assembler-mips-inl.h revision 958fae7ec3f466955f8e5b50fa5b8d38b9e91675
1
2// Copyright (c) 1994-2006 Sun Microsystems Inc.
3// All Rights Reserved.
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// - Redistributions of source code must retain the above copyright notice,
10// this list of conditions and the following disclaimer.
11//
12// - Redistribution in binary form must reproduce the above copyright
13// notice, this list of conditions and the following disclaimer in the
14// documentation and/or other materials provided with the distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32// The original source code covered by the above license above has been
33// modified significantly by Google Inc.
34// Copyright 2012 the V8 project authors. All rights reserved.
35
36
37#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38#define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39
40#include "src/mips/assembler-mips.h"
41
42#include "src/assembler.h"
43#include "src/debug.h"
44
45
46namespace v8 {
47namespace internal {
48
49
50bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51
52
53// -----------------------------------------------------------------------------
54// Operand and MemOperand.
55
56Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
57  rm_ = no_reg;
58  imm32_ = immediate;
59  rmode_ = rmode;
60}
61
62
63Operand::Operand(const ExternalReference& f)  {
64  rm_ = no_reg;
65  imm32_ = reinterpret_cast<int32_t>(f.address());
66  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67}
68
69
70Operand::Operand(Smi* value) {
71  rm_ = no_reg;
72  imm32_ =  reinterpret_cast<intptr_t>(value);
73  rmode_ = RelocInfo::NONE32;
74}
75
76
77Operand::Operand(Register rm) {
78  rm_ = rm;
79}
80
81
82bool Operand::is_reg() const {
83  return rm_.is_valid();
84}
85
86
87int Register::NumAllocatableRegisters() {
88    return kMaxNumAllocatableRegisters;
89}
90
91
92int DoubleRegister::NumRegisters() {
93    return FPURegister::kMaxNumRegisters;
94}
95
96
97int DoubleRegister::NumAllocatableRegisters() {
98    return FPURegister::kMaxNumAllocatableRegisters;
99}
100
101
102int DoubleRegister::NumAllocatableAliasedRegisters() {
103  return NumAllocatableRegisters();
104}
105
106
107int FPURegister::ToAllocationIndex(FPURegister reg) {
108  DCHECK(reg.code() % 2 == 0);
109  DCHECK(reg.code() / 2 < kMaxNumAllocatableRegisters);
110  DCHECK(reg.is_valid());
111  DCHECK(!reg.is(kDoubleRegZero));
112  DCHECK(!reg.is(kLithiumScratchDouble));
113  return (reg.code() / 2);
114}
115
116
117// -----------------------------------------------------------------------------
118// RelocInfo.
119
120void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
121  if (IsCodeTarget(rmode_)) {
122    uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask;
123    uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask;
124
125    if (scope1 != scope2) {
126      Assembler::JumpLabelToJumpRegister(pc_);
127    }
128  }
129  if (IsInternalReference(rmode_)) {
130    // Absolute code pointer inside code object moves with the code object.
131    byte* p = reinterpret_cast<byte*>(pc_);
132    int count = Assembler::RelocateInternalReference(p, delta);
133    CpuFeatures::FlushICache(p, count * sizeof(uint32_t));
134  }
135}
136
137
138Address RelocInfo::target_address() {
139  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
140  return Assembler::target_address_at(pc_, host_);
141}
142
143
144Address RelocInfo::target_address_address() {
145  DCHECK(IsCodeTarget(rmode_) ||
146         IsRuntimeEntry(rmode_) ||
147         rmode_ == EMBEDDED_OBJECT ||
148         rmode_ == EXTERNAL_REFERENCE);
149  // Read the address of the word containing the target_address in an
150  // instruction stream.
151  // The only architecture-independent user of this function is the serializer.
152  // The serializer uses it to find out how many raw bytes of instruction to
153  // output before the next target.
154  // For an instruction like LUI/ORI where the target bits are mixed into the
155  // instruction bits, the size of the target will be zero, indicating that the
156  // serializer should not step forward in memory after a target is resolved
157  // and written. In this case the target_address_address function should
158  // return the end of the instructions to be patched, allowing the
159  // deserializer to deserialize the instructions as raw bytes and put them in
160  // place, ready to be patched with the target. After jump optimization,
161  // that is the address of the instruction that follows J/JAL/JR/JALR
162  // instruction.
163  return reinterpret_cast<Address>(
164    pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
165}
166
167
168Address RelocInfo::constant_pool_entry_address() {
169  UNREACHABLE();
170  return NULL;
171}
172
173
174int RelocInfo::target_address_size() {
175  return Assembler::kSpecialTargetSize;
176}
177
178
179void RelocInfo::set_target_address(Address target,
180                                   WriteBarrierMode write_barrier_mode,
181                                   ICacheFlushMode icache_flush_mode) {
182  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
183  Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
184  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
185      host() != NULL && IsCodeTarget(rmode_)) {
186    Object* target_code = Code::GetCodeFromTargetAddress(target);
187    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
188        host(), this, HeapObject::cast(target_code));
189  }
190}
191
192
193Address Assembler::target_address_from_return_address(Address pc) {
194  return pc - kCallTargetAddressOffset;
195}
196
197
198Address Assembler::break_address_from_return_address(Address pc) {
199  return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
200}
201
202
203Object* RelocInfo::target_object() {
204  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
205  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
206}
207
208
209Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
210  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
211  return Handle<Object>(reinterpret_cast<Object**>(
212      Assembler::target_address_at(pc_, host_)));
213}
214
215
216void RelocInfo::set_target_object(Object* target,
217                                  WriteBarrierMode write_barrier_mode,
218                                  ICacheFlushMode icache_flush_mode) {
219  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
220  Assembler::set_target_address_at(pc_, host_,
221                                   reinterpret_cast<Address>(target),
222                                   icache_flush_mode);
223  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
224      host() != NULL &&
225      target->IsHeapObject()) {
226    host()->GetHeap()->incremental_marking()->RecordWrite(
227        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
228  }
229}
230
231
232Address RelocInfo::target_reference() {
233  DCHECK(rmode_ == EXTERNAL_REFERENCE);
234  return Assembler::target_address_at(pc_, host_);
235}
236
237
238Address RelocInfo::target_runtime_entry(Assembler* origin) {
239  DCHECK(IsRuntimeEntry(rmode_));
240  return target_address();
241}
242
243
244void RelocInfo::set_target_runtime_entry(Address target,
245                                         WriteBarrierMode write_barrier_mode,
246                                         ICacheFlushMode icache_flush_mode) {
247  DCHECK(IsRuntimeEntry(rmode_));
248  if (target_address() != target)
249    set_target_address(target, write_barrier_mode, icache_flush_mode);
250}
251
252
253Handle<Cell> RelocInfo::target_cell_handle() {
254  DCHECK(rmode_ == RelocInfo::CELL);
255  Address address = Memory::Address_at(pc_);
256  return Handle<Cell>(reinterpret_cast<Cell**>(address));
257}
258
259
260Cell* RelocInfo::target_cell() {
261  DCHECK(rmode_ == RelocInfo::CELL);
262  return Cell::FromValueAddress(Memory::Address_at(pc_));
263}
264
265
266void RelocInfo::set_target_cell(Cell* cell,
267                                WriteBarrierMode write_barrier_mode,
268                                ICacheFlushMode icache_flush_mode) {
269  DCHECK(rmode_ == RelocInfo::CELL);
270  Address address = cell->address() + Cell::kValueOffset;
271  Memory::Address_at(pc_) = address;
272  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
273    // TODO(1550) We are passing NULL as a slot because cell can never be on
274    // evacuation candidate.
275    host()->GetHeap()->incremental_marking()->RecordWrite(
276        host(), NULL, cell);
277  }
278}
279
280
281static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
282
283
284Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
285  UNREACHABLE();  // This should never be reached on Arm.
286  return Handle<Object>();
287}
288
289
290Code* RelocInfo::code_age_stub() {
291  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
292  return Code::GetCodeFromTargetAddress(
293      Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
294}
295
296
297void RelocInfo::set_code_age_stub(Code* stub,
298                                  ICacheFlushMode icache_flush_mode) {
299  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
300  Assembler::set_target_address_at(pc_ + Assembler::kInstrSize,
301                                   host_,
302                                   stub->instruction_start());
303}
304
305
306Address RelocInfo::call_address() {
307  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
308         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
309  // The pc_ offset of 0 assumes mips patched return sequence per
310  // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
311  // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
312  return Assembler::target_address_at(pc_, host_);
313}
314
315
316void RelocInfo::set_call_address(Address target) {
317  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
318         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
319  // The pc_ offset of 0 assumes mips patched return sequence per
320  // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
321  // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
322  Assembler::set_target_address_at(pc_, host_, target);
323  if (host() != NULL) {
324    Object* target_code = Code::GetCodeFromTargetAddress(target);
325    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
326        host(), this, HeapObject::cast(target_code));
327  }
328}
329
330
331Object* RelocInfo::call_object() {
332  return *call_object_address();
333}
334
335
336Object** RelocInfo::call_object_address() {
337  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
338         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
339  return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
340}
341
342
343void RelocInfo::set_call_object(Object* target) {
344  *call_object_address() = target;
345}
346
347
348void RelocInfo::WipeOut() {
349  DCHECK(IsEmbeddedObject(rmode_) ||
350         IsCodeTarget(rmode_) ||
351         IsRuntimeEntry(rmode_) ||
352         IsExternalReference(rmode_));
353  Assembler::set_target_address_at(pc_, host_, NULL);
354}
355
356
357bool RelocInfo::IsPatchedReturnSequence() {
358  Instr instr0 = Assembler::instr_at(pc_);
359  Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
360  Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
361  bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
362                         (instr1 & kOpcodeMask) == ORI &&
363                         ((instr2 & kOpcodeMask) == JAL ||
364                          ((instr2 & kOpcodeMask) == SPECIAL &&
365                           (instr2 & kFunctionFieldMask) == JALR)));
366  return patched_return;
367}
368
369
370bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
371  Instr current_instr = Assembler::instr_at(pc_);
372  return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
373}
374
375
376void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
377  RelocInfo::Mode mode = rmode();
378  if (mode == RelocInfo::EMBEDDED_OBJECT) {
379    visitor->VisitEmbeddedPointer(this);
380  } else if (RelocInfo::IsCodeTarget(mode)) {
381    visitor->VisitCodeTarget(this);
382  } else if (mode == RelocInfo::CELL) {
383    visitor->VisitCell(this);
384  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
385    visitor->VisitExternalReference(this);
386  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
387    visitor->VisitCodeAgeSequence(this);
388  } else if (((RelocInfo::IsJSReturn(mode) &&
389              IsPatchedReturnSequence()) ||
390             (RelocInfo::IsDebugBreakSlot(mode) &&
391             IsPatchedDebugBreakSlotSequence())) &&
392             isolate->debug()->has_break_points()) {
393    visitor->VisitDebugTarget(this);
394  } else if (RelocInfo::IsRuntimeEntry(mode)) {
395    visitor->VisitRuntimeEntry(this);
396  }
397}
398
399
400template<typename StaticVisitor>
401void RelocInfo::Visit(Heap* heap) {
402  RelocInfo::Mode mode = rmode();
403  if (mode == RelocInfo::EMBEDDED_OBJECT) {
404    StaticVisitor::VisitEmbeddedPointer(heap, this);
405  } else if (RelocInfo::IsCodeTarget(mode)) {
406    StaticVisitor::VisitCodeTarget(heap, this);
407  } else if (mode == RelocInfo::CELL) {
408    StaticVisitor::VisitCell(heap, this);
409  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
410    StaticVisitor::VisitExternalReference(this);
411  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
412    StaticVisitor::VisitCodeAgeSequence(heap, this);
413  } else if (heap->isolate()->debug()->has_break_points() &&
414             ((RelocInfo::IsJSReturn(mode) &&
415              IsPatchedReturnSequence()) ||
416             (RelocInfo::IsDebugBreakSlot(mode) &&
417              IsPatchedDebugBreakSlotSequence()))) {
418    StaticVisitor::VisitDebugTarget(heap, this);
419  } else if (RelocInfo::IsRuntimeEntry(mode)) {
420    StaticVisitor::VisitRuntimeEntry(this);
421  }
422}
423
424
425// -----------------------------------------------------------------------------
426// Assembler.
427
428
429void Assembler::CheckBuffer() {
430  if (buffer_space() <= kGap) {
431    GrowBuffer();
432  }
433}
434
435
436void Assembler::CheckTrampolinePoolQuick() {
437  if (pc_offset() >= next_buffer_check_) {
438    CheckTrampolinePool();
439  }
440}
441
442
443void Assembler::emit(Instr x) {
444  if (!is_buffer_growth_blocked()) {
445    CheckBuffer();
446  }
447  *reinterpret_cast<Instr*>(pc_) = x;
448  pc_ += kInstrSize;
449  CheckTrampolinePoolQuick();
450}
451
452
453} }  // namespace v8::internal
454
455#endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
456