI->getInterval(SrcReg);
377
378    bool isLiveOut = false;
379    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
380         SE = MBB->succ_end(); SI != SE; ++SI) {
381      if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
382        isLiveOut = true;
383        break;
384      }
385    }
386
387    if (isLiveOut)
388      continue;
389
390    MachineOperand *LastUse = findLastUse(MBB, SrcReg);
391    assert(LastUse);
392    SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
393    SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
394    LastUse->setIsKill(true);
395  }
396
397  LI->renumber();
398
399  Allocator.Reset();
400  RegNodeMap.clear();
401  PHISrcDefs.clear();
402  InsertedSrcCopySet.clear();
403  InsertedSrcCopyMap.clear();
404  InsertedDestCopies.clear();
405
406  return Changed;
407}
408
409void StrongPHIElimination::addReg(unsigned Reg) {
410  if (RegNodeMap.count(Reg))
411    return;
412  RegNodeMap[Reg] = new (Allocator) Node(Reg);
413}
414
415StrongPHIElimination::Node*
416StrongPHIElimination::Node::getLeader() {
417  Node *N = this;
418  Node *Parent = parent.getPointer();
419  Node *Grandparent = Parent->parent.getPointer();
420
421  while (Parent != Grandparent) {
422    N->parent.setPointer(Grandparent);
423    N = Grandparent;
424    Parent = Parent->parent.getPointer();
425    Grandparent = Parent->parent.getPointer();
426  }
427
428  return Parent;
429}
430
431unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
432  DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
433  if (RI == RegNodeMap.end())
434    return 0;
435  Node *Node = RI->second;
436  if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
437    return 0;
438  return Node->getLeader()->value;
439}
440
441void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
442  Node *Node1 = RegNodeMap[Reg1]->getLeader();
443  Node *Node2 = RegNodeMap[Reg2]->getLeader();
444
445  if (Node1->rank > Node2->rank) {
446    Node2->parent.setPointer(Node1->getLeader());
447  } else if (Node1->rank < Node2->rank) {
448    Node1->parent.setPointer(Node2->getLeader());
449  } else if (Node1 != Node2) {
450    Node2->parent.setPointer(Node1->getLeader());
451    Node1->rank++;
452  }
453}
454
455void StrongPHIElimination::isolateReg(unsigned Reg) {
456  Node *Node = RegNodeMap[Reg];
457  Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
458}
459
460unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
461  assert(PHI->isPHI());
462
463  unsigned DestReg = PHI->getOperand(0).getReg();
464  Node *DestNode = RegNodeMap[DestReg];
465  if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
466    return 0;
467
468  for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
469    unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
470    if (SrcColor)
471      return SrcColor;
472  }
473  return 0;
474}
475
476void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
477  assert(PHI->isPHI());
478  Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
479  Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
480}
481
482/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
483/// interferences found between registers in the same congruence class. It
484/// takes two DenseMaps as arguments that it also updates:
485///
486/// 1) CurrentDominatingParent, which maps a color to the register in that
487///    congruence class whose definition was most recently seen.
488///
489/// 2) ImmediateDominatingParent, which maps a register to the register in the
490///    same congruence class that most immediately dominates it.
491///
492/// This function assumes that it is being called in a depth-first traversal
493/// of the dominator tree.
494///
495/// The algorithm used here is a generalization of the dominance-based SSA test
496/// for two variables. If there are variables a_1, ..., a_n such that
497///
498///   def(a_1) dom ... dom def(a_n),
499///
500/// then we can test for an interference between any two a_i by only using O(n)
501/// interference tests between pairs of variables. If i < j and a_i and a_j
502/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
503/// Thus, in order to test for an interference involving a_i, we need only check
504/// for a potential interference with a_i+1.
505///
506/// This method can be generalized to arbitrary sets of variables by performing
507/// a depth-first traversal of the dominator tree. As we traverse down a branch
508/// of the dominator tree, we keep track of the current dominating variable and
509/// only perform an interference test with that variable. However, when we go to
510/// another branch of the dominator tree, the definition of the current dominating
511/// variable may no longer dominate the current block. In order to correct this,
512/// we need to use a stack of past choices of the current dominating variable
513/// and pop from this stack until we find a variable whose definition actually
514/// dominates the current block.
515///
516/// There will be one push on this stack for each variable that has become the
517/// current dominating variable, so instead of using an explicit stack we can
518/// simply associate the previous choice for a current dominating variable with
519/// the new choice. This works better in our implementation, where we test for
520/// interference in multiple distinct sets at once.
521void
522StrongPHIElimination::SplitInterferencesForBasicBlock(
523    MachineBasicBlock &MBB,
524    DenseMap<unsigned, unsigned> &CurrentDominatingParent,
525    DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
526  // Sort defs by their order in the original basic block, as the code below
527  // assumes that it is processing definitions in dominance order.
528  std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
529  std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
530
531  for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
532       BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
533    for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
534         E = (*BBI)->operands_end(); I != E; ++I) {
535      const MachineOperand &MO = *I;
536
537      // FIXME: This would be faster if it were possible to bail out of checking
538      // an instruction's operands after the explicit defs, but this is incorrect
539      // for variadic instructions, which may appear before register allocation
540      // in the future.
541      if (!MO.isReg() || !MO.isDef())
542        continue;
543
544      unsigned DestReg = MO.getReg();
545      if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
546        continue;
547
548      // If the virtual register being defined is not used in any PHI or has
549      // already been isolated, then there are no more interferences to check.
550      unsigned DestColor = getRegColor(DestReg);
551      if (!DestColor)
552        continue;
553
554      // The input to this pass sometimes is not in SSA form in every basic
555      // block, as some virtual registers have redefinitions. We could eliminate
556      // this by fixing the passes that generate the non-SSA code, or we could
557      // handle it here by tracking defining machine instructions rather than
558      // virtual registers. For now, we just handle the situation conservatively
559      // in a way that will possibly lead to false interferences.
560      unsigned &CurrentParent = CurrentDominatingParent[DestColor];
561      unsigned NewParent = CurrentParent;
562      if (NewParent == DestReg)
563        continue;
564
565      // Pop registers from the stack represented by ImmediateDominatingParent
566      // until we find a parent that dominates the current instruction.
567      while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
568                           || !getRegColor(NewParent)))
569        NewParent = ImmediateDominatingParent[NewParent];
570
571      // If NewParent is nonzero, then its definition dominates the current
572      // instruction, so it is only necessary to check for the liveness of
573      // NewParent in order to check for an interference.
574      if (NewParent
575          && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
576        // If there is an interference, always isolate the new register. This
577        // could be improved by using a heuristic that decides which of the two
578        // registers to isolate.
579        isolateReg(DestReg);
580        CurrentParent = NewParent;
581      } else {
582        // If there is no interference, update ImmediateDominatingParent and set
583        // the CurrentDominatingParent for this color to the current register.
584        ImmediateDominatingParent[DestReg] = NewParent;
585        CurrentParent = DestReg;
586      }
587    }
588  }
589
590  // We now walk the PHIs in successor blocks and check for interferences. This
591  // is necessary because the use of a PHI's operands are logically contained in
592  // the predecessor block. The def of a PHI's destination register is processed
593  // along with the other defs in a basic block.
594
595  CurrentPHIForColor.clear();
596
597  for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
598       SE = MBB.succ_end(); SI != SE; ++SI) {
599    for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
600         BBI != BBE && BBI->isPHI(); ++BBI) {
601      MachineInstr *PHI = BBI;
602
603      // If a PHI is already isolated, either by being isolated directly or
604      // having all of its operands isolated, ignore it.
605      unsigned Color = getPHIColor(PHI);
606      if (!Color)
607        continue;
608
609      // Find the index of the PHI operand that corresponds to this basic block.
610      unsigned PredIndex;
611      for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
612        if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
613          break;
614      }
615      assert(PredIndex < PHI->getNumOperands());
616      unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
617
618      // Pop registers from the stack represented by ImmediateDominatingParent
619      // until we find a parent that dominates the current instruction.
620      unsigned &CurrentParent = CurrentDominatingParent[Color];
621      unsigned NewParent = CurrentParent;
622      while (NewParent
623             && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
624                 || !getRegColor(NewParent)))
625        NewParent = ImmediateDominatingParent[NewParent];
626      CurrentParent = NewParent;
627
628      // If there is an interference with a register, always isolate the
629      // register rather than the PHI. It is also possible to isolate the
630      // PHI, but that introduces copies for all of the registers involved
631      // in that PHI.
632      if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
633                    && NewParent != PredOperandReg)
634        isolateReg(NewParent);
635
636      std::pair<MachineInstr*, unsigned>
637        &CurrentPHI = CurrentPHIForColor[Color];
638
639      // If two PHIs have the same operand from every shared predecessor, then
640      // they don't actually interfere. Otherwise, isolate the current PHI. This
641      // could possibly be improved, e.g. we could isolate the PHI with the
642      // fewest operands.
643      if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
644        isolatePHI(PHI);
645      else
646        CurrentPHI = std::make_pair(PHI, PredOperandReg);
647    }
648  }
649}
650
651void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
652                                              MachineBasicBlock *MBB) {
653  assert(PHI->isPHI());
654  ++NumPHIsLowered;
655  unsigned PHIColor = getPHIColor(PHI);
656
657  for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
658    MachineOperand &SrcMO = PHI->getOperand(i);
659
660    // If a source is defined by an implicit def, there is no need to insert a
661    // copy in the predecessor.
662    if (SrcMO.isUndef())
663      continue;
664
665    unsigned SrcReg = SrcMO.getReg();
666    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
667           "Machine PHI Operands must all be virtual registers!");
668
669    MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
670    unsigned SrcColor = getRegColor(SrcReg);
671
672    // If neither the PHI nor the operand were isolated, then we only need to
673    // set the phi-kill flag on the VNInfo at this PHI.
674    if (PHIColor && SrcColor == PHIColor) {
675      LiveInterval &SrcInterval = LI->getInterval(SrcReg);
676      SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
677      VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
678      assert(SrcVNI);
679      SrcVNI->setHasPHIKill(true);
680      continue;
681    }
682
683    unsigned CopyReg = 0;
684    if (PHIColor) {
685      SrcCopyMap::const_iterator I
686        = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
687      CopyReg
688        = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
689    }
690
691    if (!CopyReg) {
692      const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
693      CopyReg = MRI->createVirtualRegister(RC);
694
695      MachineBasicBlock::iterator
696        CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
697      unsigned SrcSubReg = SrcMO.getSubReg();
698      MachineInstr *CopyInstr = BuildMI(*PredBB,
699                                        CopyInsertPoint,
700                                        PHI->getDebugLoc(),
701                                        TII->get(TargetOpcode::COPY),
702                                        CopyReg).addReg(SrcReg, 0, SrcSubReg);
703      LI->InsertMachineInstrInMaps(CopyInstr);
704      ++NumSrcCopiesInserted;
705
706      // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
707      // the newly added range.
708      LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
709      InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
710
711      addReg(CopyReg);
712      if (PHIColor) {
713        unionRegs(PHIColor, CopyReg);
714        assert(getRegColor(CopyReg) != CopyReg);
715      } else {
716        PHIColor = CopyReg;
717        assert(getRegColor(CopyReg) == CopyReg);
718      }
719
720      if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
721        InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
722    }
723
724    SrcMO.setReg(CopyReg);
725
726    // If SrcReg is not live beyond the PHI, trim its interval so that it is no
727    // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
728    // processed later, but this is still correct to do at this point because we
729    // never rely on LiveIntervals being correct while inserting copies.
730    // FIXME: Should this just count uses at PHIs like the normal PHIElimination
731    // pass does?
732    LiveInterval &SrcLI = LI->getInterval(SrcReg);
733    SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
734    SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
735    SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
736    if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
737      SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
738  }
739
740  unsigned DestReg = PHI->getOperand(0).getReg();
741  unsigned DestColor = getRegColor(DestReg);
742
743  if (PHIColor && DestColor == PHIColor) {
744    LiveInterval &DestLI = LI->getInterval(DestReg);
745
746    // Set the phi-def flag for the VN at this PHI.
747    SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
748    VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
749    assert(DestVNI);
750    DestVNI->setIsPHIDef(true);
751
752    // Prior to PHI elimination, the live ranges of PHIs begin at their defining
753    // instruction. After PHI elimination, PHI instructions are replaced by VNs
754    // with the phi-def flag set, and the live ranges of these VNs start at the
755    // beginning of the basic block.
756    SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
757    DestVNI->def = MBBStartIndex;
758    DestLI.addRange(LiveRange(MBBStartIndex,
759                              PHIIndex.getDefIndex(),
760                              DestVNI));
761    return;
762  }
763
764  const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
765  unsigned CopyReg = MRI->createVirtualRegister(RC);
766
767  MachineInstr *CopyInstr = BuildMI(*MBB,
768                                    MBB->SkipPHIsAndLabels(MBB->begin()),
769                                    PHI->getDebugLoc(),
770                                    TII->get(TargetOpcode::COPY),
771                                    DestReg).addReg(CopyReg);
772  LI->InsertMachineInstrInMaps(CopyInstr);
773  PHI->getOperand(0).setReg(CopyReg);
774  ++NumDestCopiesInserted;
775
776  // Add the region from the beginning of MBB to the copy instruction to
777  // CopyReg's live interval, and give the VNInfo the phidef flag.
778  LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
779  SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
780  SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
781  VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
782                                        CopyInstr,
783                                        LI->getVNInfoAllocator());
784  CopyVNI->setIsPHIDef(true);
785  CopyLI.addRange(LiveRange(MBBStartIndex,
786                            DestCopyIndex.getDefIndex(),
787                            CopyVNI));
788
789  // Adjust DestReg's live interval to adjust for its new definition at
790  // CopyInstr.
791  LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
792  SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
793  DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
794
795  VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
796  assert(DestVNI);
797  DestVNI->def = DestCopyIndex.getDefIndex();
798
799  InsertedDestCopies[CopyReg] = CopyInstr;
800}
801
802void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
803  if (Reg == NewReg)
804    return;
805
806  LiveInterval &OldLI = LI->getInterval(Reg);
807  LiveInterval &NewLI = LI->getInterval(NewReg);
808
809  // Merge the live ranges of the two registers.
810  DenseMap<VNInfo*, VNInfo*> VNMap;
811  for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
812       LRI != LRE; ++LRI) {
813    LiveRange OldLR = *LRI;
814    VNInfo *OldVN = OldLR.valno;
815
816    VNInfo *&NewVN = VNMap[OldVN];
817    if (!NewVN) {
818      NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
819      VNMap[OldVN] = NewVN;
820    }
821
822    LiveRange LR(OldLR.start, OldLR.end, NewVN);
823    NewLI.addRange(LR);
824  }
825
826  // Remove the LiveInterval for the register being renamed and replace all
827  // of its defs and uses with the new register.
828  LI->removeInterval(Reg);
829  MRI->replaceRegWith(Reg, NewReg);
830}
831