codegen-ia32.h revision 756813857a4c2a4d8ad2e805969d5768d3cf43a0
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_IA32_CODEGEN_IA32_H_
29#define V8_IA32_CODEGEN_IA32_H_
30
31#include "ast.h"
32#include "ic-inl.h"
33#include "jump-target-heavy.h"
34
35namespace v8 {
36namespace internal {
37
38// Forward declarations
39class CompilationInfo;
40class DeferredCode;
41class FrameRegisterState;
42class RegisterAllocator;
43class RegisterFile;
44class RuntimeCallHelper;
45
46enum InitState { CONST_INIT, NOT_CONST_INIT };
47enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
48
49
50// -------------------------------------------------------------------------
51// Reference support
52
53// A reference is a C++ stack-allocated object that puts a
54// reference on the virtual frame.  The reference may be consumed
55// by GetValue, TakeValue and SetValue.
56// When the lifetime (scope) of a valid reference ends, it must have
57// been consumed, and be in state UNLOADED.
58class Reference BASE_EMBEDDED {
59 public:
60  // The values of the types is important, see size().
61  enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
62  Reference(CodeGenerator* cgen,
63            Expression* expression,
64            bool persist_after_get = false);
65  ~Reference();
66
67  Expression* expression() const { return expression_; }
68  Type type() const { return type_; }
69  void set_type(Type value) {
70    ASSERT_EQ(ILLEGAL, type_);
71    type_ = value;
72  }
73
74  void set_unloaded() {
75    ASSERT_NE(ILLEGAL, type_);
76    ASSERT_NE(UNLOADED, type_);
77    type_ = UNLOADED;
78  }
79  // The size the reference takes up on the stack.
80  int size() const {
81    return (type_ < SLOT) ? 0 : type_;
82  }
83
84  bool is_illegal() const { return type_ == ILLEGAL; }
85  bool is_slot() const { return type_ == SLOT; }
86  bool is_property() const { return type_ == NAMED || type_ == KEYED; }
87  bool is_unloaded() const { return type_ == UNLOADED; }
88
89  // Return the name.  Only valid for named property references.
90  Handle<String> GetName();
91
92  // Generate code to push the value of the reference on top of the
93  // expression stack.  The reference is expected to be already on top of
94  // the expression stack, and it is consumed by the call unless the
95  // reference is for a compound assignment.
96  // If the reference is not consumed, it is left in place under its value.
97  void GetValue();
98
99  // Like GetValue except that the slot is expected to be written to before
100  // being read from again.  The value of the reference may be invalidated,
101  // causing subsequent attempts to read it to fail.
102  void TakeValue();
103
104  // Generate code to store the value on top of the expression stack in the
105  // reference.  The reference is expected to be immediately below the value
106  // on the expression stack.  The  value is stored in the location specified
107  // by the reference, and is left on top of the stack, after the reference
108  // is popped from beneath it (unloaded).
109  void SetValue(InitState init_state);
110
111 private:
112  CodeGenerator* cgen_;
113  Expression* expression_;
114  Type type_;
115  // Keep the reference on the stack after get, so it can be used by set later.
116  bool persist_after_get_;
117};
118
119
120// -------------------------------------------------------------------------
121// Control destinations.
122
123// A control destination encapsulates a pair of jump targets and a
124// flag indicating which one is the preferred fall-through.  The
125// preferred fall-through must be unbound, the other may be already
126// bound (ie, a backward target).
127//
128// The true and false targets may be jumped to unconditionally or
129// control may split conditionally.  Unconditional jumping and
130// splitting should be emitted in tail position (as the last thing
131// when compiling an expression) because they can cause either label
132// to be bound or the non-fall through to be jumped to leaving an
133// invalid virtual frame.
134//
135// The labels in the control destination can be extracted and
136// manipulated normally without affecting the state of the
137// destination.
138
139class ControlDestination BASE_EMBEDDED {
140 public:
141  ControlDestination(JumpTarget* true_target,
142                     JumpTarget* false_target,
143                     bool true_is_fall_through)
144      : true_target_(true_target),
145        false_target_(false_target),
146        true_is_fall_through_(true_is_fall_through),
147        is_used_(false) {
148    ASSERT(true_is_fall_through ? !true_target->is_bound()
149                                : !false_target->is_bound());
150  }
151
152  // Accessors for the jump targets.  Directly jumping or branching to
153  // or binding the targets will not update the destination's state.
154  JumpTarget* true_target() const { return true_target_; }
155  JumpTarget* false_target() const { return false_target_; }
156
157  // True if the the destination has been jumped to unconditionally or
158  // control has been split to both targets.  This predicate does not
159  // test whether the targets have been extracted and manipulated as
160  // raw jump targets.
161  bool is_used() const { return is_used_; }
162
163  // True if the destination is used and the true target (respectively
164  // false target) was the fall through.  If the target is backward,
165  // "fall through" included jumping unconditionally to it.
166  bool true_was_fall_through() const {
167    return is_used_ && true_is_fall_through_;
168  }
169
170  bool false_was_fall_through() const {
171    return is_used_ && !true_is_fall_through_;
172  }
173
174  // Emit a branch to one of the true or false targets, and bind the
175  // other target.  Because this binds the fall-through target, it
176  // should be emitted in tail position (as the last thing when
177  // compiling an expression).
178  void Split(Condition cc) {
179    ASSERT(!is_used_);
180    if (true_is_fall_through_) {
181      false_target_->Branch(NegateCondition(cc));
182      true_target_->Bind();
183    } else {
184      true_target_->Branch(cc);
185      false_target_->Bind();
186    }
187    is_used_ = true;
188  }
189
190  // Emit an unconditional jump in tail position, to the true target
191  // (if the argument is true) or the false target.  The "jump" will
192  // actually bind the jump target if it is forward, jump to it if it
193  // is backward.
194  void Goto(bool where) {
195    ASSERT(!is_used_);
196    JumpTarget* target = where ? true_target_ : false_target_;
197    if (target->is_bound()) {
198      target->Jump();
199    } else {
200      target->Bind();
201    }
202    is_used_ = true;
203    true_is_fall_through_ = where;
204  }
205
206  // Mark this jump target as used as if Goto had been called, but
207  // without generating a jump or binding a label (the control effect
208  // should have already happened).  This is used when the left
209  // subexpression of the short-circuit boolean operators are
210  // compiled.
211  void Use(bool where) {
212    ASSERT(!is_used_);
213    ASSERT((where ? true_target_ : false_target_)->is_bound());
214    is_used_ = true;
215    true_is_fall_through_ = where;
216  }
217
218  // Swap the true and false targets but keep the same actual label as
219  // the fall through.  This is used when compiling negated
220  // expressions, where we want to swap the targets but preserve the
221  // state.
222  void Invert() {
223    JumpTarget* temp_target = true_target_;
224    true_target_ = false_target_;
225    false_target_ = temp_target;
226
227    true_is_fall_through_ = !true_is_fall_through_;
228  }
229
230 private:
231  // True and false jump targets.
232  JumpTarget* true_target_;
233  JumpTarget* false_target_;
234
235  // Before using the destination: true if the true target is the
236  // preferred fall through, false if the false target is.  After
237  // using the destination: true if the true target was actually used
238  // as the fall through, false if the false target was.
239  bool true_is_fall_through_;
240
241  // True if the Split or Goto functions have been called.
242  bool is_used_;
243};
244
245
246// -------------------------------------------------------------------------
247// Code generation state
248
249// The state is passed down the AST by the code generator (and back up, in
250// the form of the state of the jump target pair).  It is threaded through
251// the call stack.  Constructing a state implicitly pushes it on the owning
252// code generator's stack of states, and destroying one implicitly pops it.
253//
254// The code generator state is only used for expressions, so statements have
255// the initial state.
256
257class CodeGenState BASE_EMBEDDED {
258 public:
259  // Create an initial code generator state.  Destroying the initial state
260  // leaves the code generator with a NULL state.
261  explicit CodeGenState(CodeGenerator* owner);
262
263  // Create a code generator state based on a code generator's current
264  // state.  The new state has its own control destination.
265  CodeGenState(CodeGenerator* owner, ControlDestination* destination);
266
267  // Destroy a code generator state and restore the owning code generator's
268  // previous state.
269  ~CodeGenState();
270
271  // Accessors for the state.
272  ControlDestination* destination() const { return destination_; }
273
274 private:
275  // The owning code generator.
276  CodeGenerator* owner_;
277
278  // A control destination in case the expression has a control-flow
279  // effect.
280  ControlDestination* destination_;
281
282  // The previous state of the owning code generator, restored when
283  // this state is destroyed.
284  CodeGenState* previous_;
285};
286
287
288// -------------------------------------------------------------------------
289// Arguments allocation mode.
290
291enum ArgumentsAllocationMode {
292  NO_ARGUMENTS_ALLOCATION,
293  EAGER_ARGUMENTS_ALLOCATION,
294  LAZY_ARGUMENTS_ALLOCATION
295};
296
297
298// -------------------------------------------------------------------------
299// CodeGenerator
300
301class CodeGenerator: public AstVisitor {
302 public:
303  // Takes a function literal, generates code for it. This function should only
304  // be called by compiler.cc.
305  static Handle<Code> MakeCode(CompilationInfo* info);
306
307  // Printing of AST, etc. as requested by flags.
308  static void MakeCodePrologue(CompilationInfo* info);
309
310  // Allocate and install the code.
311  static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
312                                       Code::Flags flags,
313                                       CompilationInfo* info);
314
315#ifdef ENABLE_LOGGING_AND_PROFILING
316  static bool ShouldGenerateLog(Expression* type);
317#endif
318
319  static bool RecordPositions(MacroAssembler* masm,
320                              int pos,
321                              bool right_here = false);
322
323  // Accessors
324  MacroAssembler* masm() { return masm_; }
325  VirtualFrame* frame() const { return frame_; }
326  inline Handle<Script> script();
327
328  bool has_valid_frame() const { return frame_ != NULL; }
329
330  // Set the virtual frame to be new_frame, with non-frame register
331  // reference counts given by non_frame_registers.  The non-frame
332  // register reference counts of the old frame are returned in
333  // non_frame_registers.
334  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
335
336  void DeleteFrame();
337
338  RegisterAllocator* allocator() const { return allocator_; }
339
340  CodeGenState* state() { return state_; }
341  void set_state(CodeGenState* state) { state_ = state; }
342
343  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
344
345  bool in_spilled_code() const { return in_spilled_code_; }
346  void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
347
348  // If the name is an inline runtime function call return the number of
349  // expected arguments. Otherwise return -1.
350  static int InlineRuntimeCallArgumentsCount(Handle<String> name);
351
352  // Return a position of the element at |index_as_smi| + |additional_offset|
353  // in FixedArray pointer to which is held in |array|.  |index_as_smi| is Smi.
354  static Operand FixedArrayElementOperand(Register array,
355                                          Register index_as_smi,
356                                          int additional_offset = 0) {
357    int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
358    return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
359  }
360
361  static Operand ContextOperand(Register context, int index) {
362    return Operand(context, Context::SlotOffset(index));
363  }
364
365 private:
366  // Construction/Destruction
367  explicit CodeGenerator(MacroAssembler* masm);
368
369  // Accessors
370  inline bool is_eval();
371  inline Scope* scope();
372
373  // Generating deferred code.
374  void ProcessDeferred();
375
376  // State
377  ControlDestination* destination() const { return state_->destination(); }
378
379  // Control of side-effect-free int32 expression compilation.
380  bool in_safe_int32_mode() { return in_safe_int32_mode_; }
381  void set_in_safe_int32_mode(bool value) { in_safe_int32_mode_ = value; }
382  bool safe_int32_mode_enabled() {
383    return FLAG_safe_int32_compiler && safe_int32_mode_enabled_;
384  }
385  void set_safe_int32_mode_enabled(bool value) {
386    safe_int32_mode_enabled_ = value;
387  }
388  void set_unsafe_bailout(BreakTarget* unsafe_bailout) {
389    unsafe_bailout_ = unsafe_bailout;
390  }
391
392  // Take the Result that is an untagged int32, and convert it to a tagged
393  // Smi or HeapNumber.  Remove the untagged_int32 flag from the result.
394  void ConvertInt32ResultToNumber(Result* value);
395  void ConvertInt32ResultToSmi(Result* value);
396
397  // Track loop nesting level.
398  int loop_nesting() const { return loop_nesting_; }
399  void IncrementLoopNesting() { loop_nesting_++; }
400  void DecrementLoopNesting() { loop_nesting_--; }
401
402  // Node visitors.
403  void VisitStatements(ZoneList<Statement*>* statements);
404
405#define DEF_VISIT(type) \
406  void Visit##type(type* node);
407  AST_NODE_LIST(DEF_VISIT)
408#undef DEF_VISIT
409
410  // Visit a statement and then spill the virtual frame if control flow can
411  // reach the end of the statement (ie, it does not exit via break,
412  // continue, return, or throw).  This function is used temporarily while
413  // the code generator is being transformed.
414  void VisitAndSpill(Statement* statement);
415
416  // Visit a list of statements and then spill the virtual frame if control
417  // flow can reach the end of the list.
418  void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
419
420  // Main code generation function
421  void Generate(CompilationInfo* info);
422
423  // Generate the return sequence code.  Should be called no more than
424  // once per compiled function, immediately after binding the return
425  // target (which can not be done more than once).
426  void GenerateReturnSequence(Result* return_value);
427
428  // Returns the arguments allocation mode.
429  ArgumentsAllocationMode ArgumentsMode();
430
431  // Store the arguments object and allocate it if necessary.
432  Result StoreArgumentsObject(bool initial);
433
434  // The following are used by class Reference.
435  void LoadReference(Reference* ref);
436
437  Operand SlotOperand(Slot* slot, Register tmp);
438
439  Operand ContextSlotOperandCheckExtensions(Slot* slot,
440                                            Result tmp,
441                                            JumpTarget* slow);
442
443  // Expressions
444  static Operand GlobalObject() {
445    return ContextOperand(esi, Context::GLOBAL_INDEX);
446  }
447
448  void LoadCondition(Expression* expr,
449                     ControlDestination* destination,
450                     bool force_control);
451  void Load(Expression* expr);
452  void LoadGlobal();
453  void LoadGlobalReceiver();
454
455  // Generate code to push the value of an expression on top of the frame
456  // and then spill the frame fully to memory.  This function is used
457  // temporarily while the code generator is being transformed.
458  void LoadAndSpill(Expression* expression);
459
460  // Evaluate an expression and place its value on top of the frame,
461  // using, or not using, the side-effect-free expression compiler.
462  void LoadInSafeInt32Mode(Expression* expr, BreakTarget* unsafe_bailout);
463  void LoadWithSafeInt32ModeDisabled(Expression* expr);
464
465  // Read a value from a slot and leave it on top of the expression stack.
466  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
467  void LoadFromSlotCheckForArguments(Slot* slot, TypeofState typeof_state);
468  Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
469                                           TypeofState typeof_state,
470                                           JumpTarget* slow);
471
472  // Support for loading from local/global variables and arguments
473  // whose location is known unless they are shadowed by
474  // eval-introduced bindings. Generates no code for unsupported slot
475  // types and therefore expects to fall through to the slow jump target.
476  void EmitDynamicLoadFromSlotFastCase(Slot* slot,
477                                       TypeofState typeof_state,
478                                       Result* result,
479                                       JumpTarget* slow,
480                                       JumpTarget* done);
481
482  // Store the value on top of the expression stack into a slot, leaving the
483  // value in place.
484  void StoreToSlot(Slot* slot, InitState init_state);
485
486  // Support for compiling assignment expressions.
487  void EmitSlotAssignment(Assignment* node);
488  void EmitNamedPropertyAssignment(Assignment* node);
489  void EmitKeyedPropertyAssignment(Assignment* node);
490
491  // Receiver is passed on the frame and consumed.
492  Result EmitNamedLoad(Handle<String> name, bool is_contextual);
493
494  // If the store is contextual, value is passed on the frame and consumed.
495  // Otherwise, receiver and value are passed on the frame and consumed.
496  Result EmitNamedStore(Handle<String> name, bool is_contextual);
497
498  // Receiver and key are passed on the frame and consumed.
499  Result EmitKeyedLoad();
500
501  // Receiver, key, and value are passed on the frame and consumed.
502  Result EmitKeyedStore(StaticType* key_type);
503
504  // Special code for typeof expressions: Unfortunately, we must
505  // be careful when loading the expression in 'typeof'
506  // expressions. We are not allowed to throw reference errors for
507  // non-existing properties of the global object, so we must make it
508  // look like an explicit property access, instead of an access
509  // through the context chain.
510  void LoadTypeofExpression(Expression* x);
511
512  // Translate the value on top of the frame into control flow to the
513  // control destination.
514  void ToBoolean(ControlDestination* destination);
515
516  // Generate code that computes a shortcutting logical operation.
517  void GenerateLogicalBooleanOperation(BinaryOperation* node);
518
519  void GenericBinaryOperation(BinaryOperation* expr,
520                              OverwriteMode overwrite_mode);
521
522  // Emits code sequence that jumps to a JumpTarget if the inputs
523  // are both smis.  Cannot be in MacroAssembler because it takes
524  // advantage of TypeInfo to skip unneeded checks.
525  // Allocates a temporary register, possibly spilling from the frame,
526  // if it needs to check both left and right.
527  void JumpIfBothSmiUsingTypeInfo(Result* left,
528                                  Result* right,
529                                  JumpTarget* both_smi);
530
531  // Emits code sequence that jumps to deferred code if the inputs
532  // are not both smis.  Cannot be in MacroAssembler because it takes
533  // a deferred code object.
534  void JumpIfNotBothSmiUsingTypeInfo(Register left,
535                                     Register right,
536                                     Register scratch,
537                                     TypeInfo left_info,
538                                     TypeInfo right_info,
539                                     DeferredCode* deferred);
540
541  // Emits code sequence that jumps to the label if the inputs
542  // are not both smis.
543  void JumpIfNotBothSmiUsingTypeInfo(Register left,
544                                     Register right,
545                                     Register scratch,
546                                     TypeInfo left_info,
547                                     TypeInfo right_info,
548                                     Label* on_non_smi);
549
550  // If possible, combine two constant smi values using op to produce
551  // a smi result, and push it on the virtual frame, all at compile time.
552  // Returns true if it succeeds.  Otherwise it has no effect.
553  bool FoldConstantSmis(Token::Value op, int left, int right);
554
555  // Emit code to perform a binary operation on a constant
556  // smi and a likely smi.  Consumes the Result operand.
557  Result ConstantSmiBinaryOperation(BinaryOperation* expr,
558                                    Result* operand,
559                                    Handle<Object> constant_operand,
560                                    bool reversed,
561                                    OverwriteMode overwrite_mode);
562
563  // Emit code to perform a binary operation on two likely smis.
564  // The code to handle smi arguments is produced inline.
565  // Consumes the Results left and right.
566  Result LikelySmiBinaryOperation(BinaryOperation* expr,
567                                  Result* left,
568                                  Result* right,
569                                  OverwriteMode overwrite_mode);
570
571
572  // Emit code to perform a binary operation on two untagged int32 values.
573  // The values are on top of the frame, and the result is pushed on the frame.
574  void Int32BinaryOperation(BinaryOperation* node);
575
576
577  void Comparison(AstNode* node,
578                  Condition cc,
579                  bool strict,
580                  ControlDestination* destination);
581
582  // If at least one of the sides is a constant smi, generate optimized code.
583  void ConstantSmiComparison(Condition cc,
584                             bool strict,
585                             ControlDestination* destination,
586                             Result* left_side,
587                             Result* right_side,
588                             bool left_side_constant_smi,
589                             bool right_side_constant_smi,
590                             bool is_loop_condition);
591
592  void GenerateInlineNumberComparison(Result* left_side,
593                                      Result* right_side,
594                                      Condition cc,
595                                      ControlDestination* dest);
596
597  // To prevent long attacker-controlled byte sequences, integer constants
598  // from the JavaScript source are loaded in two parts if they are larger
599  // than 17 bits.
600  static const int kMaxSmiInlinedBits = 17;
601  bool IsUnsafeSmi(Handle<Object> value);
602  // Load an integer constant x into a register target or into the stack using
603  // at most 16 bits of user-controlled data per assembly operation.
604  void MoveUnsafeSmi(Register target, Handle<Object> value);
605  void StoreUnsafeSmiToLocal(int offset, Handle<Object> value);
606  void PushUnsafeSmi(Handle<Object> value);
607
608  void CallWithArguments(ZoneList<Expression*>* arguments,
609                         CallFunctionFlags flags,
610                         int position);
611
612  // An optimized implementation of expressions of the form
613  // x.apply(y, arguments).  We call x the applicand and y the receiver.
614  // The optimization avoids allocating an arguments object if possible.
615  void CallApplyLazy(Expression* applicand,
616                     Expression* receiver,
617                     VariableProxy* arguments,
618                     int position);
619
620  void CheckStack();
621
622  struct InlineRuntimeLUT {
623    void (CodeGenerator::*method)(ZoneList<Expression*>*);
624    const char* name;
625    int nargs;
626  };
627
628  static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
629  bool CheckForInlineRuntimeCall(CallRuntime* node);
630  static bool PatchInlineRuntimeEntry(Handle<String> name,
631                                      const InlineRuntimeLUT& new_entry,
632                                      InlineRuntimeLUT* old_entry);
633
634  void ProcessDeclarations(ZoneList<Declaration*>* declarations);
635
636  static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
637
638  static Handle<Code> ComputeKeyedCallInitialize(int argc, InLoopFlag in_loop);
639
640  // Declare global variables and functions in the given array of
641  // name/value pairs.
642  void DeclareGlobals(Handle<FixedArray> pairs);
643
644  // Instantiate the function based on the shared function info.
645  Result InstantiateFunction(Handle<SharedFunctionInfo> function_info);
646
647  // Support for types.
648  void GenerateIsSmi(ZoneList<Expression*>* args);
649  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
650  void GenerateIsArray(ZoneList<Expression*>* args);
651  void GenerateIsRegExp(ZoneList<Expression*>* args);
652  void GenerateIsObject(ZoneList<Expression*>* args);
653  void GenerateIsSpecObject(ZoneList<Expression*>* args);
654  void GenerateIsFunction(ZoneList<Expression*>* args);
655  void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
656  void GenerateIsStringWrapperSafeForDefaultValueOf(
657      ZoneList<Expression*>* args);
658
659  // Support for construct call checks.
660  void GenerateIsConstructCall(ZoneList<Expression*>* args);
661
662  // Support for arguments.length and arguments[?].
663  void GenerateArgumentsLength(ZoneList<Expression*>* args);
664  void GenerateArguments(ZoneList<Expression*>* args);
665
666  // Support for accessing the class and value fields of an object.
667  void GenerateClassOf(ZoneList<Expression*>* args);
668  void GenerateValueOf(ZoneList<Expression*>* args);
669  void GenerateSetValueOf(ZoneList<Expression*>* args);
670
671  // Fast support for charCodeAt(n).
672  void GenerateStringCharCodeAt(ZoneList<Expression*>* args);
673
674  // Fast support for string.charAt(n) and string[n].
675  void GenerateStringCharFromCode(ZoneList<Expression*>* args);
676
677  // Fast support for string.charAt(n) and string[n].
678  void GenerateStringCharAt(ZoneList<Expression*>* args);
679
680  // Fast support for object equality testing.
681  void GenerateObjectEquals(ZoneList<Expression*>* args);
682
683  void GenerateLog(ZoneList<Expression*>* args);
684
685  void GenerateGetFramePointer(ZoneList<Expression*>* args);
686
687  // Fast support for Math.random().
688  void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
689
690  // Fast support for StringAdd.
691  void GenerateStringAdd(ZoneList<Expression*>* args);
692
693  // Fast support for SubString.
694  void GenerateSubString(ZoneList<Expression*>* args);
695
696  // Fast support for StringCompare.
697  void GenerateStringCompare(ZoneList<Expression*>* args);
698
699  // Support for direct calls from JavaScript to native RegExp code.
700  void GenerateRegExpExec(ZoneList<Expression*>* args);
701
702  void GenerateRegExpConstructResult(ZoneList<Expression*>* args);
703
704  // Support for fast native caches.
705  void GenerateGetFromCache(ZoneList<Expression*>* args);
706
707  // Fast support for number to string.
708  void GenerateNumberToString(ZoneList<Expression*>* args);
709
710  // Fast swapping of elements. Takes three expressions, the object and two
711  // indices. This should only be used if the indices are known to be
712  // non-negative and within bounds of the elements array at the call site.
713  void GenerateSwapElements(ZoneList<Expression*>* args);
714
715  // Fast call for custom callbacks.
716  void GenerateCallFunction(ZoneList<Expression*>* args);
717
718  // Fast call to math functions.
719  void GenerateMathPow(ZoneList<Expression*>* args);
720  void GenerateMathSin(ZoneList<Expression*>* args);
721  void GenerateMathCos(ZoneList<Expression*>* args);
722  void GenerateMathSqrt(ZoneList<Expression*>* args);
723
724  // Check whether two RegExps are equivalent
725  void GenerateIsRegExpEquivalent(ZoneList<Expression*>* args);
726
727  // Simple condition analysis.
728  enum ConditionAnalysis {
729    ALWAYS_TRUE,
730    ALWAYS_FALSE,
731    DONT_KNOW
732  };
733  ConditionAnalysis AnalyzeCondition(Expression* cond);
734
735  // Methods used to indicate which source code is generated for. Source
736  // positions are collected by the assembler and emitted with the relocation
737  // information.
738  void CodeForFunctionPosition(FunctionLiteral* fun);
739  void CodeForReturnPosition(FunctionLiteral* fun);
740  void CodeForStatementPosition(Statement* stmt);
741  void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
742  void CodeForSourcePosition(int pos);
743
744  void SetTypeForStackSlot(Slot* slot, TypeInfo info);
745
746#ifdef DEBUG
747  // True if the registers are valid for entry to a block.  There should
748  // be no frame-external references to (non-reserved) registers.
749  bool HasValidEntryRegisters();
750#endif
751
752  ZoneList<DeferredCode*> deferred_;
753
754  // Assembler
755  MacroAssembler* masm_;  // to generate code
756
757  CompilationInfo* info_;
758
759  // Code generation state
760  VirtualFrame* frame_;
761  RegisterAllocator* allocator_;
762  CodeGenState* state_;
763  int loop_nesting_;
764  bool in_safe_int32_mode_;
765  bool safe_int32_mode_enabled_;
766
767  // Jump targets.
768  // The target of the return from the function.
769  BreakTarget function_return_;
770  // The target of the bailout from a side-effect-free int32 subexpression.
771  BreakTarget* unsafe_bailout_;
772
773  // True if the function return is shadowed (ie, jumping to the target
774  // function_return_ does not jump to the true function return, but rather
775  // to some unlinking code).
776  bool function_return_is_shadowed_;
777
778  // True when we are in code that expects the virtual frame to be fully
779  // spilled.  Some virtual frame function are disabled in DEBUG builds when
780  // called from spilled code, because they do not leave the virtual frame
781  // in a spilled state.
782  bool in_spilled_code_;
783
784  static InlineRuntimeLUT kInlineRuntimeLUT[];
785
786  friend class VirtualFrame;
787  friend class JumpTarget;
788  friend class Reference;
789  friend class Result;
790  friend class FastCodeGenerator;
791  friend class FullCodeGenerator;
792  friend class FullCodeGenSyntaxChecker;
793
794  friend class CodeGeneratorPatcher;  // Used in test-log-stack-tracer.cc
795
796  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
797};
798
799
800// Compute a transcendental math function natively, or call the
801// TranscendentalCache runtime function.
802class TranscendentalCacheStub: public CodeStub {
803 public:
804  explicit TranscendentalCacheStub(TranscendentalCache::Type type)
805      : type_(type) {}
806  void Generate(MacroAssembler* masm);
807 private:
808  TranscendentalCache::Type type_;
809  Major MajorKey() { return TranscendentalCache; }
810  int MinorKey() { return type_; }
811  Runtime::FunctionId RuntimeFunction();
812  void GenerateOperation(MacroAssembler* masm);
813};
814
815
816class ToBooleanStub: public CodeStub {
817 public:
818  ToBooleanStub() { }
819
820  void Generate(MacroAssembler* masm);
821
822 private:
823  Major MajorKey() { return ToBoolean; }
824  int MinorKey() { return 0; }
825};
826
827
828// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
829enum GenericBinaryFlags {
830  NO_GENERIC_BINARY_FLAGS = 0,
831  NO_SMI_CODE_IN_STUB = 1 << 0  // Omit smi code in stub.
832};
833
834
835class GenericBinaryOpStub: public CodeStub {
836 public:
837  GenericBinaryOpStub(Token::Value op,
838                      OverwriteMode mode,
839                      GenericBinaryFlags flags,
840                      TypeInfo operands_type)
841      : op_(op),
842        mode_(mode),
843        flags_(flags),
844        args_in_registers_(false),
845        args_reversed_(false),
846        static_operands_type_(operands_type),
847        runtime_operands_type_(BinaryOpIC::DEFAULT),
848        name_(NULL) {
849    if (static_operands_type_.IsSmi()) {
850      mode_ = NO_OVERWRITE;
851    }
852    use_sse3_ = CpuFeatures::IsSupported(SSE3);
853    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
854  }
855
856  GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo runtime_operands_type)
857      : op_(OpBits::decode(key)),
858        mode_(ModeBits::decode(key)),
859        flags_(FlagBits::decode(key)),
860        args_in_registers_(ArgsInRegistersBits::decode(key)),
861        args_reversed_(ArgsReversedBits::decode(key)),
862        use_sse3_(SSE3Bits::decode(key)),
863        static_operands_type_(TypeInfo::ExpandedRepresentation(
864            StaticTypeInfoBits::decode(key))),
865        runtime_operands_type_(runtime_operands_type),
866        name_(NULL) {
867  }
868
869  // Generate code to call the stub with the supplied arguments. This will add
870  // code at the call site to prepare arguments either in registers or on the
871  // stack together with the actual call.
872  void GenerateCall(MacroAssembler* masm, Register left, Register right);
873  void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
874  void GenerateCall(MacroAssembler* masm, Smi* left, Register right);
875
876  Result GenerateCall(MacroAssembler* masm,
877                      VirtualFrame* frame,
878                      Result* left,
879                      Result* right);
880
881 private:
882  Token::Value op_;
883  OverwriteMode mode_;
884  GenericBinaryFlags flags_;
885  bool args_in_registers_;  // Arguments passed in registers not on the stack.
886  bool args_reversed_;  // Left and right argument are swapped.
887  bool use_sse3_;
888
889  // Number type information of operands, determined by code generator.
890  TypeInfo static_operands_type_;
891
892  // Operand type information determined at runtime.
893  BinaryOpIC::TypeInfo runtime_operands_type_;
894
895  char* name_;
896
897  const char* GetName();
898
899#ifdef DEBUG
900  void Print() {
901    PrintF("GenericBinaryOpStub %d (op %s), "
902           "(mode %d, flags %d, registers %d, reversed %d, type_info %s)\n",
903           MinorKey(),
904           Token::String(op_),
905           static_cast<int>(mode_),
906           static_cast<int>(flags_),
907           static_cast<int>(args_in_registers_),
908           static_cast<int>(args_reversed_),
909           static_operands_type_.ToString());
910  }
911#endif
912
913  // Minor key encoding in 18 bits RRNNNFRASOOOOOOOMM.
914  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
915  class OpBits: public BitField<Token::Value, 2, 7> {};
916  class SSE3Bits: public BitField<bool, 9, 1> {};
917  class ArgsInRegistersBits: public BitField<bool, 10, 1> {};
918  class ArgsReversedBits: public BitField<bool, 11, 1> {};
919  class FlagBits: public BitField<GenericBinaryFlags, 12, 1> {};
920  class StaticTypeInfoBits: public BitField<int, 13, 3> {};
921  class RuntimeTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 16, 2> {};
922
923  Major MajorKey() { return GenericBinaryOp; }
924  int MinorKey() {
925    // Encode the parameters in a unique 18 bit value.
926    return OpBits::encode(op_)
927           | ModeBits::encode(mode_)
928           | FlagBits::encode(flags_)
929           | SSE3Bits::encode(use_sse3_)
930           | ArgsInRegistersBits::encode(args_in_registers_)
931           | ArgsReversedBits::encode(args_reversed_)
932           | StaticTypeInfoBits::encode(
933                 static_operands_type_.ThreeBitRepresentation())
934           | RuntimeTypeInfoBits::encode(runtime_operands_type_);
935  }
936
937  void Generate(MacroAssembler* masm);
938  void GenerateSmiCode(MacroAssembler* masm, Label* slow);
939  void GenerateLoadArguments(MacroAssembler* masm);
940  void GenerateReturn(MacroAssembler* masm);
941  void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
942  void GenerateRegisterArgsPush(MacroAssembler* masm);
943  void GenerateTypeTransition(MacroAssembler* masm);
944
945  bool ArgsInRegistersSupported() {
946    return op_ == Token::ADD || op_ == Token::SUB
947        || op_ == Token::MUL || op_ == Token::DIV;
948  }
949  bool IsOperationCommutative() {
950    return (op_ == Token::ADD) || (op_ == Token::MUL);
951  }
952
953  void SetArgsInRegisters() { args_in_registers_ = true; }
954  void SetArgsReversed() { args_reversed_ = true; }
955  bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
956  bool HasArgsInRegisters() { return args_in_registers_; }
957  bool HasArgsReversed() { return args_reversed_; }
958
959  bool ShouldGenerateSmiCode() {
960    return HasSmiCodeInStub() &&
961        runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
962        runtime_operands_type_ != BinaryOpIC::STRINGS;
963  }
964
965  bool ShouldGenerateFPCode() {
966    return runtime_operands_type_ != BinaryOpIC::STRINGS;
967  }
968
969  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
970
971  virtual InlineCacheState GetICState() {
972    return BinaryOpIC::ToState(runtime_operands_type_);
973  }
974};
975
976
977class StringHelper : public AllStatic {
978 public:
979  // Generate code for copying characters using a simple loop. This should only
980  // be used in places where the number of characters is small and the
981  // additional setup and checking in GenerateCopyCharactersREP adds too much
982  // overhead. Copying of overlapping regions is not supported.
983  static void GenerateCopyCharacters(MacroAssembler* masm,
984                                     Register dest,
985                                     Register src,
986                                     Register count,
987                                     Register scratch,
988                                     bool ascii);
989
990  // Generate code for copying characters using the rep movs instruction.
991  // Copies ecx characters from esi to edi. Copying of overlapping regions is
992  // not supported.
993  static void GenerateCopyCharactersREP(MacroAssembler* masm,
994                                        Register dest,     // Must be edi.
995                                        Register src,      // Must be esi.
996                                        Register count,    // Must be ecx.
997                                        Register scratch,  // Neither of above.
998                                        bool ascii);
999
1000  // Probe the symbol table for a two character string. If the string is
1001  // not found by probing a jump to the label not_found is performed. This jump
1002  // does not guarantee that the string is not in the symbol table. If the
1003  // string is found the code falls through with the string in register eax.
1004  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
1005                                                   Register c1,
1006                                                   Register c2,
1007                                                   Register scratch1,
1008                                                   Register scratch2,
1009                                                   Register scratch3,
1010                                                   Label* not_found);
1011
1012  // Generate string hash.
1013  static void GenerateHashInit(MacroAssembler* masm,
1014                               Register hash,
1015                               Register character,
1016                               Register scratch);
1017  static void GenerateHashAddCharacter(MacroAssembler* masm,
1018                                       Register hash,
1019                                       Register character,
1020                                       Register scratch);
1021  static void GenerateHashGetHash(MacroAssembler* masm,
1022                                  Register hash,
1023                                  Register scratch);
1024
1025 private:
1026  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
1027};
1028
1029
1030// Flag that indicates how to generate code for the stub StringAddStub.
1031enum StringAddFlags {
1032  NO_STRING_ADD_FLAGS = 0,
1033  NO_STRING_CHECK_IN_STUB = 1 << 0  // Omit string check in stub.
1034};
1035
1036
1037class StringAddStub: public CodeStub {
1038 public:
1039  explicit StringAddStub(StringAddFlags flags) {
1040    string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
1041  }
1042
1043 private:
1044  Major MajorKey() { return StringAdd; }
1045  int MinorKey() { return string_check_ ? 0 : 1; }
1046
1047  void Generate(MacroAssembler* masm);
1048
1049  // Should the stub check whether arguments are strings?
1050  bool string_check_;
1051};
1052
1053
1054class SubStringStub: public CodeStub {
1055 public:
1056  SubStringStub() {}
1057
1058 private:
1059  Major MajorKey() { return SubString; }
1060  int MinorKey() { return 0; }
1061
1062  void Generate(MacroAssembler* masm);
1063};
1064
1065
1066class StringCompareStub: public CodeStub {
1067 public:
1068  explicit StringCompareStub() {
1069  }
1070
1071  // Compare two flat ascii strings and returns result in eax after popping two
1072  // arguments from the stack.
1073  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
1074                                              Register left,
1075                                              Register right,
1076                                              Register scratch1,
1077                                              Register scratch2,
1078                                              Register scratch3);
1079
1080 private:
1081  Major MajorKey() { return StringCompare; }
1082  int MinorKey() { return 0; }
1083
1084  void Generate(MacroAssembler* masm);
1085};
1086
1087
1088class NumberToStringStub: public CodeStub {
1089 public:
1090  NumberToStringStub() { }
1091
1092  // Generate code to do a lookup in the number string cache. If the number in
1093  // the register object is found in the cache the generated code falls through
1094  // with the result in the result register. The object and the result register
1095  // can be the same. If the number is not found in the cache the code jumps to
1096  // the label not_found with only the content of register object unchanged.
1097  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
1098                                              Register object,
1099                                              Register result,
1100                                              Register scratch1,
1101                                              Register scratch2,
1102                                              bool object_is_smi,
1103                                              Label* not_found);
1104
1105 private:
1106  Major MajorKey() { return NumberToString; }
1107  int MinorKey() { return 0; }
1108
1109  void Generate(MacroAssembler* masm);
1110
1111  const char* GetName() { return "NumberToStringStub"; }
1112
1113#ifdef DEBUG
1114  void Print() {
1115    PrintF("NumberToStringStub\n");
1116  }
1117#endif
1118};
1119
1120
1121} }  // namespace v8::internal
1122
1123#endif  // V8_IA32_CODEGEN_IA32_H_
1124