1// Copyright 2015 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_S390
6
7#include "src/full-codegen/full-codegen.h"
8#include "src/ast/compile-time-value.h"
9#include "src/ast/scopes.h"
10#include "src/code-factory.h"
11#include "src/code-stubs.h"
12#include "src/codegen.h"
13#include "src/compilation-info.h"
14#include "src/compiler.h"
15#include "src/debug/debug.h"
16#include "src/ic/ic.h"
17
18#include "src/s390/code-stubs-s390.h"
19#include "src/s390/macro-assembler-s390.h"
20
21namespace v8 {
22namespace internal {
23
24#define __ ACCESS_MASM(masm())
25
26// A patch site is a location in the code which it is possible to patch. This
27// class has a number of methods to emit the code which is patchable and the
28// method EmitPatchInfo to record a marker back to the patchable code. This
29// marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
30// immediate value is used) is the delta from the pc to the first instruction of
31// the patchable code.
32// See PatchInlinedSmiCode in ic-s390.cc for the code that patches it
33class JumpPatchSite BASE_EMBEDDED {
34 public:
35  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
36#ifdef DEBUG
37    info_emitted_ = false;
38#endif
39  }
40
41  ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); }
42
43  // When initially emitting this ensure that a jump is always generated to skip
44  // the inlined smi code.
45  void EmitJumpIfNotSmi(Register reg, Label* target) {
46    DCHECK(!patch_site_.is_bound() && !info_emitted_);
47    __ bind(&patch_site_);
48    __ CmpP(reg, reg);
49// Emit the Nop to make bigger place for patching on 31-bit
50// as the TestIfSmi sequence uses 4-byte TMLL
51#ifndef V8_TARGET_ARCH_S390X
52    __ nop();
53#endif
54    __ beq(target);  // Always taken before patched.
55  }
56
57  // When initially emitting this ensure that a jump is never generated to skip
58  // the inlined smi code.
59  void EmitJumpIfSmi(Register reg, Label* target) {
60    DCHECK(!patch_site_.is_bound() && !info_emitted_);
61    __ bind(&patch_site_);
62    __ CmpP(reg, reg);
63// Emit the Nop to make bigger place for patching on 31-bit
64// as the TestIfSmi sequence uses 4-byte TMLL
65#ifndef V8_TARGET_ARCH_S390X
66    __ nop();
67#endif
68    __ bne(target);  // Never taken before patched.
69  }
70
71  void EmitPatchInfo() {
72    if (patch_site_.is_bound()) {
73      int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
74      DCHECK(is_int16(delta_to_patch_site));
75      __ chi(r0, Operand(delta_to_patch_site));
76#ifdef DEBUG
77      info_emitted_ = true;
78#endif
79    } else {
80      __ nop();
81      __ nop();
82    }
83  }
84
85 private:
86  MacroAssembler* masm() { return masm_; }
87  MacroAssembler* masm_;
88  Label patch_site_;
89#ifdef DEBUG
90  bool info_emitted_;
91#endif
92};
93
94// Generate code for a JS function.  On entry to the function the receiver
95// and arguments have been pushed on the stack left to right.  The actual
96// argument count matches the formal parameter count expected by the
97// function.
98//
99// The live registers are:
100//   o r3: the JS function object being called (i.e., ourselves)
101//   o r5: the new target value
102//   o cp: our context
103//   o fp: our caller's frame pointer
104//   o sp: stack pointer
105//   o lr: return address
106//   o ip: our own function entry (required by the prologue)
107//
108// The function builds a JS frame.  Please see JavaScriptFrameConstants in
109// frames-s390.h for its layout.
110void FullCodeGenerator::Generate() {
111  CompilationInfo* info = info_;
112  profiling_counter_ = isolate()->factory()->NewCell(
113      Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
114  SetFunctionPosition(literal());
115  Comment cmnt(masm_, "[ function compiled by full code generator");
116
117  ProfileEntryHookStub::MaybeCallEntryHook(masm_);
118
119  if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
120    int receiver_offset = info->scope()->num_parameters() * kPointerSize;
121    __ LoadP(r4, MemOperand(sp, receiver_offset), r0);
122    __ AssertNotSmi(r4);
123    __ CompareObjectType(r4, r4, no_reg, FIRST_JS_RECEIVER_TYPE);
124    __ Assert(ge, kSloppyFunctionExpectsJSReceiverReceiver);
125  }
126
127  // Open a frame scope to indicate that there is a frame on the stack.  The
128  // MANUAL indicates that the scope shouldn't actually generate code to set up
129  // the frame (that is done below).
130  FrameScope frame_scope(masm_, StackFrame::MANUAL);
131  int prologue_offset = masm_->pc_offset();
132
133  info->set_prologue_offset(prologue_offset);
134  __ Prologue(info->GeneratePreagedPrologue(), ip, prologue_offset);
135
136  // Increment invocation count for the function.
137  {
138    Comment cmnt(masm_, "[ Increment invocation count");
139    __ LoadP(r6, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
140    __ LoadP(r6, FieldMemOperand(r6, LiteralsArray::kFeedbackVectorOffset));
141    __ LoadP(r1, FieldMemOperand(r6, TypeFeedbackVector::kInvocationCountIndex *
142                                             kPointerSize +
143                                         TypeFeedbackVector::kHeaderSize));
144    __ AddSmiLiteral(r1, r1, Smi::FromInt(1), r0);
145    __ StoreP(r1,
146              FieldMemOperand(
147                  r6, TypeFeedbackVector::kInvocationCountIndex * kPointerSize +
148                          TypeFeedbackVector::kHeaderSize));
149  }
150
151  {
152    Comment cmnt(masm_, "[ Allocate locals");
153    int locals_count = info->scope()->num_stack_slots();
154    // Generators allocate locals, if any, in context slots.
155    DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
156    OperandStackDepthIncrement(locals_count);
157    if (locals_count > 0) {
158      if (locals_count >= 128) {
159        Label ok;
160        __ AddP(ip, sp, Operand(-(locals_count * kPointerSize)));
161        __ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
162        __ CmpLogicalP(ip, r5);
163        __ bge(&ok, Label::kNear);
164        __ CallRuntime(Runtime::kThrowStackOverflow);
165        __ bind(&ok);
166      }
167      __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
168      int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
169      if (locals_count >= kMaxPushes) {
170        int loop_iterations = locals_count / kMaxPushes;
171        __ mov(r4, Operand(loop_iterations));
172        Label loop_header;
173        __ bind(&loop_header);
174        // Do pushes.
175        // TODO(joransiu): Use MVC for better performance
176        __ lay(sp, MemOperand(sp, -kMaxPushes * kPointerSize));
177        for (int i = 0; i < kMaxPushes; i++) {
178          __ StoreP(ip, MemOperand(sp, i * kPointerSize));
179        }
180        // Continue loop if not done.
181        __ BranchOnCount(r4, &loop_header);
182      }
183      int remaining = locals_count % kMaxPushes;
184      // Emit the remaining pushes.
185      // TODO(joransiu): Use MVC for better performance
186      if (remaining > 0) {
187        __ lay(sp, MemOperand(sp, -remaining * kPointerSize));
188        for (int i = 0; i < remaining; i++) {
189          __ StoreP(ip, MemOperand(sp, i * kPointerSize));
190        }
191      }
192    }
193  }
194
195  bool function_in_register_r3 = true;
196
197  // Possibly allocate a local context.
198  if (info->scope()->NeedsContext()) {
199    // Argument to NewContext is the function, which is still in r3.
200    Comment cmnt(masm_, "[ Allocate context");
201    bool need_write_barrier = true;
202    int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
203    if (info->scope()->is_script_scope()) {
204      __ push(r3);
205      __ Push(info->scope()->scope_info());
206      __ CallRuntime(Runtime::kNewScriptContext);
207      PrepareForBailoutForId(BailoutId::ScriptContext(),
208                             BailoutState::TOS_REGISTER);
209      // The new target value is not used, clobbering is safe.
210      DCHECK_NULL(info->scope()->new_target_var());
211    } else {
212      if (info->scope()->new_target_var() != nullptr) {
213        __ push(r5);  // Preserve new target.
214      }
215      if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
216        FastNewFunctionContextStub stub(isolate());
217        __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
218               Operand(slots));
219        __ CallStub(&stub);
220        // Result of FastNewFunctionContextStub is always in new space.
221        need_write_barrier = false;
222      } else {
223        __ push(r3);
224        __ CallRuntime(Runtime::kNewFunctionContext);
225      }
226      if (info->scope()->new_target_var() != nullptr) {
227        __ pop(r5);  // Preserve new target.
228      }
229    }
230    function_in_register_r3 = false;
231    // Context is returned in r2.  It replaces the context passed to us.
232    // It's saved in the stack and kept live in cp.
233    __ LoadRR(cp, r2);
234    __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
235    // Copy any necessary parameters into the context.
236    int num_parameters = info->scope()->num_parameters();
237    int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
238    for (int i = first_parameter; i < num_parameters; i++) {
239      Variable* var =
240          (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i);
241      if (var->IsContextSlot()) {
242        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
243                               (num_parameters - 1 - i) * kPointerSize;
244        // Load parameter from stack.
245        __ LoadP(r2, MemOperand(fp, parameter_offset), r0);
246        // Store it in the context.
247        MemOperand target = ContextMemOperand(cp, var->index());
248        __ StoreP(r2, target);
249
250        // Update the write barrier.
251        if (need_write_barrier) {
252          __ RecordWriteContextSlot(cp, target.offset(), r2, r4,
253                                    kLRHasBeenSaved, kDontSaveFPRegs);
254        } else if (FLAG_debug_code) {
255          Label done;
256          __ JumpIfInNewSpace(cp, r2, &done);
257          __ Abort(kExpectedNewSpaceObject);
258          __ bind(&done);
259        }
260      }
261    }
262  }
263
264  // Register holding this function and new target are both trashed in case we
265  // bailout here. But since that can happen only when new target is not used
266  // and we allocate a context, the value of |function_in_register| is correct.
267  PrepareForBailoutForId(BailoutId::FunctionContext(),
268                         BailoutState::NO_REGISTERS);
269
270  // Possibly set up a local binding to the this function which is used in
271  // derived constructors with super calls.
272  Variable* this_function_var = info->scope()->this_function_var();
273  if (this_function_var != nullptr) {
274    Comment cmnt(masm_, "[ This function");
275    if (!function_in_register_r3) {
276      __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
277      // The write barrier clobbers register again, keep it marked as such.
278    }
279    SetVar(this_function_var, r3, r2, r4);
280  }
281
282  // Possibly set up a local binding to the new target value.
283  Variable* new_target_var = info->scope()->new_target_var();
284  if (new_target_var != nullptr) {
285    Comment cmnt(masm_, "[ new.target");
286    SetVar(new_target_var, r5, r2, r4);
287  }
288
289  // Possibly allocate RestParameters
290  Variable* rest_param = info->scope()->rest_parameter();
291  if (rest_param != nullptr) {
292    Comment cmnt(masm_, "[ Allocate rest parameter array");
293
294    if (!function_in_register_r3) {
295      __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
296    }
297    FastNewRestParameterStub stub(isolate());
298    __ CallStub(&stub);
299
300    function_in_register_r3 = false;
301    SetVar(rest_param, r2, r3, r4);
302  }
303
304  Variable* arguments = info->scope()->arguments();
305  if (arguments != NULL) {
306    // Function uses arguments object.
307    Comment cmnt(masm_, "[ Allocate arguments object");
308    if (!function_in_register_r3) {
309      // Load this again, if it's used by the local context below.
310      __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
311    }
312    if (is_strict(language_mode()) || !has_simple_parameters()) {
313      FastNewStrictArgumentsStub stub(isolate());
314      __ CallStub(&stub);
315    } else if (literal()->has_duplicate_parameters()) {
316      __ Push(r3);
317      __ CallRuntime(Runtime::kNewSloppyArguments_Generic);
318    } else {
319      FastNewSloppyArgumentsStub stub(isolate());
320      __ CallStub(&stub);
321    }
322
323    SetVar(arguments, r2, r3, r4);
324  }
325
326  if (FLAG_trace) {
327    __ CallRuntime(Runtime::kTraceEnter);
328  }
329
330  // Visit the declarations and body.
331  PrepareForBailoutForId(BailoutId::FunctionEntry(),
332                         BailoutState::NO_REGISTERS);
333  {
334    Comment cmnt(masm_, "[ Declarations");
335    VisitDeclarations(scope()->declarations());
336  }
337
338  // Assert that the declarations do not use ICs. Otherwise the debugger
339  // won't be able to redirect a PC at an IC to the correct IC in newly
340  // recompiled code.
341  DCHECK_EQ(0, ic_total_count_);
342
343  {
344    Comment cmnt(masm_, "[ Stack check");
345    PrepareForBailoutForId(BailoutId::Declarations(),
346                           BailoutState::NO_REGISTERS);
347    Label ok;
348    __ LoadRoot(ip, Heap::kStackLimitRootIndex);
349    __ CmpLogicalP(sp, ip);
350    __ bge(&ok, Label::kNear);
351    __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
352    __ bind(&ok);
353  }
354
355  {
356    Comment cmnt(masm_, "[ Body");
357    DCHECK(loop_depth() == 0);
358    VisitStatements(literal()->body());
359    DCHECK(loop_depth() == 0);
360  }
361
362  // Always emit a 'return undefined' in case control fell off the end of
363  // the body.
364  {
365    Comment cmnt(masm_, "[ return <undefined>;");
366    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
367  }
368  EmitReturnSequence();
369}
370
371void FullCodeGenerator::ClearAccumulator() {
372  __ LoadSmiLiteral(r2, Smi::kZero);
373}
374
375void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
376  __ mov(r4, Operand(profiling_counter_));
377  intptr_t smi_delta = reinterpret_cast<intptr_t>(Smi::FromInt(delta));
378  if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(-smi_delta)) {
379    __ AddP(FieldMemOperand(r4, Cell::kValueOffset), Operand(-smi_delta));
380    __ LoadP(r5, FieldMemOperand(r4, Cell::kValueOffset));
381  } else {
382    __ LoadP(r5, FieldMemOperand(r4, Cell::kValueOffset));
383    __ SubSmiLiteral(r5, r5, Smi::FromInt(delta), r0);
384    __ StoreP(r5, FieldMemOperand(r4, Cell::kValueOffset));
385  }
386}
387
388void FullCodeGenerator::EmitProfilingCounterReset() {
389  int reset_value = FLAG_interrupt_budget;
390  __ mov(r4, Operand(profiling_counter_));
391  __ LoadSmiLiteral(r5, Smi::FromInt(reset_value));
392  __ StoreP(r5, FieldMemOperand(r4, Cell::kValueOffset));
393}
394
395void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
396                                                Label* back_edge_target) {
397  Comment cmnt(masm_, "[ Back edge bookkeeping");
398  Label ok;
399
400  DCHECK(back_edge_target->is_bound());
401  int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target) +
402                 kCodeSizeMultiplier / 2;
403  int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
404  EmitProfilingCounterDecrement(weight);
405  {
406    // BackEdgeTable::PatchAt manipulates this sequence.
407    __ bge(&ok, Label::kNear);
408    __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
409
410    // Record a mapping of this PC offset to the OSR id.  This is used to find
411    // the AST id from the unoptimized code in order to use it as a key into
412    // the deoptimization input data found in the optimized code.
413    RecordBackEdge(stmt->OsrEntryId());
414  }
415  EmitProfilingCounterReset();
416
417  __ bind(&ok);
418  PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS);
419  // Record a mapping of the OSR id to this PC.  This is used if the OSR
420  // entry becomes the target of a bailout.  We don't expect it to be, but
421  // we want it to work if it is.
422  PrepareForBailoutForId(stmt->OsrEntryId(), BailoutState::NO_REGISTERS);
423}
424
425void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence(
426    bool is_tail_call) {
427  // Pretend that the exit is a backwards jump to the entry.
428  int weight = 1;
429  if (info_->ShouldSelfOptimize()) {
430    weight = FLAG_interrupt_budget / FLAG_self_opt_count;
431  } else {
432    int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
433    weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
434  }
435  EmitProfilingCounterDecrement(weight);
436  Label ok;
437  __ CmpP(r5, Operand::Zero());
438  __ bge(&ok);
439  // Don't need to save result register if we are going to do a tail call.
440  if (!is_tail_call) {
441    __ push(r2);
442  }
443  __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
444  if (!is_tail_call) {
445    __ pop(r2);
446  }
447  EmitProfilingCounterReset();
448  __ bind(&ok);
449}
450
451void FullCodeGenerator::EmitReturnSequence() {
452  Comment cmnt(masm_, "[ Return sequence");
453  if (return_label_.is_bound()) {
454    __ b(&return_label_);
455  } else {
456    __ bind(&return_label_);
457    if (FLAG_trace) {
458      // Push the return value on the stack as the parameter.
459      // Runtime::TraceExit returns its parameter in r2
460      __ push(r2);
461      __ CallRuntime(Runtime::kTraceExit);
462    }
463    EmitProfilingCounterHandlingForReturnSequence(false);
464
465    // Make sure that the constant pool is not emitted inside of the return
466    // sequence.
467    {
468      int32_t arg_count = info_->scope()->num_parameters() + 1;
469      int32_t sp_delta = arg_count * kPointerSize;
470      SetReturnPosition(literal());
471      __ LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
472
473      __ Ret();
474    }
475  }
476}
477
478void FullCodeGenerator::RestoreContext() {
479  __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
480}
481
482void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
483  DCHECK(var->IsStackAllocated() || var->IsContextSlot());
484  codegen()->GetVar(result_register(), var);
485  codegen()->PushOperand(result_register());
486}
487
488void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {}
489
490void FullCodeGenerator::AccumulatorValueContext::Plug(
491    Heap::RootListIndex index) const {
492  __ LoadRoot(result_register(), index);
493}
494
495void FullCodeGenerator::StackValueContext::Plug(
496    Heap::RootListIndex index) const {
497  __ LoadRoot(result_register(), index);
498  codegen()->PushOperand(result_register());
499}
500
501void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
502  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
503                                          false_label_);
504  if (index == Heap::kUndefinedValueRootIndex ||
505      index == Heap::kNullValueRootIndex ||
506      index == Heap::kFalseValueRootIndex) {
507    if (false_label_ != fall_through_) __ b(false_label_);
508  } else if (index == Heap::kTrueValueRootIndex) {
509    if (true_label_ != fall_through_) __ b(true_label_);
510  } else {
511    __ LoadRoot(result_register(), index);
512    codegen()->DoTest(this);
513  }
514}
515
516void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {}
517
518void FullCodeGenerator::AccumulatorValueContext::Plug(
519    Handle<Object> lit) const {
520  __ mov(result_register(), Operand(lit));
521}
522
523void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
524  // Immediates cannot be pushed directly.
525  __ mov(result_register(), Operand(lit));
526  codegen()->PushOperand(result_register());
527}
528
529void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
530  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
531                                          false_label_);
532  DCHECK(lit->IsNull(isolate()) || lit->IsUndefined(isolate()) ||
533         !lit->IsUndetectable());
534  if (lit->IsUndefined(isolate()) || lit->IsNull(isolate()) ||
535      lit->IsFalse(isolate())) {
536    if (false_label_ != fall_through_) __ b(false_label_);
537  } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) {
538    if (true_label_ != fall_through_) __ b(true_label_);
539  } else if (lit->IsString()) {
540    if (String::cast(*lit)->length() == 0) {
541      if (false_label_ != fall_through_) __ b(false_label_);
542    } else {
543      if (true_label_ != fall_through_) __ b(true_label_);
544    }
545  } else if (lit->IsSmi()) {
546    if (Smi::cast(*lit)->value() == 0) {
547      if (false_label_ != fall_through_) __ b(false_label_);
548    } else {
549      if (true_label_ != fall_through_) __ b(true_label_);
550    }
551  } else {
552    // For simplicity we always test the accumulator register.
553    __ mov(result_register(), Operand(lit));
554    codegen()->DoTest(this);
555  }
556}
557
558void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
559                                                       Register reg) const {
560  DCHECK(count > 0);
561  if (count > 1) codegen()->DropOperands(count - 1);
562  __ StoreP(reg, MemOperand(sp, 0));
563}
564
565void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
566                                            Label* materialize_false) const {
567  DCHECK(materialize_true == materialize_false);
568  __ bind(materialize_true);
569}
570
571void FullCodeGenerator::AccumulatorValueContext::Plug(
572    Label* materialize_true, Label* materialize_false) const {
573  Label done;
574  __ bind(materialize_true);
575  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
576  __ b(&done, Label::kNear);
577  __ bind(materialize_false);
578  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
579  __ bind(&done);
580}
581
582void FullCodeGenerator::StackValueContext::Plug(
583    Label* materialize_true, Label* materialize_false) const {
584  Label done;
585  __ bind(materialize_true);
586  __ LoadRoot(ip, Heap::kTrueValueRootIndex);
587  __ b(&done, Label::kNear);
588  __ bind(materialize_false);
589  __ LoadRoot(ip, Heap::kFalseValueRootIndex);
590  __ bind(&done);
591  codegen()->PushOperand(ip);
592}
593
594void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
595                                          Label* materialize_false) const {
596  DCHECK(materialize_true == true_label_);
597  DCHECK(materialize_false == false_label_);
598}
599
600void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
601  Heap::RootListIndex value_root_index =
602      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
603  __ LoadRoot(result_register(), value_root_index);
604}
605
606void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
607  Heap::RootListIndex value_root_index =
608      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
609  __ LoadRoot(ip, value_root_index);
610  codegen()->PushOperand(ip);
611}
612
613void FullCodeGenerator::TestContext::Plug(bool flag) const {
614  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
615                                          false_label_);
616  if (flag) {
617    if (true_label_ != fall_through_) __ b(true_label_);
618  } else {
619    if (false_label_ != fall_through_) __ b(false_label_);
620  }
621}
622
623void FullCodeGenerator::DoTest(Expression* condition, Label* if_true,
624                               Label* if_false, Label* fall_through) {
625  Handle<Code> ic = ToBooleanICStub::GetUninitialized(isolate());
626  CallIC(ic, condition->test_id());
627  __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
628  Split(eq, if_true, if_false, fall_through);
629}
630
631void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false,
632                              Label* fall_through) {
633  if (if_false == fall_through) {
634    __ b(cond, if_true);
635  } else if (if_true == fall_through) {
636    __ b(NegateCondition(cond), if_false);
637  } else {
638    __ b(cond, if_true);
639    __ b(if_false);
640  }
641}
642
643MemOperand FullCodeGenerator::StackOperand(Variable* var) {
644  DCHECK(var->IsStackAllocated());
645  // Offset is negative because higher indexes are at lower addresses.
646  int offset = -var->index() * kPointerSize;
647  // Adjust by a (parameter or local) base offset.
648  if (var->IsParameter()) {
649    offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
650  } else {
651    offset += JavaScriptFrameConstants::kLocal0Offset;
652  }
653  return MemOperand(fp, offset);
654}
655
656MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
657  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
658  if (var->IsContextSlot()) {
659    int context_chain_length = scope()->ContextChainLength(var->scope());
660    __ LoadContext(scratch, context_chain_length);
661    return ContextMemOperand(scratch, var->index());
662  } else {
663    return StackOperand(var);
664  }
665}
666
667void FullCodeGenerator::GetVar(Register dest, Variable* var) {
668  // Use destination as scratch.
669  MemOperand location = VarOperand(var, dest);
670  __ LoadP(dest, location, r0);
671}
672
673void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0,
674                               Register scratch1) {
675  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
676  DCHECK(!scratch0.is(src));
677  DCHECK(!scratch0.is(scratch1));
678  DCHECK(!scratch1.is(src));
679  MemOperand location = VarOperand(var, scratch0);
680  __ StoreP(src, location);
681
682  // Emit the write barrier code if the location is in the heap.
683  if (var->IsContextSlot()) {
684    __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1,
685                              kLRHasBeenSaved, kDontSaveFPRegs);
686  }
687}
688
689void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
690                                                     bool should_normalize,
691                                                     Label* if_true,
692                                                     Label* if_false) {
693  // Only prepare for bailouts before splits if we're in a test
694  // context. Otherwise, we let the Visit function deal with the
695  // preparation to avoid preparing with the same AST id twice.
696  if (!context()->IsTest()) return;
697
698  Label skip;
699  if (should_normalize) __ b(&skip);
700  PrepareForBailout(expr, BailoutState::TOS_REGISTER);
701  if (should_normalize) {
702    __ CompareRoot(r2, Heap::kTrueValueRootIndex);
703    Split(eq, if_true, if_false, NULL);
704    __ bind(&skip);
705  }
706}
707
708void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
709  // The variable in the declaration always resides in the current function
710  // context.
711  DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
712  if (FLAG_debug_code) {
713    // Check that we're not inside a with or catch context.
714    __ LoadP(r3, FieldMemOperand(cp, HeapObject::kMapOffset));
715    __ CompareRoot(r3, Heap::kWithContextMapRootIndex);
716    __ Check(ne, kDeclarationInWithContext);
717    __ CompareRoot(r3, Heap::kCatchContextMapRootIndex);
718    __ Check(ne, kDeclarationInCatchContext);
719  }
720}
721
722void FullCodeGenerator::VisitVariableDeclaration(
723    VariableDeclaration* declaration) {
724  VariableProxy* proxy = declaration->proxy();
725  Variable* variable = proxy->var();
726  switch (variable->location()) {
727    case VariableLocation::UNALLOCATED: {
728      DCHECK(!variable->binding_needs_init());
729      FeedbackVectorSlot slot = proxy->VariableFeedbackSlot();
730      DCHECK(!slot.IsInvalid());
731      globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
732      globals_->Add(isolate()->factory()->undefined_value(), zone());
733      break;
734    }
735    case VariableLocation::PARAMETER:
736    case VariableLocation::LOCAL:
737      if (variable->binding_needs_init()) {
738        Comment cmnt(masm_, "[ VariableDeclaration");
739        __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
740        __ StoreP(ip, StackOperand(variable));
741      }
742      break;
743
744    case VariableLocation::CONTEXT:
745      if (variable->binding_needs_init()) {
746        Comment cmnt(masm_, "[ VariableDeclaration");
747        EmitDebugCheckDeclarationContext(variable);
748        __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
749        __ StoreP(ip, ContextMemOperand(cp, variable->index()));
750        // No write barrier since the_hole_value is in old space.
751        PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
752      }
753      break;
754
755    case VariableLocation::LOOKUP: {
756      Comment cmnt(masm_, "[ VariableDeclaration");
757      DCHECK_EQ(VAR, variable->mode());
758      DCHECK(!variable->binding_needs_init());
759      __ mov(r4, Operand(variable->name()));
760      __ Push(r4);
761      __ CallRuntime(Runtime::kDeclareEvalVar);
762      PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
763      break;
764    }
765
766    case VariableLocation::MODULE:
767      UNREACHABLE();
768  }
769}
770
771void FullCodeGenerator::VisitFunctionDeclaration(
772    FunctionDeclaration* declaration) {
773  VariableProxy* proxy = declaration->proxy();
774  Variable* variable = proxy->var();
775  switch (variable->location()) {
776    case VariableLocation::UNALLOCATED: {
777      FeedbackVectorSlot slot = proxy->VariableFeedbackSlot();
778      DCHECK(!slot.IsInvalid());
779      globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
780      Handle<SharedFunctionInfo> function =
781          Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
782      // Check for stack-overflow exception.
783      if (function.is_null()) return SetStackOverflow();
784      globals_->Add(function, zone());
785      break;
786    }
787
788    case VariableLocation::PARAMETER:
789    case VariableLocation::LOCAL: {
790      Comment cmnt(masm_, "[ FunctionDeclaration");
791      VisitForAccumulatorValue(declaration->fun());
792      __ StoreP(result_register(), StackOperand(variable));
793      break;
794    }
795
796    case VariableLocation::CONTEXT: {
797      Comment cmnt(masm_, "[ FunctionDeclaration");
798      EmitDebugCheckDeclarationContext(variable);
799      VisitForAccumulatorValue(declaration->fun());
800      __ StoreP(result_register(), ContextMemOperand(cp, variable->index()));
801      int offset = Context::SlotOffset(variable->index());
802      // We know that we have written a function, which is not a smi.
803      __ RecordWriteContextSlot(cp, offset, result_register(), r4,
804                                kLRHasBeenSaved, kDontSaveFPRegs,
805                                EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
806      PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
807      break;
808    }
809
810    case VariableLocation::LOOKUP: {
811      Comment cmnt(masm_, "[ FunctionDeclaration");
812      __ mov(r4, Operand(variable->name()));
813      PushOperand(r4);
814      // Push initial value for function declaration.
815      VisitForStackValue(declaration->fun());
816      CallRuntimeWithOperands(Runtime::kDeclareEvalFunction);
817      PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
818      break;
819    }
820
821    case VariableLocation::MODULE:
822      UNREACHABLE();
823  }
824}
825
826void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
827  // Call the runtime to declare the globals.
828  __ mov(r3, Operand(pairs));
829  __ LoadSmiLiteral(r2, Smi::FromInt(DeclareGlobalsFlags()));
830  __ EmitLoadTypeFeedbackVector(r4);
831  __ Push(r3, r2, r4);
832  __ CallRuntime(Runtime::kDeclareGlobals);
833  // Return value is ignored.
834}
835
836void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
837  Comment cmnt(masm_, "[ SwitchStatement");
838  Breakable nested_statement(this, stmt);
839  SetStatementPosition(stmt);
840
841  // Keep the switch value on the stack until a case matches.
842  VisitForStackValue(stmt->tag());
843  PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS);
844
845  ZoneList<CaseClause*>* clauses = stmt->cases();
846  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
847
848  Label next_test;  // Recycled for each test.
849  // Compile all the tests with branches to their bodies.
850  for (int i = 0; i < clauses->length(); i++) {
851    CaseClause* clause = clauses->at(i);
852    clause->body_target()->Unuse();
853
854    // The default is not a test, but remember it as final fall through.
855    if (clause->is_default()) {
856      default_clause = clause;
857      continue;
858    }
859
860    Comment cmnt(masm_, "[ Case comparison");
861    __ bind(&next_test);
862    next_test.Unuse();
863
864    // Compile the label expression.
865    VisitForAccumulatorValue(clause->label());
866
867    // Perform the comparison as if via '==='.
868    __ LoadP(r3, MemOperand(sp, 0));  // Switch value.
869    bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
870    JumpPatchSite patch_site(masm_);
871    if (inline_smi_code) {
872      Label slow_case;
873      __ LoadRR(r4, r2);
874      __ OrP(r4, r3);
875      patch_site.EmitJumpIfNotSmi(r4, &slow_case);
876
877      __ CmpP(r3, r2);
878      __ bne(&next_test);
879      __ Drop(1);  // Switch value is no longer needed.
880      __ b(clause->body_target());
881      __ bind(&slow_case);
882    }
883
884    // Record position before stub call for type feedback.
885    SetExpressionPosition(clause);
886    Handle<Code> ic =
887        CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
888    CallIC(ic, clause->CompareId());
889    patch_site.EmitPatchInfo();
890
891    Label skip;
892    __ b(&skip);
893    PrepareForBailout(clause, BailoutState::TOS_REGISTER);
894    __ CompareRoot(r2, Heap::kTrueValueRootIndex);
895    __ bne(&next_test);
896    __ Drop(1);
897    __ b(clause->body_target());
898    __ bind(&skip);
899
900    __ CmpP(r2, Operand::Zero());
901    __ bne(&next_test);
902    __ Drop(1);  // Switch value is no longer needed.
903    __ b(clause->body_target());
904  }
905
906  // Discard the test value and jump to the default if present, otherwise to
907  // the end of the statement.
908  __ bind(&next_test);
909  DropOperands(1);  // Switch value is no longer needed.
910  if (default_clause == NULL) {
911    __ b(nested_statement.break_label());
912  } else {
913    __ b(default_clause->body_target());
914  }
915
916  // Compile all the case bodies.
917  for (int i = 0; i < clauses->length(); i++) {
918    Comment cmnt(masm_, "[ Case body");
919    CaseClause* clause = clauses->at(i);
920    __ bind(clause->body_target());
921    PrepareForBailoutForId(clause->EntryId(), BailoutState::NO_REGISTERS);
922    VisitStatements(clause->statements());
923  }
924
925  __ bind(nested_statement.break_label());
926  PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS);
927}
928
929void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
930  Comment cmnt(masm_, "[ ForInStatement");
931  SetStatementPosition(stmt, SKIP_BREAK);
932
933  FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
934
935  // Get the object to enumerate over.
936  SetExpressionAsStatementPosition(stmt->enumerable());
937  VisitForAccumulatorValue(stmt->enumerable());
938  OperandStackDepthIncrement(5);
939
940  Label loop, exit;
941  Iteration loop_statement(this, stmt);
942  increment_loop_depth();
943
944  // If the object is null or undefined, skip over the loop, otherwise convert
945  // it to a JS receiver.  See ECMA-262 version 5, section 12.6.4.
946  Label convert, done_convert;
947  __ JumpIfSmi(r2, &convert);
948  __ CompareObjectType(r2, r3, r3, FIRST_JS_RECEIVER_TYPE);
949  __ bge(&done_convert);
950  __ CompareRoot(r2, Heap::kNullValueRootIndex);
951  __ beq(&exit);
952  __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
953  __ beq(&exit);
954  __ bind(&convert);
955  __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET);
956  RestoreContext();
957  __ bind(&done_convert);
958  PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::TOS_REGISTER);
959  __ push(r2);
960
961  // Check cache validity in generated code. If we cannot guarantee cache
962  // validity, call the runtime system to check cache validity or get the
963  // property names in a fixed array. Note: Proxies never have an enum cache,
964  // so will always take the slow path.
965  Label call_runtime;
966  __ CheckEnumCache(&call_runtime);
967
968  // The enum cache is valid.  Load the map of the object being
969  // iterated over and use the cache for the iteration.
970  Label use_cache;
971  __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
972  __ b(&use_cache);
973
974  // Get the set of properties to enumerate.
975  __ bind(&call_runtime);
976  __ push(r2);  // Duplicate the enumerable object on the stack.
977  __ CallRuntime(Runtime::kForInEnumerate);
978  PrepareForBailoutForId(stmt->EnumId(), BailoutState::TOS_REGISTER);
979
980  // If we got a map from the runtime call, we can do a fast
981  // modification check. Otherwise, we got a fixed array, and we have
982  // to do a slow check.
983  Label fixed_array;
984  __ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset));
985  __ CompareRoot(r4, Heap::kMetaMapRootIndex);
986  __ bne(&fixed_array);
987
988  // We got a map in register r2. Get the enumeration cache from it.
989  Label no_descriptors;
990  __ bind(&use_cache);
991
992  __ EnumLength(r3, r2);
993  __ CmpSmiLiteral(r3, Smi::kZero, r0);
994  __ beq(&no_descriptors, Label::kNear);
995
996  __ LoadInstanceDescriptors(r2, r4);
997  __ LoadP(r4, FieldMemOperand(r4, DescriptorArray::kEnumCacheOffset));
998  __ LoadP(r4,
999           FieldMemOperand(r4, DescriptorArray::kEnumCacheBridgeCacheOffset));
1000
1001  // Set up the four remaining stack slots.
1002  __ push(r2);  // Map.
1003  __ LoadSmiLiteral(r2, Smi::kZero);
1004  // Push enumeration cache, enumeration cache length (as smi) and zero.
1005  __ Push(r4, r3, r2);
1006  __ b(&loop);
1007
1008  __ bind(&no_descriptors);
1009  __ Drop(1);
1010  __ b(&exit);
1011
1012  // We got a fixed array in register r2. Iterate through that.
1013  __ bind(&fixed_array);
1014
1015  __ LoadSmiLiteral(r3, Smi::FromInt(1));  // Smi(1) indicates slow check
1016  __ Push(r3, r2);                         // Smi and array
1017  __ LoadP(r3, FieldMemOperand(r2, FixedArray::kLengthOffset));
1018  __ Push(r3);  // Fixed array length (as smi).
1019  PrepareForBailoutForId(stmt->PrepareId(), BailoutState::NO_REGISTERS);
1020  __ LoadSmiLiteral(r2, Smi::kZero);
1021  __ Push(r2);  // Initial index.
1022
1023  // Generate code for doing the condition check.
1024  __ bind(&loop);
1025  SetExpressionAsStatementPosition(stmt->each());
1026
1027  // Load the current count to r2, load the length to r3.
1028  __ LoadP(r2, MemOperand(sp, 0 * kPointerSize));
1029  __ LoadP(r3, MemOperand(sp, 1 * kPointerSize));
1030  __ CmpLogicalP(r2, r3);  // Compare to the array length.
1031  __ bge(loop_statement.break_label());
1032
1033  // Get the current entry of the array into register r5.
1034  __ LoadP(r4, MemOperand(sp, 2 * kPointerSize));
1035  __ AddP(r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1036  __ SmiToPtrArrayOffset(r5, r2);
1037  __ LoadP(r5, MemOperand(r5, r4));
1038
1039  // Get the expected map from the stack or a smi in the
1040  // permanent slow case into register r4.
1041  __ LoadP(r4, MemOperand(sp, 3 * kPointerSize));
1042
1043  // Check if the expected map still matches that of the enumerable.
1044  // If not, we may have to filter the key.
1045  Label update_each;
1046  __ LoadP(r3, MemOperand(sp, 4 * kPointerSize));
1047  __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
1048  __ CmpP(r6, r4);
1049  __ beq(&update_each);
1050
1051  // We need to filter the key, record slow-path here.
1052  int const vector_index = SmiFromSlot(slot)->value();
1053  __ EmitLoadTypeFeedbackVector(r2);
1054  __ mov(r4, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1055  __ StoreP(
1056      r4, FieldMemOperand(r2, FixedArray::OffsetOfElementAt(vector_index)), r0);
1057
1058  // Convert the entry to a string or (smi) 0 if it isn't a property
1059  // any more. If the property has been removed while iterating, we
1060  // just skip it.
1061  __ Push(r3, r5);  // Enumerable and current entry.
1062  __ CallRuntime(Runtime::kForInFilter);
1063  PrepareForBailoutForId(stmt->FilterId(), BailoutState::TOS_REGISTER);
1064  __ LoadRR(r5, r2);
1065  __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
1066  __ CmpP(r2, r0);
1067  __ beq(loop_statement.continue_label());
1068
1069  // Update the 'each' property or variable from the possibly filtered
1070  // entry in register r5.
1071  __ bind(&update_each);
1072  __ LoadRR(result_register(), r5);
1073  // Perform the assignment as if via '='.
1074  {
1075    EffectContext context(this);
1076    EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1077    PrepareForBailoutForId(stmt->AssignmentId(), BailoutState::NO_REGISTERS);
1078  }
1079
1080  // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
1081  PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS);
1082  // Generate code for the body of the loop.
1083  Visit(stmt->body());
1084
1085  // Generate code for the going to the next element by incrementing
1086  // the index (smi) stored on top of the stack.
1087  __ bind(loop_statement.continue_label());
1088  PrepareForBailoutForId(stmt->IncrementId(), BailoutState::NO_REGISTERS);
1089  __ pop(r2);
1090  __ AddSmiLiteral(r2, r2, Smi::FromInt(1), r0);
1091  __ push(r2);
1092
1093  EmitBackEdgeBookkeeping(stmt, &loop);
1094  __ b(&loop);
1095
1096  // Remove the pointers stored on the stack.
1097  __ bind(loop_statement.break_label());
1098  DropOperands(5);
1099
1100  // Exit and decrement the loop depth.
1101  PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS);
1102  __ bind(&exit);
1103  decrement_loop_depth();
1104}
1105
1106void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
1107                                          FeedbackVectorSlot slot) {
1108  DCHECK(NeedsHomeObject(initializer));
1109  __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
1110  __ LoadP(StoreDescriptor::ValueRegister(),
1111           MemOperand(sp, offset * kPointerSize));
1112  CallStoreIC(slot, isolate()->factory()->home_object_symbol());
1113}
1114
1115void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
1116                                                     int offset,
1117                                                     FeedbackVectorSlot slot) {
1118  DCHECK(NeedsHomeObject(initializer));
1119  __ Move(StoreDescriptor::ReceiverRegister(), r2);
1120  __ LoadP(StoreDescriptor::ValueRegister(),
1121           MemOperand(sp, offset * kPointerSize));
1122  CallStoreIC(slot, isolate()->factory()->home_object_symbol());
1123}
1124
1125void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1126                                                      TypeofMode typeof_mode,
1127                                                      Label* slow) {
1128  Register current = cp;
1129  Register next = r3;
1130  Register temp = r4;
1131
1132  int to_check = scope()->ContextChainLengthUntilOutermostSloppyEval();
1133  for (Scope* s = scope(); to_check > 0; s = s->outer_scope()) {
1134    if (!s->NeedsContext()) continue;
1135    if (s->calls_sloppy_eval()) {
1136      // Check that extension is "the hole".
1137      __ LoadP(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
1138      __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1139    }
1140    // Load next context in chain.
1141    __ LoadP(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
1142    // Walk the rest of the chain without clobbering cp.
1143    current = next;
1144    to_check--;
1145  }
1146
1147  // All extension objects were empty and it is safe to use a normal global
1148  // load machinery.
1149  EmitGlobalVariableLoad(proxy, typeof_mode);
1150}
1151
1152MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1153                                                                Label* slow) {
1154  DCHECK(var->IsContextSlot());
1155  Register context = cp;
1156  Register next = r5;
1157  Register temp = r6;
1158
1159  for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1160    if (s->NeedsContext()) {
1161      if (s->calls_sloppy_eval()) {
1162        // Check that extension is "the hole".
1163        __ LoadP(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1164        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1165      }
1166      __ LoadP(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
1167      // Walk the rest of the chain without clobbering cp.
1168      context = next;
1169    }
1170  }
1171  // Check that last extension is "the hole".
1172  __ LoadP(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1173  __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1174
1175  // This function is used only for loads, not stores, so it's safe to
1176  // return an cp-based operand (the write barrier cannot be allowed to
1177  // destroy the cp register).
1178  return ContextMemOperand(context, var->index());
1179}
1180
1181void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1182                                                  TypeofMode typeof_mode,
1183                                                  Label* slow, Label* done) {
1184  // Generate fast-case code for variables that might be shadowed by
1185  // eval-introduced variables.  Eval is used a lot without
1186  // introducing variables.  In those cases, we do not want to
1187  // perform a runtime call for all variables in the scope
1188  // containing the eval.
1189  Variable* var = proxy->var();
1190  if (var->mode() == DYNAMIC_GLOBAL) {
1191    EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1192    __ b(done);
1193  } else if (var->mode() == DYNAMIC_LOCAL) {
1194    Variable* local = var->local_if_not_shadowed();
1195    __ LoadP(r2, ContextSlotOperandCheckExtensions(local, slow));
1196    if (local->binding_needs_init()) {
1197      __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
1198      __ bne(done);
1199      __ mov(r2, Operand(var->name()));
1200      __ push(r2);
1201      __ CallRuntime(Runtime::kThrowReferenceError);
1202    } else {
1203      __ b(done);
1204    }
1205  }
1206}
1207
1208void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1209                                         TypeofMode typeof_mode) {
1210  // Record position before possible IC call.
1211  SetExpressionPosition(proxy);
1212  PrepareForBailoutForId(proxy->BeforeId(), BailoutState::NO_REGISTERS);
1213  Variable* var = proxy->var();
1214
1215  // Three cases: global variables, lookup variables, and all other types of
1216  // variables.
1217  switch (var->location()) {
1218    case VariableLocation::UNALLOCATED: {
1219      Comment cmnt(masm_, "[ Global variable");
1220      EmitGlobalVariableLoad(proxy, typeof_mode);
1221      context()->Plug(r2);
1222      break;
1223    }
1224
1225    case VariableLocation::PARAMETER:
1226    case VariableLocation::LOCAL:
1227    case VariableLocation::CONTEXT: {
1228      DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1229      Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1230                                               : "[ Stack variable");
1231      if (proxy->hole_check_mode() == HoleCheckMode::kRequired) {
1232        // Throw a reference error when using an uninitialized let/const
1233        // binding in harmony mode.
1234        Label done;
1235        GetVar(r2, var);
1236        __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
1237        __ bne(&done);
1238        __ mov(r2, Operand(var->name()));
1239        __ push(r2);
1240        __ CallRuntime(Runtime::kThrowReferenceError);
1241        __ bind(&done);
1242        context()->Plug(r2);
1243        break;
1244      }
1245      context()->Plug(var);
1246      break;
1247    }
1248
1249    case VariableLocation::LOOKUP: {
1250      Comment cmnt(masm_, "[ Lookup variable");
1251      Label done, slow;
1252      // Generate code for loading from variables potentially shadowed
1253      // by eval-introduced variables.
1254      EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1255      __ bind(&slow);
1256      __ Push(var->name());
1257      Runtime::FunctionId function_id =
1258          typeof_mode == NOT_INSIDE_TYPEOF
1259              ? Runtime::kLoadLookupSlot
1260              : Runtime::kLoadLookupSlotInsideTypeof;
1261      __ CallRuntime(function_id);
1262      __ bind(&done);
1263      context()->Plug(r2);
1264      break;
1265    }
1266
1267    case VariableLocation::MODULE:
1268      UNREACHABLE();
1269  }
1270}
1271
1272void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
1273  Expression* expression = (property == NULL) ? NULL : property->value();
1274  if (expression == NULL) {
1275    __ LoadRoot(r3, Heap::kNullValueRootIndex);
1276    PushOperand(r3);
1277  } else {
1278    VisitForStackValue(expression);
1279    if (NeedsHomeObject(expression)) {
1280      DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
1281             property->kind() == ObjectLiteral::Property::SETTER);
1282      int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
1283      EmitSetHomeObject(expression, offset, property->GetSlot());
1284    }
1285  }
1286}
1287
1288void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1289  Comment cmnt(masm_, "[ ObjectLiteral");
1290
1291  Handle<FixedArray> constant_properties = expr->constant_properties();
1292  __ LoadP(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1293  __ LoadSmiLiteral(r4, Smi::FromInt(expr->literal_index()));
1294  __ mov(r3, Operand(constant_properties));
1295  int flags = expr->ComputeFlags();
1296  __ LoadSmiLiteral(r2, Smi::FromInt(flags));
1297  if (MustCreateObjectLiteralWithRuntime(expr)) {
1298    __ Push(r5, r4, r3, r2);
1299    __ CallRuntime(Runtime::kCreateObjectLiteral);
1300  } else {
1301    FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1302    __ CallStub(&stub);
1303    RestoreContext();
1304  }
1305  PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER);
1306
1307  // If result_saved is true the result is on top of the stack.  If
1308  // result_saved is false the result is in r2.
1309  bool result_saved = false;
1310
1311  AccessorTable accessor_table(zone());
1312  int property_index = 0;
1313  for (; property_index < expr->properties()->length(); property_index++) {
1314    ObjectLiteral::Property* property = expr->properties()->at(property_index);
1315    if (property->is_computed_name()) break;
1316    if (property->IsCompileTimeValue()) continue;
1317
1318    Literal* key = property->key()->AsLiteral();
1319    Expression* value = property->value();
1320    if (!result_saved) {
1321      PushOperand(r2);  // Save result on stack
1322      result_saved = true;
1323    }
1324    switch (property->kind()) {
1325      case ObjectLiteral::Property::CONSTANT:
1326        UNREACHABLE();
1327      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1328        DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1329      // Fall through.
1330      case ObjectLiteral::Property::COMPUTED:
1331        // It is safe to use [[Put]] here because the boilerplate already
1332        // contains computed properties with an uninitialized value.
1333        if (key->IsStringLiteral()) {
1334          DCHECK(key->IsPropertyName());
1335          if (property->emit_store()) {
1336            VisitForAccumulatorValue(value);
1337            DCHECK(StoreDescriptor::ValueRegister().is(r2));
1338            __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
1339            CallStoreIC(property->GetSlot(0), key->value());
1340            PrepareForBailoutForId(key->id(), BailoutState::NO_REGISTERS);
1341
1342            if (NeedsHomeObject(value)) {
1343              EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
1344            }
1345          } else {
1346            VisitForEffect(value);
1347          }
1348          break;
1349        }
1350        // Duplicate receiver on stack.
1351        __ LoadP(r2, MemOperand(sp));
1352        PushOperand(r2);
1353        VisitForStackValue(key);
1354        VisitForStackValue(value);
1355        if (property->emit_store()) {
1356          if (NeedsHomeObject(value)) {
1357            EmitSetHomeObject(value, 2, property->GetSlot());
1358          }
1359          __ LoadSmiLiteral(r2, Smi::FromInt(SLOPPY));  // PropertyAttributes
1360          PushOperand(r2);
1361          CallRuntimeWithOperands(Runtime::kSetProperty);
1362        } else {
1363          DropOperands(3);
1364        }
1365        break;
1366      case ObjectLiteral::Property::PROTOTYPE:
1367        // Duplicate receiver on stack.
1368        __ LoadP(r2, MemOperand(sp));
1369        PushOperand(r2);
1370        VisitForStackValue(value);
1371        DCHECK(property->emit_store());
1372        CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
1373        PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1374                               BailoutState::NO_REGISTERS);
1375        break;
1376      case ObjectLiteral::Property::GETTER:
1377        if (property->emit_store()) {
1378          AccessorTable::Iterator it = accessor_table.lookup(key);
1379          it->second->bailout_id = expr->GetIdForPropertySet(property_index);
1380          it->second->getter = property;
1381        }
1382        break;
1383      case ObjectLiteral::Property::SETTER:
1384        if (property->emit_store()) {
1385          AccessorTable::Iterator it = accessor_table.lookup(key);
1386          it->second->bailout_id = expr->GetIdForPropertySet(property_index);
1387          it->second->setter = property;
1388        }
1389        break;
1390    }
1391  }
1392
1393  // Emit code to define accessors, using only a single call to the runtime for
1394  // each pair of corresponding getters and setters.
1395  for (AccessorTable::Iterator it = accessor_table.begin();
1396       it != accessor_table.end(); ++it) {
1397    __ LoadP(r2, MemOperand(sp));  // Duplicate receiver.
1398    PushOperand(r2);
1399    VisitForStackValue(it->first);
1400    EmitAccessor(it->second->getter);
1401    EmitAccessor(it->second->setter);
1402    __ LoadSmiLiteral(r2, Smi::FromInt(NONE));
1403    PushOperand(r2);
1404    CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked);
1405    PrepareForBailoutForId(it->second->bailout_id, BailoutState::NO_REGISTERS);
1406  }
1407
1408  // Object literals have two parts. The "static" part on the left contains no
1409  // computed property names, and so we can compute its map ahead of time; see
1410  // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1411  // starts with the first computed property name, and continues with all
1412  // properties to its right.  All the code from above initializes the static
1413  // component of the object literal, and arranges for the map of the result to
1414  // reflect the static order in which the keys appear. For the dynamic
1415  // properties, we compile them into a series of "SetOwnProperty" runtime
1416  // calls. This will preserve insertion order.
1417  for (; property_index < expr->properties()->length(); property_index++) {
1418    ObjectLiteral::Property* property = expr->properties()->at(property_index);
1419
1420    Expression* value = property->value();
1421    if (!result_saved) {
1422      PushOperand(r2);  // Save result on the stack
1423      result_saved = true;
1424    }
1425
1426    __ LoadP(r2, MemOperand(sp));  // Duplicate receiver.
1427    PushOperand(r2);
1428
1429    if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1430      DCHECK(!property->is_computed_name());
1431      VisitForStackValue(value);
1432      DCHECK(property->emit_store());
1433      CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
1434      PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1435                             BailoutState::NO_REGISTERS);
1436    } else {
1437      EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
1438      VisitForStackValue(value);
1439      if (NeedsHomeObject(value)) {
1440        EmitSetHomeObject(value, 2, property->GetSlot());
1441      }
1442
1443      switch (property->kind()) {
1444        case ObjectLiteral::Property::CONSTANT:
1445        case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1446        case ObjectLiteral::Property::COMPUTED:
1447          if (property->emit_store()) {
1448            PushOperand(Smi::FromInt(NONE));
1449            PushOperand(Smi::FromInt(property->NeedsSetFunctionName()));
1450            CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral);
1451            PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1452                                   BailoutState::NO_REGISTERS);
1453          } else {
1454            DropOperands(3);
1455          }
1456          break;
1457
1458        case ObjectLiteral::Property::PROTOTYPE:
1459          UNREACHABLE();
1460          break;
1461
1462        case ObjectLiteral::Property::GETTER:
1463          PushOperand(Smi::FromInt(NONE));
1464          CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked);
1465          break;
1466
1467        case ObjectLiteral::Property::SETTER:
1468          PushOperand(Smi::FromInt(NONE));
1469          CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked);
1470          break;
1471      }
1472    }
1473  }
1474
1475  if (result_saved) {
1476    context()->PlugTOS();
1477  } else {
1478    context()->Plug(r2);
1479  }
1480}
1481
1482void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1483  Comment cmnt(masm_, "[ ArrayLiteral");
1484
1485  Handle<FixedArray> constant_elements = expr->constant_elements();
1486  bool has_fast_elements =
1487      IsFastObjectElementsKind(expr->constant_elements_kind());
1488  Handle<FixedArrayBase> constant_elements_values(
1489      FixedArrayBase::cast(constant_elements->get(1)));
1490
1491  AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1492  if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1493    // If the only customer of allocation sites is transitioning, then
1494    // we can turn it off if we don't have anywhere else to transition to.
1495    allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1496  }
1497
1498  __ LoadP(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1499  __ LoadSmiLiteral(r4, Smi::FromInt(expr->literal_index()));
1500  __ mov(r3, Operand(constant_elements));
1501  if (MustCreateArrayLiteralWithRuntime(expr)) {
1502    __ LoadSmiLiteral(r2, Smi::FromInt(expr->ComputeFlags()));
1503    __ Push(r5, r4, r3, r2);
1504    __ CallRuntime(Runtime::kCreateArrayLiteral);
1505  } else {
1506    FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1507    __ CallStub(&stub);
1508    RestoreContext();
1509  }
1510  PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER);
1511
1512  bool result_saved = false;  // Is the result saved to the stack?
1513  ZoneList<Expression*>* subexprs = expr->values();
1514  int length = subexprs->length();
1515
1516  // Emit code to evaluate all the non-constant subexpressions and to store
1517  // them into the newly cloned array.
1518  for (int array_index = 0; array_index < length; array_index++) {
1519    Expression* subexpr = subexprs->at(array_index);
1520    DCHECK(!subexpr->IsSpread());
1521    // If the subexpression is a literal or a simple materialized literal it
1522    // is already set in the cloned array.
1523    if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1524
1525    if (!result_saved) {
1526      PushOperand(r2);
1527      result_saved = true;
1528    }
1529    VisitForAccumulatorValue(subexpr);
1530
1531    __ LoadSmiLiteral(StoreDescriptor::NameRegister(),
1532                      Smi::FromInt(array_index));
1533    __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0));
1534    CallKeyedStoreIC(expr->LiteralFeedbackSlot());
1535
1536    PrepareForBailoutForId(expr->GetIdForElement(array_index),
1537                           BailoutState::NO_REGISTERS);
1538  }
1539
1540  if (result_saved) {
1541    context()->PlugTOS();
1542  } else {
1543    context()->Plug(r2);
1544  }
1545}
1546
1547void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1548  DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1549
1550  Comment cmnt(masm_, "[ Assignment");
1551
1552  Property* property = expr->target()->AsProperty();
1553  LhsKind assign_type = Property::GetAssignType(property);
1554
1555  // Evaluate LHS expression.
1556  switch (assign_type) {
1557    case VARIABLE:
1558      // Nothing to do here.
1559      break;
1560    case NAMED_PROPERTY:
1561      if (expr->is_compound()) {
1562        // We need the receiver both on the stack and in the register.
1563        VisitForStackValue(property->obj());
1564        __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
1565      } else {
1566        VisitForStackValue(property->obj());
1567      }
1568      break;
1569    case NAMED_SUPER_PROPERTY:
1570      VisitForStackValue(
1571          property->obj()->AsSuperPropertyReference()->this_var());
1572      VisitForAccumulatorValue(
1573          property->obj()->AsSuperPropertyReference()->home_object());
1574      PushOperand(result_register());
1575      if (expr->is_compound()) {
1576        const Register scratch = r3;
1577        __ LoadP(scratch, MemOperand(sp, kPointerSize));
1578        PushOperands(scratch, result_register());
1579      }
1580      break;
1581    case KEYED_SUPER_PROPERTY: {
1582      VisitForStackValue(
1583          property->obj()->AsSuperPropertyReference()->this_var());
1584      VisitForStackValue(
1585          property->obj()->AsSuperPropertyReference()->home_object());
1586      VisitForAccumulatorValue(property->key());
1587      PushOperand(result_register());
1588      if (expr->is_compound()) {
1589        const Register scratch1 = r4;
1590        const Register scratch2 = r3;
1591        __ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
1592        __ LoadP(scratch2, MemOperand(sp, 1 * kPointerSize));
1593        PushOperands(scratch1, scratch2, result_register());
1594      }
1595      break;
1596    }
1597    case KEYED_PROPERTY:
1598      if (expr->is_compound()) {
1599        VisitForStackValue(property->obj());
1600        VisitForStackValue(property->key());
1601        __ LoadP(LoadDescriptor::ReceiverRegister(),
1602                 MemOperand(sp, 1 * kPointerSize));
1603        __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
1604      } else {
1605        VisitForStackValue(property->obj());
1606        VisitForStackValue(property->key());
1607      }
1608      break;
1609  }
1610
1611  // For compound assignments we need another deoptimization point after the
1612  // variable/property load.
1613  if (expr->is_compound()) {
1614    {
1615      AccumulatorValueContext context(this);
1616      switch (assign_type) {
1617        case VARIABLE:
1618          EmitVariableLoad(expr->target()->AsVariableProxy());
1619          PrepareForBailout(expr->target(), BailoutState::TOS_REGISTER);
1620          break;
1621        case NAMED_PROPERTY:
1622          EmitNamedPropertyLoad(property);
1623          PrepareForBailoutForId(property->LoadId(),
1624                                 BailoutState::TOS_REGISTER);
1625          break;
1626        case NAMED_SUPER_PROPERTY:
1627          EmitNamedSuperPropertyLoad(property);
1628          PrepareForBailoutForId(property->LoadId(),
1629                                 BailoutState::TOS_REGISTER);
1630          break;
1631        case KEYED_SUPER_PROPERTY:
1632          EmitKeyedSuperPropertyLoad(property);
1633          PrepareForBailoutForId(property->LoadId(),
1634                                 BailoutState::TOS_REGISTER);
1635          break;
1636        case KEYED_PROPERTY:
1637          EmitKeyedPropertyLoad(property);
1638          PrepareForBailoutForId(property->LoadId(),
1639                                 BailoutState::TOS_REGISTER);
1640          break;
1641      }
1642    }
1643
1644    Token::Value op = expr->binary_op();
1645    PushOperand(r2);  // Left operand goes on the stack.
1646    VisitForAccumulatorValue(expr->value());
1647
1648    AccumulatorValueContext context(this);
1649    if (ShouldInlineSmiCase(op)) {
1650      EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(),
1651                            expr->value());
1652    } else {
1653      EmitBinaryOp(expr->binary_operation(), op);
1654    }
1655
1656    // Deoptimization point in case the binary operation may have side effects.
1657    PrepareForBailout(expr->binary_operation(), BailoutState::TOS_REGISTER);
1658  } else {
1659    VisitForAccumulatorValue(expr->value());
1660  }
1661
1662  SetExpressionPosition(expr);
1663
1664  // Store the value.
1665  switch (assign_type) {
1666    case VARIABLE: {
1667      VariableProxy* proxy = expr->target()->AsVariableProxy();
1668      EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(),
1669                             proxy->hole_check_mode());
1670      PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
1671      context()->Plug(r2);
1672      break;
1673    }
1674    case NAMED_PROPERTY:
1675      EmitNamedPropertyAssignment(expr);
1676      break;
1677    case NAMED_SUPER_PROPERTY:
1678      EmitNamedSuperPropertyStore(property);
1679      context()->Plug(r2);
1680      break;
1681    case KEYED_SUPER_PROPERTY:
1682      EmitKeyedSuperPropertyStore(property);
1683      context()->Plug(r2);
1684      break;
1685    case KEYED_PROPERTY:
1686      EmitKeyedPropertyAssignment(expr);
1687      break;
1688  }
1689}
1690
1691void FullCodeGenerator::VisitYield(Yield* expr) {
1692  Comment cmnt(masm_, "[ Yield");
1693  SetExpressionPosition(expr);
1694
1695  // Evaluate yielded value first; the initial iterator definition depends on
1696  // this.  It stays on the stack while we update the iterator.
1697  VisitForStackValue(expr->expression());
1698
1699  Label suspend, continuation, post_runtime, resume, exception;
1700
1701  __ b(&suspend);
1702  __ bind(&continuation);
1703  // When we arrive here, r2 holds the generator object.
1704  __ RecordGeneratorContinuation();
1705  __ LoadP(r3, FieldMemOperand(r2, JSGeneratorObject::kResumeModeOffset));
1706  __ LoadP(r2, FieldMemOperand(r2, JSGeneratorObject::kInputOrDebugPosOffset));
1707  STATIC_ASSERT(JSGeneratorObject::kNext < JSGeneratorObject::kReturn);
1708  STATIC_ASSERT(JSGeneratorObject::kThrow > JSGeneratorObject::kReturn);
1709  __ CmpSmiLiteral(r3, Smi::FromInt(JSGeneratorObject::kReturn), r0);
1710  __ blt(&resume);
1711  __ Push(result_register());
1712  __ bgt(&exception);
1713  EmitCreateIteratorResult(true);
1714  EmitUnwindAndReturn();
1715
1716  __ bind(&exception);
1717  __ CallRuntime(expr->rethrow_on_exception() ? Runtime::kReThrow
1718                                              : Runtime::kThrow);
1719
1720  __ bind(&suspend);
1721  OperandStackDepthIncrement(1);  // Not popped on this path.
1722  VisitForAccumulatorValue(expr->generator_object());
1723  DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1724  __ LoadSmiLiteral(r3, Smi::FromInt(continuation.pos()));
1725  __ StoreP(r3, FieldMemOperand(r2, JSGeneratorObject::kContinuationOffset),
1726            r0);
1727  __ StoreP(cp, FieldMemOperand(r2, JSGeneratorObject::kContextOffset), r0);
1728  __ LoadRR(r3, cp);
1729  __ RecordWriteField(r2, JSGeneratorObject::kContextOffset, r3, r4,
1730                      kLRHasBeenSaved, kDontSaveFPRegs);
1731  __ AddP(r3, fp, Operand(StandardFrameConstants::kExpressionsOffset));
1732  __ CmpP(sp, r3);
1733  __ beq(&post_runtime);
1734  __ push(r2);  // generator object
1735  __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1736  RestoreContext();
1737  __ bind(&post_runtime);
1738  PopOperand(result_register());
1739  EmitReturnSequence();
1740
1741  __ bind(&resume);
1742  context()->Plug(result_register());
1743}
1744
1745void FullCodeGenerator::PushOperands(Register reg1, Register reg2) {
1746  OperandStackDepthIncrement(2);
1747  __ Push(reg1, reg2);
1748}
1749
1750void FullCodeGenerator::PushOperands(Register reg1, Register reg2,
1751                                     Register reg3) {
1752  OperandStackDepthIncrement(3);
1753  __ Push(reg1, reg2, reg3);
1754}
1755
1756void FullCodeGenerator::PushOperands(Register reg1, Register reg2,
1757                                     Register reg3, Register reg4) {
1758  OperandStackDepthIncrement(4);
1759  __ Push(reg1, reg2, reg3, reg4);
1760}
1761
1762void FullCodeGenerator::PopOperands(Register reg1, Register reg2) {
1763  OperandStackDepthDecrement(2);
1764  __ Pop(reg1, reg2);
1765}
1766
1767void FullCodeGenerator::EmitOperandStackDepthCheck() {
1768  if (FLAG_debug_code) {
1769    int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp +
1770                        operand_stack_depth_ * kPointerSize;
1771    __ SubP(r2, fp, sp);
1772    __ CmpP(r2, Operand(expected_diff));
1773    __ Assert(eq, kUnexpectedStackDepth);
1774  }
1775}
1776
1777void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
1778  Label allocate, done_allocate;
1779
1780  __ Allocate(JSIteratorResult::kSize, r2, r4, r5, &allocate,
1781              NO_ALLOCATION_FLAGS);
1782  __ b(&done_allocate);
1783
1784  __ bind(&allocate);
1785  __ Push(Smi::FromInt(JSIteratorResult::kSize));
1786  __ CallRuntime(Runtime::kAllocateInNewSpace);
1787
1788  __ bind(&done_allocate);
1789  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, r3);
1790  PopOperand(r4);
1791  __ LoadRoot(r5,
1792              done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1793  __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
1794  __ StoreP(r3, FieldMemOperand(r2, HeapObject::kMapOffset), r0);
1795  __ StoreP(r6, FieldMemOperand(r2, JSObject::kPropertiesOffset), r0);
1796  __ StoreP(r6, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
1797  __ StoreP(r4, FieldMemOperand(r2, JSIteratorResult::kValueOffset), r0);
1798  __ StoreP(r5, FieldMemOperand(r2, JSIteratorResult::kDoneOffset), r0);
1799}
1800
1801void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
1802                                              Token::Value op,
1803                                              Expression* left_expr,
1804                                              Expression* right_expr) {
1805  Label done, smi_case, stub_call;
1806
1807  Register scratch1 = r4;
1808  Register scratch2 = r5;
1809
1810  // Get the arguments.
1811  Register left = r3;
1812  Register right = r2;
1813  PopOperand(left);
1814
1815  // Perform combined smi check on both operands.
1816  __ LoadRR(scratch1, right);
1817  __ OrP(scratch1, left);
1818  STATIC_ASSERT(kSmiTag == 0);
1819  JumpPatchSite patch_site(masm_);
1820  patch_site.EmitJumpIfSmi(scratch1, &smi_case);
1821
1822  __ bind(&stub_call);
1823  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
1824  CallIC(code, expr->BinaryOperationFeedbackId());
1825  patch_site.EmitPatchInfo();
1826  __ b(&done);
1827
1828  __ bind(&smi_case);
1829  // Smi case. This code works the same way as the smi-smi case in the type
1830  // recording binary operation stub.
1831  switch (op) {
1832    case Token::SAR:
1833      __ GetLeastBitsFromSmi(scratch1, right, 5);
1834      __ ShiftRightArithP(right, left, scratch1);
1835      __ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
1836      break;
1837    case Token::SHL: {
1838      __ GetLeastBitsFromSmi(scratch2, right, 5);
1839#if V8_TARGET_ARCH_S390X
1840      __ ShiftLeftP(right, left, scratch2);
1841#else
1842      __ SmiUntag(scratch1, left);
1843      __ ShiftLeftP(scratch1, scratch1, scratch2);
1844      // Check that the *signed* result fits in a smi
1845      __ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
1846      __ SmiTag(right, scratch1);
1847#endif
1848      break;
1849    }
1850    case Token::SHR: {
1851      __ SmiUntag(scratch1, left);
1852      __ GetLeastBitsFromSmi(scratch2, right, 5);
1853      __ srl(scratch1, scratch2);
1854      // Unsigned shift is not allowed to produce a negative number.
1855      __ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
1856      __ SmiTag(right, scratch1);
1857      break;
1858    }
1859    case Token::ADD: {
1860      __ AddP(scratch1, left, right);
1861      __ b(overflow, &stub_call);
1862      __ LoadRR(right, scratch1);
1863      break;
1864    }
1865    case Token::SUB: {
1866      __ SubP(scratch1, left, right);
1867      __ b(overflow, &stub_call);
1868      __ LoadRR(right, scratch1);
1869      break;
1870    }
1871    case Token::MUL: {
1872      Label mul_zero;
1873#if V8_TARGET_ARCH_S390X
1874      // Remove tag from both operands.
1875      __ SmiUntag(ip, right);
1876      __ SmiUntag(scratch2, left);
1877      __ mr_z(scratch1, ip);
1878      // Check for overflowing the smi range - no overflow if higher 33 bits of
1879      // the result are identical.
1880      __ lr(ip, scratch2);  // 32 bit load
1881      __ sra(ip, Operand(31));
1882      __ cr_z(ip, scratch1);  // 32 bit compare
1883      __ bne(&stub_call);
1884#else
1885      __ SmiUntag(ip, right);
1886      __ LoadRR(scratch2, left);  // load into low order of reg pair
1887      __ mr_z(scratch1, ip);      // R4:R5 = R5 * ip
1888      // Check for overflowing the smi range - no overflow if higher 33 bits of
1889      // the result are identical.
1890      __ TestIfInt32(scratch1, scratch2, ip);
1891      __ bne(&stub_call);
1892#endif
1893      // Go slow on zero result to handle -0.
1894      __ chi(scratch2, Operand::Zero());
1895      __ beq(&mul_zero, Label::kNear);
1896#if V8_TARGET_ARCH_S390X
1897      __ SmiTag(right, scratch2);
1898#else
1899      __ LoadRR(right, scratch2);
1900#endif
1901      __ b(&done);
1902      // We need -0 if we were multiplying a negative number with 0 to get 0.
1903      // We know one of them was zero.
1904      __ bind(&mul_zero);
1905      __ AddP(scratch2, right, left);
1906      __ CmpP(scratch2, Operand::Zero());
1907      __ blt(&stub_call);
1908      __ LoadSmiLiteral(right, Smi::kZero);
1909      break;
1910    }
1911    case Token::BIT_OR:
1912      __ OrP(right, left);
1913      break;
1914    case Token::BIT_AND:
1915      __ AndP(right, left);
1916      break;
1917    case Token::BIT_XOR:
1918      __ XorP(right, left);
1919      break;
1920    default:
1921      UNREACHABLE();
1922  }
1923
1924  __ bind(&done);
1925  context()->Plug(r2);
1926}
1927
1928void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
1929  for (int i = 0; i < lit->properties()->length(); i++) {
1930    ClassLiteral::Property* property = lit->properties()->at(i);
1931    Expression* value = property->value();
1932
1933    Register scratch = r3;
1934    if (property->is_static()) {
1935      __ LoadP(scratch, MemOperand(sp, kPointerSize));  // constructor
1936    } else {
1937      __ LoadP(scratch, MemOperand(sp, 0));  // prototype
1938    }
1939    PushOperand(scratch);
1940    EmitPropertyKey(property, lit->GetIdForProperty(i));
1941
1942    // The static prototype property is read only. We handle the non computed
1943    // property name case in the parser. Since this is the only case where we
1944    // need to check for an own read only property we special case this so we do
1945    // not need to do this for every property.
1946    if (property->is_static() && property->is_computed_name()) {
1947      __ CallRuntime(Runtime::kThrowIfStaticPrototype);
1948      __ push(r2);
1949    }
1950
1951    VisitForStackValue(value);
1952    if (NeedsHomeObject(value)) {
1953      EmitSetHomeObject(value, 2, property->GetSlot());
1954    }
1955
1956    switch (property->kind()) {
1957      case ClassLiteral::Property::METHOD:
1958        PushOperand(Smi::FromInt(DONT_ENUM));
1959        PushOperand(Smi::FromInt(property->NeedsSetFunctionName()));
1960        CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral);
1961        break;
1962
1963      case ClassLiteral::Property::GETTER:
1964        PushOperand(Smi::FromInt(DONT_ENUM));
1965        CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked);
1966        break;
1967
1968      case ClassLiteral::Property::SETTER:
1969        PushOperand(Smi::FromInt(DONT_ENUM));
1970        CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked);
1971        break;
1972
1973      case ClassLiteral::Property::FIELD:
1974      default:
1975        UNREACHABLE();
1976    }
1977  }
1978}
1979
1980void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
1981  PopOperand(r3);
1982  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
1983  JumpPatchSite patch_site(masm_);  // unbound, signals no inlined smi code.
1984  CallIC(code, expr->BinaryOperationFeedbackId());
1985  patch_site.EmitPatchInfo();
1986  context()->Plug(r2);
1987}
1988
1989void FullCodeGenerator::EmitAssignment(Expression* expr,
1990                                       FeedbackVectorSlot slot) {
1991  DCHECK(expr->IsValidReferenceExpressionOrThis());
1992
1993  Property* prop = expr->AsProperty();
1994  LhsKind assign_type = Property::GetAssignType(prop);
1995
1996  switch (assign_type) {
1997    case VARIABLE: {
1998      VariableProxy* proxy = expr->AsVariableProxy();
1999      EffectContext context(this);
2000      EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot,
2001                             proxy->hole_check_mode());
2002      break;
2003    }
2004    case NAMED_PROPERTY: {
2005      PushOperand(r2);  // Preserve value.
2006      VisitForAccumulatorValue(prop->obj());
2007      __ Move(StoreDescriptor::ReceiverRegister(), r2);
2008      PopOperand(StoreDescriptor::ValueRegister());  // Restore value.
2009      CallStoreIC(slot, prop->key()->AsLiteral()->value());
2010      break;
2011    }
2012    case NAMED_SUPER_PROPERTY: {
2013      PushOperand(r2);
2014      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2015      VisitForAccumulatorValue(
2016          prop->obj()->AsSuperPropertyReference()->home_object());
2017      // stack: value, this; r2: home_object
2018      Register scratch = r4;
2019      Register scratch2 = r5;
2020      __ LoadRR(scratch, result_register());              // home_object
2021      __ LoadP(r2, MemOperand(sp, kPointerSize));         // value
2022      __ LoadP(scratch2, MemOperand(sp, 0));              // this
2023      __ StoreP(scratch2, MemOperand(sp, kPointerSize));  // this
2024      __ StoreP(scratch, MemOperand(sp, 0));              // home_object
2025      // stack: this, home_object; r2: value
2026      EmitNamedSuperPropertyStore(prop);
2027      break;
2028    }
2029    case KEYED_SUPER_PROPERTY: {
2030      PushOperand(r2);
2031      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2032      VisitForStackValue(
2033          prop->obj()->AsSuperPropertyReference()->home_object());
2034      VisitForAccumulatorValue(prop->key());
2035      Register scratch = r4;
2036      Register scratch2 = r5;
2037      __ LoadP(scratch2, MemOperand(sp, 2 * kPointerSize));  // value
2038      // stack: value, this, home_object; r3: key, r6: value
2039      __ LoadP(scratch, MemOperand(sp, kPointerSize));  // this
2040      __ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
2041      __ LoadP(scratch, MemOperand(sp, 0));  // home_object
2042      __ StoreP(scratch, MemOperand(sp, kPointerSize));
2043      __ StoreP(r2, MemOperand(sp, 0));
2044      __ Move(r2, scratch2);
2045      // stack: this, home_object, key; r2: value.
2046      EmitKeyedSuperPropertyStore(prop);
2047      break;
2048    }
2049    case KEYED_PROPERTY: {
2050      PushOperand(r2);  // Preserve value.
2051      VisitForStackValue(prop->obj());
2052      VisitForAccumulatorValue(prop->key());
2053      __ Move(StoreDescriptor::NameRegister(), r2);
2054      PopOperands(StoreDescriptor::ValueRegister(),
2055                  StoreDescriptor::ReceiverRegister());
2056      CallKeyedStoreIC(slot);
2057      break;
2058    }
2059  }
2060  context()->Plug(r2);
2061}
2062
2063void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2064    Variable* var, MemOperand location) {
2065  __ StoreP(result_register(), location);
2066  if (var->IsContextSlot()) {
2067    // RecordWrite may destroy all its register arguments.
2068    __ LoadRR(r5, result_register());
2069    int offset = Context::SlotOffset(var->index());
2070    __ RecordWriteContextSlot(r3, offset, r5, r4, kLRHasBeenSaved,
2071                              kDontSaveFPRegs);
2072  }
2073}
2074
2075void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2076                                               FeedbackVectorSlot slot,
2077                                               HoleCheckMode hole_check_mode) {
2078  if (var->IsUnallocated()) {
2079    // Global var, const, or let.
2080    __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
2081    CallStoreIC(slot, var->name());
2082
2083  } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) {
2084    // Non-initializing assignment to let variable needs a write barrier.
2085    DCHECK(!var->IsLookupSlot());
2086    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2087    MemOperand location = VarOperand(var, r3);
2088    // Perform an initialization check for lexically declared variables.
2089    if (hole_check_mode == HoleCheckMode::kRequired) {
2090      Label assign;
2091      __ LoadP(r5, location);
2092      __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2093      __ bne(&assign);
2094      __ mov(r5, Operand(var->name()));
2095      __ push(r5);
2096      __ CallRuntime(Runtime::kThrowReferenceError);
2097      __ bind(&assign);
2098    }
2099    if (var->mode() != CONST) {
2100      EmitStoreToStackLocalOrContextSlot(var, location);
2101    } else if (var->throw_on_const_assignment(language_mode())) {
2102      __ CallRuntime(Runtime::kThrowConstAssignError);
2103    }
2104  } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
2105    // Initializing assignment to const {this} needs a write barrier.
2106    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2107    Label uninitialized_this;
2108    MemOperand location = VarOperand(var, r3);
2109    __ LoadP(r5, location);
2110    __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2111    __ beq(&uninitialized_this);
2112    __ mov(r3, Operand(var->name()));
2113    __ push(r3);
2114    __ CallRuntime(Runtime::kThrowReferenceError);
2115    __ bind(&uninitialized_this);
2116    EmitStoreToStackLocalOrContextSlot(var, location);
2117  } else {
2118    DCHECK(var->mode() != CONST || op == Token::INIT);
2119    if (var->IsLookupSlot()) {
2120      // Assignment to var.
2121      __ Push(var->name());
2122      __ Push(r2);
2123      __ CallRuntime(is_strict(language_mode())
2124                         ? Runtime::kStoreLookupSlot_Strict
2125                         : Runtime::kStoreLookupSlot_Sloppy);
2126    } else {
2127      // Assignment to var or initializing assignment to let/const in harmony
2128      // mode.
2129      DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
2130      MemOperand location = VarOperand(var, r3);
2131      if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) {
2132        // Check for an uninitialized let binding.
2133        __ LoadP(r4, location);
2134        __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
2135        __ Check(eq, kLetBindingReInitialization);
2136      }
2137      EmitStoreToStackLocalOrContextSlot(var, location);
2138    }
2139  }
2140}
2141
2142void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2143  // Assignment to a property, using a named store IC.
2144  Property* prop = expr->target()->AsProperty();
2145  DCHECK(prop != NULL);
2146  DCHECK(prop->key()->IsLiteral());
2147
2148  PopOperand(StoreDescriptor::ReceiverRegister());
2149  CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value());
2150
2151  PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
2152  context()->Plug(r2);
2153}
2154
2155void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2156  // Assignment to named property of super.
2157  // r2 : value
2158  // stack : receiver ('this'), home_object
2159  DCHECK(prop != NULL);
2160  Literal* key = prop->key()->AsLiteral();
2161  DCHECK(key != NULL);
2162
2163  PushOperand(key->value());
2164  PushOperand(r2);
2165  CallRuntimeWithOperands((is_strict(language_mode())
2166                               ? Runtime::kStoreToSuper_Strict
2167                               : Runtime::kStoreToSuper_Sloppy));
2168}
2169
2170void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2171  // Assignment to named property of super.
2172  // r2 : value
2173  // stack : receiver ('this'), home_object, key
2174  DCHECK(prop != NULL);
2175
2176  PushOperand(r2);
2177  CallRuntimeWithOperands((is_strict(language_mode())
2178                               ? Runtime::kStoreKeyedToSuper_Strict
2179                               : Runtime::kStoreKeyedToSuper_Sloppy));
2180}
2181
2182void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2183  // Assignment to a property, using a keyed store IC.
2184  PopOperands(StoreDescriptor::ReceiverRegister(),
2185              StoreDescriptor::NameRegister());
2186  DCHECK(StoreDescriptor::ValueRegister().is(r2));
2187
2188  CallKeyedStoreIC(expr->AssignmentSlot());
2189
2190  PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
2191  context()->Plug(r2);
2192}
2193
2194// Code common for calls using the IC.
2195void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2196  Expression* callee = expr->expression();
2197
2198  // Get the target function.
2199  ConvertReceiverMode convert_mode;
2200  if (callee->IsVariableProxy()) {
2201    {
2202      StackValueContext context(this);
2203      EmitVariableLoad(callee->AsVariableProxy());
2204      PrepareForBailout(callee, BailoutState::NO_REGISTERS);
2205    }
2206    // Push undefined as receiver. This is patched in the method prologue if it
2207    // is a sloppy mode method.
2208    __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
2209    PushOperand(r1);
2210    convert_mode = ConvertReceiverMode::kNullOrUndefined;
2211  } else {
2212    // Load the function from the receiver.
2213    DCHECK(callee->IsProperty());
2214    DCHECK(!callee->AsProperty()->IsSuperAccess());
2215    __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2216    EmitNamedPropertyLoad(callee->AsProperty());
2217    PrepareForBailoutForId(callee->AsProperty()->LoadId(),
2218                           BailoutState::TOS_REGISTER);
2219    // Push the target function under the receiver.
2220    __ LoadP(r1, MemOperand(sp, 0));
2221    PushOperand(r1);
2222    __ StoreP(r2, MemOperand(sp, kPointerSize));
2223    convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
2224  }
2225
2226  EmitCall(expr, convert_mode);
2227}
2228
2229void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2230  Expression* callee = expr->expression();
2231  DCHECK(callee->IsProperty());
2232  Property* prop = callee->AsProperty();
2233  DCHECK(prop->IsSuperAccess());
2234  SetExpressionPosition(prop);
2235
2236  Literal* key = prop->key()->AsLiteral();
2237  DCHECK(!key->value()->IsSmi());
2238  // Load the function from the receiver.
2239  const Register scratch = r3;
2240  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2241  VisitForAccumulatorValue(super_ref->home_object());
2242  __ LoadRR(scratch, r2);
2243  VisitForAccumulatorValue(super_ref->this_var());
2244  PushOperands(scratch, r2, r2, scratch);
2245  PushOperand(key->value());
2246
2247  // Stack here:
2248  //  - home_object
2249  //  - this (receiver)
2250  //  - this (receiver) <-- LoadFromSuper will pop here and below.
2251  //  - home_object
2252  //  - key
2253  CallRuntimeWithOperands(Runtime::kLoadFromSuper);
2254  PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
2255
2256  // Replace home_object with target function.
2257  __ StoreP(r2, MemOperand(sp, kPointerSize));
2258
2259  // Stack here:
2260  // - target function
2261  // - this (receiver)
2262  EmitCall(expr);
2263}
2264
2265// Code common for calls using the IC.
2266void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) {
2267  // Load the key.
2268  VisitForAccumulatorValue(key);
2269
2270  Expression* callee = expr->expression();
2271
2272  // Load the function from the receiver.
2273  DCHECK(callee->IsProperty());
2274  __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2275  __ Move(LoadDescriptor::NameRegister(), r2);
2276  EmitKeyedPropertyLoad(callee->AsProperty());
2277  PrepareForBailoutForId(callee->AsProperty()->LoadId(),
2278                         BailoutState::TOS_REGISTER);
2279
2280  // Push the target function under the receiver.
2281  __ LoadP(ip, MemOperand(sp, 0));
2282  PushOperand(ip);
2283  __ StoreP(r2, MemOperand(sp, kPointerSize));
2284
2285  EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
2286}
2287
2288void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2289  Expression* callee = expr->expression();
2290  DCHECK(callee->IsProperty());
2291  Property* prop = callee->AsProperty();
2292  DCHECK(prop->IsSuperAccess());
2293
2294  SetExpressionPosition(prop);
2295  // Load the function from the receiver.
2296  const Register scratch = r3;
2297  SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2298  VisitForAccumulatorValue(super_ref->home_object());
2299  __ LoadRR(scratch, r2);
2300  VisitForAccumulatorValue(super_ref->this_var());
2301  PushOperands(scratch, r2, r2, scratch);
2302  VisitForStackValue(prop->key());
2303
2304  // Stack here:
2305  //  - home_object
2306  //  - this (receiver)
2307  //  - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2308  //  - home_object
2309  //  - key
2310  CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper);
2311  PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
2312
2313  // Replace home_object with target function.
2314  __ StoreP(r2, MemOperand(sp, kPointerSize));
2315
2316  // Stack here:
2317  // - target function
2318  // - this (receiver)
2319  EmitCall(expr);
2320}
2321
2322void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
2323  // Load the arguments.
2324  ZoneList<Expression*>* args = expr->arguments();
2325  int arg_count = args->length();
2326  for (int i = 0; i < arg_count; i++) {
2327    VisitForStackValue(args->at(i));
2328  }
2329
2330  PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS);
2331  SetCallPosition(expr, expr->tail_call_mode());
2332  if (expr->tail_call_mode() == TailCallMode::kAllow) {
2333    if (FLAG_trace) {
2334      __ CallRuntime(Runtime::kTraceTailCall);
2335    }
2336    // Update profiling counters before the tail call since we will
2337    // not return to this function.
2338    EmitProfilingCounterHandlingForReturnSequence(true);
2339  }
2340  Handle<Code> code =
2341      CodeFactory::CallIC(isolate(), mode, expr->tail_call_mode()).code();
2342  __ LoadSmiLiteral(r5, SmiFromSlot(expr->CallFeedbackICSlot()));
2343  __ LoadP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2344  __ mov(r2, Operand(arg_count));
2345  CallIC(code);
2346  OperandStackDepthDecrement(arg_count + 1);
2347
2348  RecordJSReturnSite(expr);
2349  RestoreContext();
2350  context()->DropAndPlug(1, r2);
2351}
2352
2353void FullCodeGenerator::EmitResolvePossiblyDirectEval(Call* expr) {
2354  int arg_count = expr->arguments()->length();
2355  // r6: copy of the first argument or undefined if it doesn't exist.
2356  if (arg_count > 0) {
2357    __ LoadP(r6, MemOperand(sp, arg_count * kPointerSize), r0);
2358  } else {
2359    __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
2360  }
2361
2362  // r5: the receiver of the enclosing function.
2363  __ LoadP(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2364
2365  // r4: language mode.
2366  __ LoadSmiLiteral(r4, Smi::FromInt(language_mode()));
2367
2368  // r3: the start position of the scope the calls resides in.
2369  __ LoadSmiLiteral(r3, Smi::FromInt(scope()->start_position()));
2370
2371  // r2: the source position of the eval call.
2372  __ LoadSmiLiteral(r2, Smi::FromInt(expr->position()));
2373
2374  // Do the runtime call.
2375  __ Push(r6, r5, r4, r3, r2);
2376  __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
2377}
2378
2379// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
2380void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
2381  VariableProxy* callee = expr->expression()->AsVariableProxy();
2382  if (callee->var()->IsLookupSlot()) {
2383    Label slow, done;
2384    SetExpressionPosition(callee);
2385    // Generate code for loading from variables potentially shadowed by
2386    // eval-introduced variables.
2387    EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
2388
2389    __ bind(&slow);
2390    // Call the runtime to find the function to call (returned in r2) and
2391    // the object holding it (returned in r3).
2392    __ Push(callee->name());
2393    __ CallRuntime(Runtime::kLoadLookupSlotForCall);
2394    PushOperands(r2, r3);  // Function, receiver.
2395    PrepareForBailoutForId(expr->LookupId(), BailoutState::NO_REGISTERS);
2396
2397    // If fast case code has been generated, emit code to push the function
2398    // and receiver and have the slow path jump around this code.
2399    if (done.is_linked()) {
2400      Label call;
2401      __ b(&call);
2402      __ bind(&done);
2403      // Push function.
2404      __ push(r2);
2405      // Pass undefined as the receiver, which is the WithBaseObject of a
2406      // non-object environment record.  If the callee is sloppy, it will patch
2407      // it up to be the global receiver.
2408      __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
2409      __ push(r3);
2410      __ bind(&call);
2411    }
2412  } else {
2413    VisitForStackValue(callee);
2414    // refEnv.WithBaseObject()
2415    __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2416    PushOperand(r4);  // Reserved receiver slot.
2417  }
2418}
2419
2420void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
2421  // In a call to eval, we first call
2422  // Runtime_ResolvePossiblyDirectEval to resolve the function we need
2423  // to call.  Then we call the resolved function using the given arguments.
2424  ZoneList<Expression*>* args = expr->arguments();
2425  int arg_count = args->length();
2426
2427  PushCalleeAndWithBaseObject(expr);
2428
2429  // Push the arguments.
2430  for (int i = 0; i < arg_count; i++) {
2431    VisitForStackValue(args->at(i));
2432  }
2433
2434  // Push a copy of the function (found below the arguments) and
2435  // resolve eval.
2436  __ LoadP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2437  __ push(r3);
2438  EmitResolvePossiblyDirectEval(expr);
2439
2440  // Touch up the stack with the resolved function.
2441  __ StoreP(r2, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2442
2443  PrepareForBailoutForId(expr->EvalId(), BailoutState::NO_REGISTERS);
2444
2445  // Record source position for debugger.
2446  SetCallPosition(expr);
2447  Handle<Code> code = CodeFactory::CallIC(isolate(), ConvertReceiverMode::kAny,
2448                                          expr->tail_call_mode())
2449                          .code();
2450  __ LoadSmiLiteral(r5, SmiFromSlot(expr->CallFeedbackICSlot()));
2451  __ LoadP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2452  __ mov(r2, Operand(arg_count));
2453  __ Call(code, RelocInfo::CODE_TARGET);
2454  OperandStackDepthDecrement(arg_count + 1);
2455  RecordJSReturnSite(expr);
2456  RestoreContext();
2457  context()->DropAndPlug(1, r2);
2458}
2459
2460void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2461  Comment cmnt(masm_, "[ CallNew");
2462  // According to ECMA-262, section 11.2.2, page 44, the function
2463  // expression in new calls must be evaluated before the
2464  // arguments.
2465
2466  // Push constructor on the stack.  If it's not a function it's used as
2467  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2468  // ignored.
2469  DCHECK(!expr->expression()->IsSuperPropertyReference());
2470  VisitForStackValue(expr->expression());
2471
2472  // Push the arguments ("left-to-right") on the stack.
2473  ZoneList<Expression*>* args = expr->arguments();
2474  int arg_count = args->length();
2475  for (int i = 0; i < arg_count; i++) {
2476    VisitForStackValue(args->at(i));
2477  }
2478
2479  // Call the construct call builtin that handles allocation and
2480  // constructor invocation.
2481  SetConstructCallPosition(expr);
2482
2483  // Load function and argument count into r3 and r2.
2484  __ mov(r2, Operand(arg_count));
2485  __ LoadP(r3, MemOperand(sp, arg_count * kPointerSize), r0);
2486
2487  // Record call targets in unoptimized code.
2488  __ EmitLoadTypeFeedbackVector(r4);
2489  __ LoadSmiLiteral(r5, SmiFromSlot(expr->CallNewFeedbackSlot()));
2490
2491  CallConstructStub stub(isolate());
2492  CallIC(stub.GetCode());
2493  OperandStackDepthDecrement(arg_count + 1);
2494  PrepareForBailoutForId(expr->ReturnId(), BailoutState::TOS_REGISTER);
2495  RestoreContext();
2496  context()->Plug(r2);
2497}
2498
2499void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
2500  SuperCallReference* super_call_ref =
2501      expr->expression()->AsSuperCallReference();
2502  DCHECK_NOT_NULL(super_call_ref);
2503
2504  // Push the super constructor target on the stack (may be null,
2505  // but the Construct builtin can deal with that properly).
2506  VisitForAccumulatorValue(super_call_ref->this_function_var());
2507  __ AssertFunction(result_register());
2508  __ LoadP(result_register(),
2509           FieldMemOperand(result_register(), HeapObject::kMapOffset));
2510  __ LoadP(result_register(),
2511           FieldMemOperand(result_register(), Map::kPrototypeOffset));
2512  PushOperand(result_register());
2513
2514  // Push the arguments ("left-to-right") on the stack.
2515  ZoneList<Expression*>* args = expr->arguments();
2516  int arg_count = args->length();
2517  for (int i = 0; i < arg_count; i++) {
2518    VisitForStackValue(args->at(i));
2519  }
2520
2521  // Call the construct call builtin that handles allocation and
2522  // constructor invocation.
2523  SetConstructCallPosition(expr);
2524
2525  // Load new target into r5.
2526  VisitForAccumulatorValue(super_call_ref->new_target_var());
2527  __ LoadRR(r5, result_register());
2528
2529  // Load function and argument count into r1 and r0.
2530  __ mov(r2, Operand(arg_count));
2531  __ LoadP(r3, MemOperand(sp, arg_count * kPointerSize));
2532
2533  __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2534  OperandStackDepthDecrement(arg_count + 1);
2535
2536  RecordJSReturnSite(expr);
2537  RestoreContext();
2538  context()->Plug(r2);
2539}
2540
2541void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2542  ZoneList<Expression*>* args = expr->arguments();
2543  DCHECK(args->length() == 1);
2544
2545  VisitForAccumulatorValue(args->at(0));
2546
2547  Label materialize_true, materialize_false, skip_lookup;
2548  Label* if_true = NULL;
2549  Label* if_false = NULL;
2550  Label* fall_through = NULL;
2551  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2552                         &if_false, &fall_through);
2553
2554  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2555  __ TestIfSmi(r2);
2556  Split(eq, if_true, if_false, fall_through);
2557
2558  context()->Plug(if_true, if_false);
2559}
2560
2561void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
2562  ZoneList<Expression*>* args = expr->arguments();
2563  DCHECK(args->length() == 1);
2564
2565  VisitForAccumulatorValue(args->at(0));
2566
2567  Label materialize_true, materialize_false;
2568  Label* if_true = NULL;
2569  Label* if_false = NULL;
2570  Label* fall_through = NULL;
2571  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2572                         &if_false, &fall_through);
2573
2574  __ JumpIfSmi(r2, if_false);
2575  __ CompareObjectType(r2, r3, r3, FIRST_JS_RECEIVER_TYPE);
2576  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2577  Split(ge, if_true, if_false, fall_through);
2578
2579  context()->Plug(if_true, if_false);
2580}
2581
2582void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2583  ZoneList<Expression*>* args = expr->arguments();
2584  DCHECK(args->length() == 1);
2585
2586  VisitForAccumulatorValue(args->at(0));
2587
2588  Label materialize_true, materialize_false;
2589  Label* if_true = NULL;
2590  Label* if_false = NULL;
2591  Label* fall_through = NULL;
2592  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2593                         &if_false, &fall_through);
2594
2595  __ JumpIfSmi(r2, if_false);
2596  __ CompareObjectType(r2, r3, r3, JS_ARRAY_TYPE);
2597  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2598  Split(eq, if_true, if_false, fall_through);
2599
2600  context()->Plug(if_true, if_false);
2601}
2602
2603void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
2604  ZoneList<Expression*>* args = expr->arguments();
2605  DCHECK(args->length() == 1);
2606
2607  VisitForAccumulatorValue(args->at(0));
2608
2609  Label materialize_true, materialize_false;
2610  Label* if_true = NULL;
2611  Label* if_false = NULL;
2612  Label* fall_through = NULL;
2613  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2614                         &if_false, &fall_through);
2615
2616  __ JumpIfSmi(r2, if_false);
2617  __ CompareObjectType(r2, r3, r3, JS_TYPED_ARRAY_TYPE);
2618  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2619  Split(eq, if_true, if_false, fall_through);
2620
2621  context()->Plug(if_true, if_false);
2622}
2623
2624void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2625  ZoneList<Expression*>* args = expr->arguments();
2626  DCHECK(args->length() == 1);
2627
2628  VisitForAccumulatorValue(args->at(0));
2629
2630  Label materialize_true, materialize_false;
2631  Label* if_true = NULL;
2632  Label* if_false = NULL;
2633  Label* fall_through = NULL;
2634  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2635                         &if_false, &fall_through);
2636
2637  __ JumpIfSmi(r2, if_false);
2638  __ CompareObjectType(r2, r3, r3, JS_REGEXP_TYPE);
2639  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2640  Split(eq, if_true, if_false, fall_through);
2641
2642  context()->Plug(if_true, if_false);
2643}
2644
2645void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
2646  ZoneList<Expression*>* args = expr->arguments();
2647  DCHECK(args->length() == 1);
2648
2649  VisitForAccumulatorValue(args->at(0));
2650
2651  Label materialize_true, materialize_false;
2652  Label* if_true = NULL;
2653  Label* if_false = NULL;
2654  Label* fall_through = NULL;
2655  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2656                         &if_false, &fall_through);
2657
2658  __ JumpIfSmi(r2, if_false);
2659  __ CompareObjectType(r2, r3, r3, JS_PROXY_TYPE);
2660  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2661  Split(eq, if_true, if_false, fall_through);
2662
2663  context()->Plug(if_true, if_false);
2664}
2665
2666void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
2667  ZoneList<Expression*>* args = expr->arguments();
2668  DCHECK(args->length() == 1);
2669  Label done, null, function, non_function_constructor;
2670
2671  VisitForAccumulatorValue(args->at(0));
2672
2673  // If the object is not a JSReceiver, we return null.
2674  __ JumpIfSmi(r2, &null);
2675  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2676  __ CompareObjectType(r2, r2, r3, FIRST_JS_RECEIVER_TYPE);
2677  // Map is now in r2.
2678  __ blt(&null);
2679
2680  // Return 'Function' for JSFunction and JSBoundFunction objects.
2681  __ CmpLogicalP(r3, Operand(FIRST_FUNCTION_TYPE));
2682  STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2683  __ bge(&function);
2684
2685  // Check if the constructor in the map is a JS function.
2686  Register instance_type = r4;
2687  __ GetMapConstructor(r2, r2, r3, instance_type);
2688  __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
2689  __ bne(&non_function_constructor, Label::kNear);
2690
2691  // r2 now contains the constructor function. Grab the
2692  // instance class name from there.
2693  __ LoadP(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset));
2694  __ LoadP(r2,
2695           FieldMemOperand(r2, SharedFunctionInfo::kInstanceClassNameOffset));
2696  __ b(&done, Label::kNear);
2697
2698  // Functions have class 'Function'.
2699  __ bind(&function);
2700  __ LoadRoot(r2, Heap::kFunction_stringRootIndex);
2701  __ b(&done, Label::kNear);
2702
2703  // Objects with a non-function constructor have class 'Object'.
2704  __ bind(&non_function_constructor);
2705  __ LoadRoot(r2, Heap::kObject_stringRootIndex);
2706  __ b(&done, Label::kNear);
2707
2708  // Non-JS objects have class null.
2709  __ bind(&null);
2710  __ LoadRoot(r2, Heap::kNullValueRootIndex);
2711
2712  // All done.
2713  __ bind(&done);
2714
2715  context()->Plug(r2);
2716}
2717
2718void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
2719  ZoneList<Expression*>* args = expr->arguments();
2720  DCHECK(args->length() == 2);
2721  VisitForStackValue(args->at(0));
2722  VisitForAccumulatorValue(args->at(1));
2723
2724  Register object = r3;
2725  Register index = r2;
2726  Register result = r5;
2727
2728  PopOperand(object);
2729
2730  Label need_conversion;
2731  Label index_out_of_range;
2732  Label done;
2733  StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
2734                                      &need_conversion, &index_out_of_range);
2735  generator.GenerateFast(masm_);
2736  __ b(&done);
2737
2738  __ bind(&index_out_of_range);
2739  // When the index is out of range, the spec requires us to return
2740  // NaN.
2741  __ LoadRoot(result, Heap::kNanValueRootIndex);
2742  __ b(&done);
2743
2744  __ bind(&need_conversion);
2745  // Load the undefined value into the result register, which will
2746  // trigger conversion.
2747  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2748  __ b(&done);
2749
2750  NopRuntimeCallHelper call_helper;
2751  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
2752
2753  __ bind(&done);
2754  context()->Plug(result);
2755}
2756
2757void FullCodeGenerator::EmitCall(CallRuntime* expr) {
2758  ZoneList<Expression*>* args = expr->arguments();
2759  DCHECK_LE(2, args->length());
2760  // Push target, receiver and arguments onto the stack.
2761  for (Expression* const arg : *args) {
2762    VisitForStackValue(arg);
2763  }
2764  PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS);
2765  // Move target to r3.
2766  int const argc = args->length() - 2;
2767  __ LoadP(r3, MemOperand(sp, (argc + 1) * kPointerSize));
2768  // Call the target.
2769  __ mov(r2, Operand(argc));
2770  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2771  OperandStackDepthDecrement(argc + 1);
2772  RestoreContext();
2773  // Discard the function left on TOS.
2774  context()->DropAndPlug(1, r2);
2775}
2776
2777void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
2778  ZoneList<Expression*>* args = expr->arguments();
2779  DCHECK_EQ(1, args->length());
2780  VisitForAccumulatorValue(args->at(0));
2781  __ AssertFunction(r2);
2782  __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
2783  __ LoadP(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
2784  context()->Plug(r2);
2785}
2786
2787void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
2788  DCHECK(expr->arguments()->length() == 0);
2789  ExternalReference debug_is_active =
2790      ExternalReference::debug_is_active_address(isolate());
2791  __ mov(ip, Operand(debug_is_active));
2792  __ LoadlB(r2, MemOperand(ip));
2793  __ SmiTag(r2);
2794  context()->Plug(r2);
2795}
2796
2797void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
2798  ZoneList<Expression*>* args = expr->arguments();
2799  DCHECK_EQ(2, args->length());
2800  VisitForStackValue(args->at(0));
2801  VisitForStackValue(args->at(1));
2802
2803  Label runtime, done;
2804
2805  __ Allocate(JSIteratorResult::kSize, r2, r4, r5, &runtime,
2806              NO_ALLOCATION_FLAGS);
2807  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, r3);
2808  __ Pop(r4, r5);
2809  __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
2810  __ StoreP(r3, FieldMemOperand(r2, HeapObject::kMapOffset), r0);
2811  __ StoreP(r6, FieldMemOperand(r2, JSObject::kPropertiesOffset), r0);
2812  __ StoreP(r6, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
2813  __ StoreP(r4, FieldMemOperand(r2, JSIteratorResult::kValueOffset), r0);
2814  __ StoreP(r5, FieldMemOperand(r2, JSIteratorResult::kDoneOffset), r0);
2815  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
2816  __ b(&done);
2817
2818  __ bind(&runtime);
2819  CallRuntimeWithOperands(Runtime::kCreateIterResultObject);
2820
2821  __ bind(&done);
2822  context()->Plug(r2);
2823}
2824
2825void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
2826  // Push function.
2827  __ LoadNativeContextSlot(expr->context_index(), r2);
2828  PushOperand(r2);
2829
2830  // Push undefined as the receiver.
2831  __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2832  PushOperand(r2);
2833}
2834
2835void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
2836  ZoneList<Expression*>* args = expr->arguments();
2837  int arg_count = args->length();
2838
2839  SetCallPosition(expr);
2840  __ LoadP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2841  __ mov(r2, Operand(arg_count));
2842  __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
2843          RelocInfo::CODE_TARGET);
2844  OperandStackDepthDecrement(arg_count + 1);
2845  RestoreContext();
2846}
2847
2848void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
2849  switch (expr->op()) {
2850    case Token::DELETE: {
2851      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
2852      Property* property = expr->expression()->AsProperty();
2853      VariableProxy* proxy = expr->expression()->AsVariableProxy();
2854
2855      if (property != NULL) {
2856        VisitForStackValue(property->obj());
2857        VisitForStackValue(property->key());
2858        CallRuntimeWithOperands(is_strict(language_mode())
2859                                    ? Runtime::kDeleteProperty_Strict
2860                                    : Runtime::kDeleteProperty_Sloppy);
2861        context()->Plug(r2);
2862      } else if (proxy != NULL) {
2863        Variable* var = proxy->var();
2864        // Delete of an unqualified identifier is disallowed in strict mode but
2865        // "delete this" is allowed.
2866        bool is_this = var->is_this();
2867        DCHECK(is_sloppy(language_mode()) || is_this);
2868        if (var->IsUnallocated()) {
2869          __ LoadGlobalObject(r4);
2870          __ mov(r3, Operand(var->name()));
2871          __ Push(r4, r3);
2872          __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
2873          context()->Plug(r2);
2874        } else if (var->IsStackAllocated() || var->IsContextSlot()) {
2875          // Result of deleting non-global, non-dynamic variables is false.
2876          // The subexpression does not have side effects.
2877          context()->Plug(is_this);
2878        } else {
2879          // Non-global variable.  Call the runtime to try to delete from the
2880          // context where the variable was introduced.
2881          __ Push(var->name());
2882          __ CallRuntime(Runtime::kDeleteLookupSlot);
2883          context()->Plug(r2);
2884        }
2885      } else {
2886        // Result of deleting non-property, non-variable reference is true.
2887        // The subexpression may have side effects.
2888        VisitForEffect(expr->expression());
2889        context()->Plug(true);
2890      }
2891      break;
2892    }
2893
2894    case Token::VOID: {
2895      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
2896      VisitForEffect(expr->expression());
2897      context()->Plug(Heap::kUndefinedValueRootIndex);
2898      break;
2899    }
2900
2901    case Token::NOT: {
2902      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
2903      if (context()->IsEffect()) {
2904        // Unary NOT has no side effects so it's only necessary to visit the
2905        // subexpression.  Match the optimizing compiler by not branching.
2906        VisitForEffect(expr->expression());
2907      } else if (context()->IsTest()) {
2908        const TestContext* test = TestContext::cast(context());
2909        // The labels are swapped for the recursive call.
2910        VisitForControl(expr->expression(), test->false_label(),
2911                        test->true_label(), test->fall_through());
2912        context()->Plug(test->true_label(), test->false_label());
2913      } else {
2914        // We handle value contexts explicitly rather than simply visiting
2915        // for control and plugging the control flow into the context,
2916        // because we need to prepare a pair of extra administrative AST ids
2917        // for the optimizing compiler.
2918        DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
2919        Label materialize_true, materialize_false, done;
2920        VisitForControl(expr->expression(), &materialize_false,
2921                        &materialize_true, &materialize_true);
2922        if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1);
2923        __ bind(&materialize_true);
2924        PrepareForBailoutForId(expr->MaterializeTrueId(),
2925                               BailoutState::NO_REGISTERS);
2926        __ LoadRoot(r2, Heap::kTrueValueRootIndex);
2927        if (context()->IsStackValue()) __ push(r2);
2928        __ b(&done);
2929        __ bind(&materialize_false);
2930        PrepareForBailoutForId(expr->MaterializeFalseId(),
2931                               BailoutState::NO_REGISTERS);
2932        __ LoadRoot(r2, Heap::kFalseValueRootIndex);
2933        if (context()->IsStackValue()) __ push(r2);
2934        __ bind(&done);
2935      }
2936      break;
2937    }
2938
2939    case Token::TYPEOF: {
2940      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
2941      {
2942        AccumulatorValueContext context(this);
2943        VisitForTypeofValue(expr->expression());
2944      }
2945      __ LoadRR(r5, r2);
2946      __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET);
2947      context()->Plug(r2);
2948      break;
2949    }
2950
2951    default:
2952      UNREACHABLE();
2953  }
2954}
2955
2956void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
2957  DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
2958
2959  Comment cmnt(masm_, "[ CountOperation");
2960
2961  Property* prop = expr->expression()->AsProperty();
2962  LhsKind assign_type = Property::GetAssignType(prop);
2963
2964  // Evaluate expression and get value.
2965  if (assign_type == VARIABLE) {
2966    DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
2967    AccumulatorValueContext context(this);
2968    EmitVariableLoad(expr->expression()->AsVariableProxy());
2969  } else {
2970    // Reserve space for result of postfix operation.
2971    if (expr->is_postfix() && !context()->IsEffect()) {
2972      __ LoadSmiLiteral(ip, Smi::kZero);
2973      PushOperand(ip);
2974    }
2975    switch (assign_type) {
2976      case NAMED_PROPERTY: {
2977        // Put the object both on the stack and in the register.
2978        VisitForStackValue(prop->obj());
2979        __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2980        EmitNamedPropertyLoad(prop);
2981        break;
2982      }
2983
2984      case NAMED_SUPER_PROPERTY: {
2985        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2986        VisitForAccumulatorValue(
2987            prop->obj()->AsSuperPropertyReference()->home_object());
2988        const Register scratch = r3;
2989        __ LoadP(scratch, MemOperand(sp, 0));  // this
2990        PushOperands(result_register(), scratch, result_register());
2991        EmitNamedSuperPropertyLoad(prop);
2992        break;
2993      }
2994
2995      case KEYED_SUPER_PROPERTY: {
2996        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2997        VisitForStackValue(
2998            prop->obj()->AsSuperPropertyReference()->home_object());
2999        VisitForAccumulatorValue(prop->key());
3000        const Register scratch1 = r3;
3001        const Register scratch2 = r4;
3002        __ LoadP(scratch1, MemOperand(sp, 1 * kPointerSize));  // this
3003        __ LoadP(scratch2, MemOperand(sp, 0 * kPointerSize));  // home object
3004        PushOperands(result_register(), scratch1, scratch2, result_register());
3005        EmitKeyedSuperPropertyLoad(prop);
3006        break;
3007      }
3008
3009      case KEYED_PROPERTY: {
3010        VisitForStackValue(prop->obj());
3011        VisitForStackValue(prop->key());
3012        __ LoadP(LoadDescriptor::ReceiverRegister(),
3013                 MemOperand(sp, 1 * kPointerSize));
3014        __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
3015        EmitKeyedPropertyLoad(prop);
3016        break;
3017      }
3018
3019      case VARIABLE:
3020        UNREACHABLE();
3021    }
3022  }
3023
3024  // We need a second deoptimization point after loading the value
3025  // in case evaluating the property load my have a side effect.
3026  if (assign_type == VARIABLE) {
3027    PrepareForBailout(expr->expression(), BailoutState::TOS_REGISTER);
3028  } else {
3029    PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
3030  }
3031
3032  // Inline smi case if we are in a loop.
3033  Label stub_call, done;
3034  JumpPatchSite patch_site(masm_);
3035
3036  int count_value = expr->op() == Token::INC ? 1 : -1;
3037  if (ShouldInlineSmiCase(expr->op())) {
3038    Label slow;
3039    patch_site.EmitJumpIfNotSmi(r2, &slow);
3040
3041    // Save result for postfix expressions.
3042    if (expr->is_postfix()) {
3043      if (!context()->IsEffect()) {
3044        // Save the result on the stack. If we have a named or keyed property
3045        // we store the result under the receiver that is currently on top
3046        // of the stack.
3047        switch (assign_type) {
3048          case VARIABLE:
3049            __ push(r2);
3050            break;
3051          case NAMED_PROPERTY:
3052            __ StoreP(r2, MemOperand(sp, kPointerSize));
3053            break;
3054          case NAMED_SUPER_PROPERTY:
3055            __ StoreP(r2, MemOperand(sp, 2 * kPointerSize));
3056            break;
3057          case KEYED_PROPERTY:
3058            __ StoreP(r2, MemOperand(sp, 2 * kPointerSize));
3059            break;
3060          case KEYED_SUPER_PROPERTY:
3061            __ StoreP(r2, MemOperand(sp, 3 * kPointerSize));
3062            break;
3063        }
3064      }
3065    }
3066
3067    Register scratch1 = r3;
3068    Register scratch2 = r4;
3069    __ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
3070    __ AddP(scratch2, r2, scratch1);
3071    __ LoadOnConditionP(nooverflow, r2, scratch2);
3072    __ b(nooverflow, &done);
3073    // Call stub. Undo operation first.
3074    __ b(&stub_call);
3075    __ bind(&slow);
3076  }
3077
3078  // Convert old value into a number.
3079  __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
3080  RestoreContext();
3081  PrepareForBailoutForId(expr->ToNumberId(), BailoutState::TOS_REGISTER);
3082
3083  // Save result for postfix expressions.
3084  if (expr->is_postfix()) {
3085    if (!context()->IsEffect()) {
3086      // Save the result on the stack. If we have a named or keyed property
3087      // we store the result under the receiver that is currently on top
3088      // of the stack.
3089      switch (assign_type) {
3090        case VARIABLE:
3091          PushOperand(r2);
3092          break;
3093        case NAMED_PROPERTY:
3094          __ StoreP(r2, MemOperand(sp, kPointerSize));
3095          break;
3096        case NAMED_SUPER_PROPERTY:
3097          __ StoreP(r2, MemOperand(sp, 2 * kPointerSize));
3098          break;
3099        case KEYED_PROPERTY:
3100          __ StoreP(r2, MemOperand(sp, 2 * kPointerSize));
3101          break;
3102        case KEYED_SUPER_PROPERTY:
3103          __ StoreP(r2, MemOperand(sp, 3 * kPointerSize));
3104          break;
3105      }
3106    }
3107  }
3108
3109  __ bind(&stub_call);
3110  __ LoadRR(r3, r2);
3111  __ LoadSmiLiteral(r2, Smi::FromInt(count_value));
3112
3113  SetExpressionPosition(expr);
3114
3115  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD).code();
3116  CallIC(code, expr->CountBinOpFeedbackId());
3117  patch_site.EmitPatchInfo();
3118  __ bind(&done);
3119
3120  // Store the value returned in r2.
3121  switch (assign_type) {
3122    case VARIABLE: {
3123      VariableProxy* proxy = expr->expression()->AsVariableProxy();
3124      if (expr->is_postfix()) {
3125        {
3126          EffectContext context(this);
3127          EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
3128                                 proxy->hole_check_mode());
3129          PrepareForBailoutForId(expr->AssignmentId(),
3130                                 BailoutState::TOS_REGISTER);
3131          context.Plug(r2);
3132        }
3133        // For all contexts except EffectConstant We have the result on
3134        // top of the stack.
3135        if (!context()->IsEffect()) {
3136          context()->PlugTOS();
3137        }
3138      } else {
3139        EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
3140                               proxy->hole_check_mode());
3141        PrepareForBailoutForId(expr->AssignmentId(),
3142                               BailoutState::TOS_REGISTER);
3143        context()->Plug(r2);
3144      }
3145      break;
3146    }
3147    case NAMED_PROPERTY: {
3148      PopOperand(StoreDescriptor::ReceiverRegister());
3149      CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value());
3150      PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3151      if (expr->is_postfix()) {
3152        if (!context()->IsEffect()) {
3153          context()->PlugTOS();
3154        }
3155      } else {
3156        context()->Plug(r2);
3157      }
3158      break;
3159    }
3160    case NAMED_SUPER_PROPERTY: {
3161      EmitNamedSuperPropertyStore(prop);
3162      PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3163      if (expr->is_postfix()) {
3164        if (!context()->IsEffect()) {
3165          context()->PlugTOS();
3166        }
3167      } else {
3168        context()->Plug(r2);
3169      }
3170      break;
3171    }
3172    case KEYED_SUPER_PROPERTY: {
3173      EmitKeyedSuperPropertyStore(prop);
3174      PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3175      if (expr->is_postfix()) {
3176        if (!context()->IsEffect()) {
3177          context()->PlugTOS();
3178        }
3179      } else {
3180        context()->Plug(r2);
3181      }
3182      break;
3183    }
3184    case KEYED_PROPERTY: {
3185      PopOperands(StoreDescriptor::ReceiverRegister(),
3186                  StoreDescriptor::NameRegister());
3187      CallKeyedStoreIC(expr->CountSlot());
3188      PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3189      if (expr->is_postfix()) {
3190        if (!context()->IsEffect()) {
3191          context()->PlugTOS();
3192        }
3193      } else {
3194        context()->Plug(r2);
3195      }
3196      break;
3197    }
3198  }
3199}
3200
3201void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
3202                                                 Expression* sub_expr,
3203                                                 Handle<String> check) {
3204  Label materialize_true, materialize_false;
3205  Label* if_true = NULL;
3206  Label* if_false = NULL;
3207  Label* fall_through = NULL;
3208  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3209                         &if_false, &fall_through);
3210
3211  {
3212    AccumulatorValueContext context(this);
3213    VisitForTypeofValue(sub_expr);
3214  }
3215  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3216
3217  Factory* factory = isolate()->factory();
3218  if (String::Equals(check, factory->number_string())) {
3219    __ JumpIfSmi(r2, if_true);
3220    __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3221    __ CompareRoot(r2, Heap::kHeapNumberMapRootIndex);
3222    Split(eq, if_true, if_false, fall_through);
3223  } else if (String::Equals(check, factory->string_string())) {
3224    __ JumpIfSmi(r2, if_false);
3225    __ CompareObjectType(r2, r2, r3, FIRST_NONSTRING_TYPE);
3226    Split(lt, if_true, if_false, fall_through);
3227  } else if (String::Equals(check, factory->symbol_string())) {
3228    __ JumpIfSmi(r2, if_false);
3229    __ CompareObjectType(r2, r2, r3, SYMBOL_TYPE);
3230    Split(eq, if_true, if_false, fall_through);
3231  } else if (String::Equals(check, factory->boolean_string())) {
3232    __ CompareRoot(r2, Heap::kTrueValueRootIndex);
3233    __ beq(if_true);
3234    __ CompareRoot(r2, Heap::kFalseValueRootIndex);
3235    Split(eq, if_true, if_false, fall_through);
3236  } else if (String::Equals(check, factory->undefined_string())) {
3237    __ CompareRoot(r2, Heap::kNullValueRootIndex);
3238    __ beq(if_false);
3239    __ JumpIfSmi(r2, if_false);
3240    // Check for undetectable objects => true.
3241    __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3242    __ tm(FieldMemOperand(r2, Map::kBitFieldOffset),
3243          Operand(1 << Map::kIsUndetectable));
3244    Split(ne, if_true, if_false, fall_through);
3245
3246  } else if (String::Equals(check, factory->function_string())) {
3247    __ JumpIfSmi(r2, if_false);
3248    __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3249    __ LoadlB(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
3250    __ AndP(r3, r3,
3251            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
3252    __ CmpP(r3, Operand(1 << Map::kIsCallable));
3253    Split(eq, if_true, if_false, fall_through);
3254  } else if (String::Equals(check, factory->object_string())) {
3255    __ JumpIfSmi(r2, if_false);
3256    __ CompareRoot(r2, Heap::kNullValueRootIndex);
3257    __ beq(if_true);
3258    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
3259    __ CompareObjectType(r2, r2, r3, FIRST_JS_RECEIVER_TYPE);
3260    __ blt(if_false);
3261    __ tm(FieldMemOperand(r2, Map::kBitFieldOffset),
3262          Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
3263    Split(eq, if_true, if_false, fall_through);
3264// clang-format off
3265#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)   \
3266  } else if (String::Equals(check, factory->type##_string())) { \
3267    __ JumpIfSmi(r2, if_false);                                 \
3268    __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));  \
3269    __ CompareRoot(r2, Heap::k##Type##MapRootIndex);            \
3270    Split(eq, if_true, if_false, fall_through);
3271  SIMD128_TYPES(SIMD128_TYPE)
3272#undef SIMD128_TYPE
3273    // clang-format on
3274  } else {
3275    if (if_false != fall_through) __ b(if_false);
3276  }
3277  context()->Plug(if_true, if_false);
3278}
3279
3280void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
3281  Comment cmnt(masm_, "[ CompareOperation");
3282
3283  // First we try a fast inlined version of the compare when one of
3284  // the operands is a literal.
3285  if (TryLiteralCompare(expr)) return;
3286
3287  // Always perform the comparison for its control flow.  Pack the result
3288  // into the expression's context after the comparison is performed.
3289  Label materialize_true, materialize_false;
3290  Label* if_true = NULL;
3291  Label* if_false = NULL;
3292  Label* fall_through = NULL;
3293  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3294                         &if_false, &fall_through);
3295
3296  Token::Value op = expr->op();
3297  VisitForStackValue(expr->left());
3298  switch (op) {
3299    case Token::IN:
3300      VisitForStackValue(expr->right());
3301      SetExpressionPosition(expr);
3302      EmitHasProperty();
3303      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
3304      __ CompareRoot(r2, Heap::kTrueValueRootIndex);
3305      Split(eq, if_true, if_false, fall_through);
3306      break;
3307
3308    case Token::INSTANCEOF: {
3309      VisitForAccumulatorValue(expr->right());
3310      SetExpressionPosition(expr);
3311      PopOperand(r3);
3312      __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET);
3313      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
3314      __ CompareRoot(r2, Heap::kTrueValueRootIndex);
3315      Split(eq, if_true, if_false, fall_through);
3316      break;
3317    }
3318
3319    default: {
3320      VisitForAccumulatorValue(expr->right());
3321      SetExpressionPosition(expr);
3322      Condition cond = CompareIC::ComputeCondition(op);
3323      PopOperand(r3);
3324
3325      bool inline_smi_code = ShouldInlineSmiCase(op);
3326      JumpPatchSite patch_site(masm_);
3327      if (inline_smi_code) {
3328        Label slow_case;
3329        __ LoadRR(r4, r3);
3330        __ OrP(r4, r2);
3331        patch_site.EmitJumpIfNotSmi(r4, &slow_case);
3332        __ CmpP(r3, r2);
3333        Split(cond, if_true, if_false, NULL);
3334        __ bind(&slow_case);
3335      }
3336
3337      Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
3338      CallIC(ic, expr->CompareOperationFeedbackId());
3339      patch_site.EmitPatchInfo();
3340      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3341      __ CmpP(r2, Operand::Zero());
3342      Split(cond, if_true, if_false, fall_through);
3343    }
3344  }
3345
3346  // Convert the result of the comparison into one expected for this
3347  // expression's context.
3348  context()->Plug(if_true, if_false);
3349}
3350
3351void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
3352                                              Expression* sub_expr,
3353                                              NilValue nil) {
3354  Label materialize_true, materialize_false;
3355  Label* if_true = NULL;
3356  Label* if_false = NULL;
3357  Label* fall_through = NULL;
3358  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3359                         &if_false, &fall_through);
3360
3361  VisitForAccumulatorValue(sub_expr);
3362  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3363  if (expr->op() == Token::EQ_STRICT) {
3364    Heap::RootListIndex nil_value = nil == kNullValue
3365                                        ? Heap::kNullValueRootIndex
3366                                        : Heap::kUndefinedValueRootIndex;
3367    __ CompareRoot(r2, nil_value);
3368    Split(eq, if_true, if_false, fall_through);
3369  } else {
3370    __ JumpIfSmi(r2, if_false);
3371    __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3372    __ LoadlB(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
3373    __ AndP(r0, r3, Operand(1 << Map::kIsUndetectable));
3374    Split(ne, if_true, if_false, fall_through);
3375  }
3376  context()->Plug(if_true, if_false);
3377}
3378Register FullCodeGenerator::result_register() { return r2; }
3379
3380Register FullCodeGenerator::context_register() { return cp; }
3381
3382void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) {
3383  DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
3384  __ LoadP(value, MemOperand(fp, frame_offset));
3385}
3386
3387void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
3388  DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
3389  __ StoreP(value, MemOperand(fp, frame_offset));
3390}
3391
3392void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
3393  __ LoadP(dst, ContextMemOperand(cp, context_index), r0);
3394}
3395
3396void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
3397  DeclarationScope* closure_scope = scope()->GetClosureScope();
3398  if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) {
3399    // Contexts nested in the native context have a canonical empty function
3400    // as their closure, not the anonymous closure containing the global
3401    // code.
3402    __ LoadNativeContextSlot(Context::CLOSURE_INDEX, ip);
3403  } else if (closure_scope->is_eval_scope()) {
3404    // Contexts created by a call to eval have the same closure as the
3405    // context calling eval, not the anonymous closure containing the eval
3406    // code.  Fetch it from the context.
3407    __ LoadP(ip, ContextMemOperand(cp, Context::CLOSURE_INDEX));
3408  } else {
3409    DCHECK(closure_scope->is_function_scope());
3410    __ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3411  }
3412  PushOperand(ip);
3413}
3414
3415// ----------------------------------------------------------------------------
3416// Non-local control flow support.
3417
3418void FullCodeGenerator::EnterFinallyBlock() {
3419  DCHECK(!result_register().is(r3));
3420  // Store pending message while executing finally block.
3421  ExternalReference pending_message_obj =
3422      ExternalReference::address_of_pending_message_obj(isolate());
3423  __ mov(ip, Operand(pending_message_obj));
3424  __ LoadP(r3, MemOperand(ip));
3425  PushOperand(r3);
3426
3427  ClearPendingMessage();
3428}
3429
3430void FullCodeGenerator::ExitFinallyBlock() {
3431  DCHECK(!result_register().is(r3));
3432  // Restore pending message from stack.
3433  PopOperand(r3);
3434  ExternalReference pending_message_obj =
3435      ExternalReference::address_of_pending_message_obj(isolate());
3436  __ mov(ip, Operand(pending_message_obj));
3437  __ StoreP(r3, MemOperand(ip));
3438}
3439
3440void FullCodeGenerator::ClearPendingMessage() {
3441  DCHECK(!result_register().is(r3));
3442  ExternalReference pending_message_obj =
3443      ExternalReference::address_of_pending_message_obj(isolate());
3444  __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
3445  __ mov(ip, Operand(pending_message_obj));
3446  __ StoreP(r3, MemOperand(ip));
3447}
3448
3449void FullCodeGenerator::DeferredCommands::EmitCommands() {
3450  DCHECK(!result_register().is(r3));
3451  // Restore the accumulator (r2) and token (r3).
3452  __ Pop(r3, result_register());
3453  for (DeferredCommand cmd : commands_) {
3454    Label skip;
3455    __ CmpSmiLiteral(r3, Smi::FromInt(cmd.token), r0);
3456    __ bne(&skip);
3457    switch (cmd.command) {
3458      case kReturn:
3459        codegen_->EmitUnwindAndReturn();
3460        break;
3461      case kThrow:
3462        __ Push(result_register());
3463        __ CallRuntime(Runtime::kReThrow);
3464        break;
3465      case kContinue:
3466        codegen_->EmitContinue(cmd.target);
3467        break;
3468      case kBreak:
3469        codegen_->EmitBreak(cmd.target);
3470        break;
3471    }
3472    __ bind(&skip);
3473  }
3474}
3475
3476#undef __
3477
3478#if V8_TARGET_ARCH_S390X
3479static const FourByteInstr kInterruptBranchInstruction = 0xA7A40011;
3480static const FourByteInstr kOSRBranchInstruction = 0xA7040011;
3481static const int16_t kBackEdgeBranchOffset = 0x11 * 2;
3482#else
3483static const FourByteInstr kInterruptBranchInstruction = 0xA7A4000D;
3484static const FourByteInstr kOSRBranchInstruction = 0xA704000D;
3485static const int16_t kBackEdgeBranchOffset = 0xD * 2;
3486#endif
3487
3488void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc,
3489                            BackEdgeState target_state,
3490                            Code* replacement_code) {
3491  Address call_address = Assembler::target_address_from_return_address(pc);
3492  Address branch_address = call_address - 4;
3493  Isolate* isolate = unoptimized_code->GetIsolate();
3494  CodePatcher patcher(isolate, branch_address, 4);
3495
3496  switch (target_state) {
3497    case INTERRUPT: {
3498      //  <decrement profiling counter>
3499      //         bge     <ok>            ;; patched to GE BRC
3500      //         brasrl    r14, <interrupt stub address>
3501      //  <reset profiling counter>
3502      //  ok-label
3503      patcher.masm()->brc(ge, Operand(kBackEdgeBranchOffset));
3504      break;
3505    }
3506    case ON_STACK_REPLACEMENT:
3507      //  <decrement profiling counter>
3508      //         brc   0x0, <ok>            ;;  patched to NOP BRC
3509      //         brasrl    r14, <interrupt stub address>
3510      //  <reset profiling counter>
3511      //  ok-label ----- pc_after points here
3512      patcher.masm()->brc(CC_NOP, Operand(kBackEdgeBranchOffset));
3513      break;
3514  }
3515
3516  // Replace the stack check address in the mov sequence with the
3517  // entry address of the replacement code.
3518  Assembler::set_target_address_at(isolate, call_address, unoptimized_code,
3519                                   replacement_code->entry());
3520
3521  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
3522      unoptimized_code, call_address, replacement_code);
3523}
3524
3525BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
3526    Isolate* isolate, Code* unoptimized_code, Address pc) {
3527  Address call_address = Assembler::target_address_from_return_address(pc);
3528  Address branch_address = call_address - 4;
3529#ifdef DEBUG
3530  Address interrupt_address =
3531      Assembler::target_address_at(call_address, unoptimized_code);
3532#endif
3533
3534  DCHECK(BRC == Instruction::S390OpcodeValue(branch_address));
3535  // For interrupt, we expect a branch greater than or equal
3536  // i.e. BRC 0xa, +XXXX  (0xA7A4XXXX)
3537  FourByteInstr br_instr = Instruction::InstructionBits(
3538      reinterpret_cast<const byte*>(branch_address));
3539  if (kInterruptBranchInstruction == br_instr) {
3540    DCHECK(interrupt_address == isolate->builtins()->InterruptCheck()->entry());
3541    return INTERRUPT;
3542  }
3543
3544  // Expect BRC to be patched to NOP branch.
3545  // i.e. BRC 0x0, +XXXX (0xA704XXXX)
3546  USE(kOSRBranchInstruction);
3547  DCHECK(kOSRBranchInstruction == br_instr);
3548
3549  DCHECK(interrupt_address ==
3550         isolate->builtins()->OnStackReplacement()->entry());
3551  return ON_STACK_REPLACEMENT;
3552}
3553
3554}  // namespace internal
3555}  // namespace v8
3556#endif  // V8_TARGET_ARCH_S390
3557