assembler-mips.h revision db1b4389239a7132c9cde0915dbd3f775dc1027a
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
47// CPU Registers.
48//
49// 1) We would prefer to use an enum, but enum values are assignment-
50// compatible with int, which has caused code-generation bugs.
51//
52// 2) We would prefer to use a class instead of a struct but we don't like
53// the register initialization to depend on the particular initialization
54// order (which appears to be different on OS X, Linux, and Windows for the
55// installed versions of C++ we tried). Using a struct permits C-style
56// "initialization". Also, the Register objects cannot be const as this
57// forces initialization stubs in MSVC, making us dependent on initialization
58// order.
59//
60// 3) By not using an enum, we are possibly preventing the compiler from
61// doing certain constant folds, which may significantly reduce the
62// code generated for some assembly instructions (because they boil down
63// to a few constants). If this is a problem, we could change the code
64// such that we use an enum in optimized mode, and the struct in debug
65// mode. This way we get the compile-time error checking in debug mode
66// and best performance in optimized code.
67
68
69// -----------------------------------------------------------------------------
70// Implementation of Register and FPURegister.
71
72// Core register.
73struct Register {
74  static const int kNumRegisters = v8::internal::kNumRegisters;
75  static const int kNumAllocatableRegisters = 14;  // v0 through t7.
76  static const int kSizeInBytes = 4;
77
78  static int ToAllocationIndex(Register reg) {
79    return reg.code() - 2;  // zero_reg and 'at' are skipped.
80  }
81
82  static Register FromAllocationIndex(int index) {
83    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
84    return from_code(index + 2);  // zero_reg and 'at' are skipped.
85  }
86
87  static const char* AllocationIndexToString(int index) {
88    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
89    const char* const names[] = {
90      "v0",
91      "v1",
92      "a0",
93      "a1",
94      "a2",
95      "a3",
96      "t0",
97      "t1",
98      "t2",
99      "t3",
100      "t4",
101      "t5",
102      "t6",
103      "t7",
104    };
105    return names[index];
106  }
107
108  static Register from_code(int code) {
109    Register r = { code };
110    return r;
111  }
112
113  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
114  bool is(Register reg) const { return code_ == reg.code_; }
115  int code() const {
116    ASSERT(is_valid());
117    return code_;
118  }
119  int bit() const {
120    ASSERT(is_valid());
121    return 1 << code_;
122  }
123
124  // Unfortunately we can't make this private in a struct.
125  int code_;
126};
127
128#define REGISTER(N, C) \
129  const int kRegister_ ## N ## _Code = C; \
130  const Register N = { C }
131
132REGISTER(no_reg, -1);
133// Always zero.
134REGISTER(zero_reg, 0);
135// at: Reserved for synthetic instructions.
136REGISTER(at, 1);
137// v0, v1: Used when returning multiple values from subroutines.
138REGISTER(v0, 2);
139REGISTER(v1, 3);
140// a0 - a4: Used to pass non-FP parameters.
141REGISTER(a0, 4);
142REGISTER(a1, 5);
143REGISTER(a2, 6);
144REGISTER(a3, 7);
145// t0 - t9: Can be used without reservation, act as temporary registers and are
146// allowed to be destroyed by subroutines.
147REGISTER(t0, 8);
148REGISTER(t1, 9);
149REGISTER(t2, 10);
150REGISTER(t3, 11);
151REGISTER(t4, 12);
152REGISTER(t5, 13);
153REGISTER(t6, 14);
154REGISTER(t7, 15);
155// s0 - s7: Subroutine register variables. Subroutines that write to these
156// registers must restore their values before exiting so that the caller can
157// expect the values to be preserved.
158REGISTER(s0, 16);
159REGISTER(s1, 17);
160REGISTER(s2, 18);
161REGISTER(s3, 19);
162REGISTER(s4, 20);
163REGISTER(s5, 21);
164REGISTER(s6, 22);
165REGISTER(s7, 23);
166REGISTER(t8, 24);
167REGISTER(t9, 25);
168// k0, k1: Reserved for system calls and interrupt handlers.
169REGISTER(k0, 26);
170REGISTER(k1, 27);
171// gp: Reserved.
172REGISTER(gp, 28);
173// sp: Stack pointer.
174REGISTER(sp, 29);
175// fp: Frame pointer.
176REGISTER(fp, 30);
177// ra: Return address pointer.
178REGISTER(ra, 31);
179
180#undef REGISTER
181
182
183int ToNumber(Register reg);
184
185Register ToRegister(int num);
186
187// Coprocessor register.
188struct FPURegister {
189  static const int kNumRegisters = v8::internal::kNumFPURegisters;
190
191  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
192  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
193  // number of Double regs (64-bit regs, or FPU-reg-pairs).
194
195  // A few double registers are reserved: one as a scratch register and one to
196  // hold 0.0.
197  //  f28: 0.0
198  //  f30: scratch register.
199  static const int kNumReservedRegisters = 2;
200  static const int kNumAllocatableRegisters = kNumRegisters / 2 -
201      kNumReservedRegisters;
202
203
204  inline static int ToAllocationIndex(FPURegister reg);
205
206  static FPURegister FromAllocationIndex(int index) {
207    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
208    return from_code(index * 2);
209  }
210
211  static const char* AllocationIndexToString(int index) {
212    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
213    const char* const names[] = {
214      "f0",
215      "f2",
216      "f4",
217      "f6",
218      "f8",
219      "f10",
220      "f12",
221      "f14",
222      "f16",
223      "f18",
224      "f20",
225      "f22",
226      "f24",
227      "f26"
228    };
229    return names[index];
230  }
231
232  static FPURegister from_code(int code) {
233    FPURegister r = { code };
234    return r;
235  }
236
237  bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; }
238  bool is(FPURegister creg) const { return code_ == creg.code_; }
239  FPURegister low() const {
240    // Find low reg of a Double-reg pair, which is the reg itself.
241    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
242    FPURegister reg;
243    reg.code_ = code_;
244    ASSERT(reg.is_valid());
245    return reg;
246  }
247  FPURegister high() const {
248    // Find high reg of a Doubel-reg pair, which is reg + 1.
249    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
250    FPURegister reg;
251    reg.code_ = code_ + 1;
252    ASSERT(reg.is_valid());
253    return reg;
254  }
255
256  int code() const {
257    ASSERT(is_valid());
258    return code_;
259  }
260  int bit() const {
261    ASSERT(is_valid());
262    return 1 << code_;
263  }
264  void setcode(int f) {
265    code_ = f;
266    ASSERT(is_valid());
267  }
268  // Unfortunately we can't make this private in a struct.
269  int code_;
270};
271
272// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
273// 32-bit registers, f0 through f31. When used as 'double' they are used
274// in pairs, starting with the even numbered register. So a double operation
275// on f0 really uses f0 and f1.
276// (Modern mips hardware also supports 32 64-bit registers, via setting
277// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
278// but it is not in common use. Someday we will want to support this in v8.)
279
280// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
281typedef FPURegister DoubleRegister;
282typedef FPURegister FloatRegister;
283
284const FPURegister no_freg = { -1 };
285
286const FPURegister f0 = { 0 };  // Return value in hard float mode.
287const FPURegister f1 = { 1 };
288const FPURegister f2 = { 2 };
289const FPURegister f3 = { 3 };
290const FPURegister f4 = { 4 };
291const FPURegister f5 = { 5 };
292const FPURegister f6 = { 6 };
293const FPURegister f7 = { 7 };
294const FPURegister f8 = { 8 };
295const FPURegister f9 = { 9 };
296const FPURegister f10 = { 10 };
297const FPURegister f11 = { 11 };
298const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
299const FPURegister f13 = { 13 };
300const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
301const FPURegister f15 = { 15 };
302const FPURegister f16 = { 16 };
303const FPURegister f17 = { 17 };
304const FPURegister f18 = { 18 };
305const FPURegister f19 = { 19 };
306const FPURegister f20 = { 20 };
307const FPURegister f21 = { 21 };
308const FPURegister f22 = { 22 };
309const FPURegister f23 = { 23 };
310const FPURegister f24 = { 24 };
311const FPURegister f25 = { 25 };
312const FPURegister f26 = { 26 };
313const FPURegister f27 = { 27 };
314const FPURegister f28 = { 28 };
315const FPURegister f29 = { 29 };
316const FPURegister f30 = { 30 };
317const FPURegister f31 = { 31 };
318
319// Register aliases.
320// cp is assumed to be a callee saved register.
321static const Register& kLithiumScratchReg = s3;  // Scratch register.
322static const Register& kLithiumScratchReg2 = s4;  // Scratch register.
323static const Register& kRootRegister = s6;  // Roots array pointer.
324static const Register& cp = s7;     // JavaScript context pointer.
325static const DoubleRegister& kLithiumScratchDouble = f30;
326static const FPURegister& kDoubleRegZero = f28;
327
328// FPU (coprocessor 1) control registers.
329// Currently only FCSR (#31) is implemented.
330struct FPUControlRegister {
331  bool is_valid() const { return code_ == kFCSRRegister; }
332  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
333  int code() const {
334    ASSERT(is_valid());
335    return code_;
336  }
337  int bit() const {
338    ASSERT(is_valid());
339    return 1 << code_;
340  }
341  void setcode(int f) {
342    code_ = f;
343    ASSERT(is_valid());
344  }
345  // Unfortunately we can't make this private in a struct.
346  int code_;
347};
348
349const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
350const FPUControlRegister FCSR = { kFCSRRegister };
351
352
353// -----------------------------------------------------------------------------
354// Machine instruction Operands.
355
356// Class Operand represents a shifter operand in data processing instructions.
357class Operand BASE_EMBEDDED {
358 public:
359  // Immediate.
360  INLINE(explicit Operand(int32_t immediate,
361         RelocInfo::Mode rmode = RelocInfo::NONE));
362  INLINE(explicit Operand(const ExternalReference& f));
363  INLINE(explicit Operand(const char* s));
364  INLINE(explicit Operand(Object** opp));
365  INLINE(explicit Operand(Context** cpp));
366  explicit Operand(Handle<Object> handle);
367  INLINE(explicit Operand(Smi* value));
368
369  // Register.
370  INLINE(explicit Operand(Register rm));
371
372  // Return true if this is a register operand.
373  INLINE(bool is_reg() const);
374
375  Register rm() const { return rm_; }
376
377 private:
378  Register rm_;
379  int32_t imm32_;  // Valid if rm_ == no_reg.
380  RelocInfo::Mode rmode_;
381
382  friend class Assembler;
383  friend class MacroAssembler;
384};
385
386
387// On MIPS we have only one adressing mode with base_reg + offset.
388// Class MemOperand represents a memory operand in load and store instructions.
389class MemOperand : public Operand {
390 public:
391  explicit MemOperand(Register rn, int32_t offset = 0);
392  int32_t offset() const { return offset_; }
393
394  bool OffsetIsInt16Encodable() const {
395    return is_int16(offset_);
396  }
397
398 private:
399  int32_t offset_;
400
401  friend class Assembler;
402};
403
404
405// CpuFeatures keeps track of which features are supported by the target CPU.
406// Supported features must be enabled by a Scope before use.
407class CpuFeatures : public AllStatic {
408 public:
409  // Detect features of the target CPU. Set safe defaults if the serializer
410  // is enabled (snapshots must be portable).
411  static void Probe();
412
413  // Check whether a feature is supported by the target CPU.
414  static bool IsSupported(CpuFeature f) {
415    ASSERT(initialized_);
416    if (f == FPU && !FLAG_enable_fpu) return false;
417    return (supported_ & (1u << f)) != 0;
418  }
419
420
421#ifdef DEBUG
422  // Check whether a feature is currently enabled.
423  static bool IsEnabled(CpuFeature f) {
424    ASSERT(initialized_);
425    Isolate* isolate = Isolate::UncheckedCurrent();
426    if (isolate == NULL) {
427      // When no isolate is available, work as if we're running in
428      // release mode.
429      return IsSupported(f);
430    }
431    unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features());
432    return (enabled & (1u << f)) != 0;
433  }
434#endif
435
436  // Enable a specified feature within a scope.
437  class Scope BASE_EMBEDDED {
438#ifdef DEBUG
439
440   public:
441    explicit Scope(CpuFeature f) {
442      unsigned mask = 1u << f;
443      ASSERT(CpuFeatures::IsSupported(f));
444      ASSERT(!Serializer::enabled() ||
445             (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
446      isolate_ = Isolate::UncheckedCurrent();
447      old_enabled_ = 0;
448      if (isolate_ != NULL) {
449        old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features());
450        isolate_->set_enabled_cpu_features(old_enabled_ | mask);
451      }
452    }
453    ~Scope() {
454      ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
455      if (isolate_ != NULL) {
456        isolate_->set_enabled_cpu_features(old_enabled_);
457      }
458    }
459
460 private:
461    Isolate* isolate_;
462    unsigned old_enabled_;
463#else
464
465 public:
466    explicit Scope(CpuFeature f) {}
467#endif
468  };
469
470  class TryForceFeatureScope BASE_EMBEDDED {
471   public:
472    explicit TryForceFeatureScope(CpuFeature f)
473        : old_supported_(CpuFeatures::supported_) {
474      if (CanForce()) {
475        CpuFeatures::supported_ |= (1u << f);
476      }
477    }
478
479    ~TryForceFeatureScope() {
480      if (CanForce()) {
481        CpuFeatures::supported_ = old_supported_;
482      }
483    }
484
485   private:
486    static bool CanForce() {
487      // It's only safe to temporarily force support of CPU features
488      // when there's only a single isolate, which is guaranteed when
489      // the serializer is enabled.
490      return Serializer::enabled();
491    }
492
493    const unsigned old_supported_;
494  };
495
496 private:
497#ifdef DEBUG
498  static bool initialized_;
499#endif
500  static unsigned supported_;
501  static unsigned found_by_runtime_probing_;
502
503  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
504};
505
506
507class Assembler : public AssemblerBase {
508 public:
509  // Create an assembler. Instructions and relocation information are emitted
510  // into a buffer, with the instructions starting from the beginning and the
511  // relocation information starting from the end of the buffer. See CodeDesc
512  // for a detailed comment on the layout (globals.h).
513  //
514  // If the provided buffer is NULL, the assembler allocates and grows its own
515  // buffer, and buffer_size determines the initial buffer size. The buffer is
516  // owned by the assembler and deallocated upon destruction of the assembler.
517  //
518  // If the provided buffer is not NULL, the assembler uses the provided buffer
519  // for code generation and assumes its size to be buffer_size. If the buffer
520  // is too small, a fatal error occurs. No deallocation of the buffer is done
521  // upon destruction of the assembler.
522  Assembler(Isolate* isolate, void* buffer, int buffer_size);
523  ~Assembler();
524
525  // Overrides the default provided by FLAG_debug_code.
526  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
527
528  // GetCode emits any pending (non-emitted) code and fills the descriptor
529  // desc. GetCode() is idempotent; it returns the same result if no other
530  // Assembler functions are invoked in between GetCode() calls.
531  void GetCode(CodeDesc* desc);
532
533  // Label operations & relative jumps (PPUM Appendix D).
534  //
535  // Takes a branch opcode (cc) and a label (L) and generates
536  // either a backward branch or a forward branch and links it
537  // to the label fixup chain. Usage:
538  //
539  // Label L;    // unbound label
540  // j(cc, &L);  // forward branch to unbound label
541  // bind(&L);   // bind label to the current pc
542  // j(cc, &L);  // backward branch to bound label
543  // bind(&L);   // illegal: a label may be bound only once
544  //
545  // Note: The same Label can be used for forward and backward branches
546  // but it may be bound only once.
547  void bind(Label* L);  // Binds an unbound label L to current code position.
548  // Determines if Label is bound and near enough so that branch instruction
549  // can be used to reach it, instead of jump instruction.
550  bool is_near(Label* L);
551
552  // Returns the branch offset to the given label from the current code
553  // position. Links the label to the current position if it is still unbound.
554  // Manages the jump elimination optimization if the second parameter is true.
555  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
556  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
557    int32_t o = branch_offset(L, jump_elimination_allowed);
558    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
559    return o >> 2;
560  }
561  uint32_t jump_address(Label* L);
562
563  // Puts a labels target address at the given position.
564  // The high 8 bits are set to zero.
565  void label_at_put(Label* L, int at_offset);
566
567  // Read/Modify the code target address in the branch/call instruction at pc.
568  static Address target_address_at(Address pc);
569  static void set_target_address_at(Address pc, Address target);
570
571  static void JumpLabelToJumpRegister(Address pc);
572
573  static void QuietNaN(HeapObject* nan);
574
575  // This sets the branch destination (which gets loaded at the call address).
576  // This is for calls and branches within generated code.  The serializer
577  // has already deserialized the lui/ori instructions etc.
578  inline static void deserialization_set_special_target_at(
579      Address instruction_payload, Address target) {
580    set_target_address_at(
581        instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
582        target);
583  }
584
585  // This sets the branch destination.
586  // This is for calls and branches to runtime code.
587  inline static void set_external_target_at(Address instruction_payload,
588                                            Address target) {
589    set_target_address_at(instruction_payload, target);
590  }
591
592  // Size of an instruction.
593  static const int kInstrSize = sizeof(Instr);
594
595  // Difference between address of current opcode and target address offset.
596  static const int kBranchPCOffset = 4;
597
598  // Here we are patching the address in the LUI/ORI instruction pair.
599  // These values are used in the serialization process and must be zero for
600  // MIPS platform, as Code, Embedded Object or External-reference pointers
601  // are split across two consecutive instructions and don't exist separately
602  // in the code, so the serializer should not step forwards in memory after
603  // a target is resolved and written.
604  static const int kSpecialTargetSize = 0;
605
606  // Number of consecutive instructions used to store 32bit constant.
607  // Before jump-optimizations, this constant was used in
608  // RelocInfo::target_address_address() function to tell serializer address of
609  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
610  // optimization, where jump-through-register instruction that usually
611  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
612  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
613  static const int kInstructionsFor32BitConstant = 3;
614
615  // Distance between the instruction referring to the address of the call
616  // target and the return address.
617  static const int kCallTargetAddressOffset = 4 * kInstrSize;
618
619  // Distance between start of patched return sequence and the emitted address
620  // to jump to.
621  static const int kPatchReturnSequenceAddressOffset = 0;
622
623  // Distance between start of patched debug break slot and the emitted address
624  // to jump to.
625  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
626
627  // Difference between address of current opcode and value read from pc
628  // register.
629  static const int kPcLoadDelta = 4;
630
631  // Number of instructions used for the JS return sequence. The constant is
632  // used by the debugger to patch the JS return sequence.
633  static const int kJSReturnSequenceInstructions = 7;
634  static const int kDebugBreakSlotInstructions = 4;
635  static const int kDebugBreakSlotLength =
636      kDebugBreakSlotInstructions * kInstrSize;
637
638
639  // ---------------------------------------------------------------------------
640  // Code generation.
641
642  // Insert the smallest number of nop instructions
643  // possible to align the pc offset to a multiple
644  // of m. m must be a power of 2 (>= 4).
645  void Align(int m);
646  // Aligns code to something that's optimal for a jump target for the platform.
647  void CodeTargetAlign();
648
649  // Different nop operations are used by the code generator to detect certain
650  // states of the generated code.
651  enum NopMarkerTypes {
652    NON_MARKING_NOP = 0,
653    DEBUG_BREAK_NOP,
654    // IC markers.
655    PROPERTY_ACCESS_INLINED,
656    PROPERTY_ACCESS_INLINED_CONTEXT,
657    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
658    // Helper values.
659    LAST_CODE_MARKER,
660    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
661  };
662
663  // Type == 0 is the default non-marking type.
664  void nop(unsigned int type = 0) {
665    ASSERT(type < 32);
666    sll(zero_reg, zero_reg, type, true);
667  }
668
669
670  // --------Branch-and-jump-instructions----------
671  // We don't use likely variant of instructions.
672  void b(int16_t offset);
673  void b(Label* L) { b(branch_offset(L, false)>>2); }
674  void bal(int16_t offset);
675  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
676
677  void beq(Register rs, Register rt, int16_t offset);
678  void beq(Register rs, Register rt, Label* L) {
679    beq(rs, rt, branch_offset(L, false) >> 2);
680  }
681  void bgez(Register rs, int16_t offset);
682  void bgezal(Register rs, int16_t offset);
683  void bgtz(Register rs, int16_t offset);
684  void blez(Register rs, int16_t offset);
685  void bltz(Register rs, int16_t offset);
686  void bltzal(Register rs, int16_t offset);
687  void bne(Register rs, Register rt, int16_t offset);
688  void bne(Register rs, Register rt, Label* L) {
689    bne(rs, rt, branch_offset(L, false)>>2);
690  }
691
692  // Never use the int16_t b(l)cond version with a branch offset
693  // instead of using the Label* version.
694
695  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
696  void j(int32_t target);
697  void jal(int32_t target);
698  void jalr(Register rs, Register rd = ra);
699  void jr(Register target);
700  void j_or_jr(int32_t target, Register rs);
701  void jal_or_jalr(int32_t target, Register rs);
702
703
704  //-------Data-processing-instructions---------
705
706  // Arithmetic.
707  void addu(Register rd, Register rs, Register rt);
708  void subu(Register rd, Register rs, Register rt);
709  void mult(Register rs, Register rt);
710  void multu(Register rs, Register rt);
711  void div(Register rs, Register rt);
712  void divu(Register rs, Register rt);
713  void mul(Register rd, Register rs, Register rt);
714
715  void addiu(Register rd, Register rs, int32_t j);
716
717  // Logical.
718  void and_(Register rd, Register rs, Register rt);
719  void or_(Register rd, Register rs, Register rt);
720  void xor_(Register rd, Register rs, Register rt);
721  void nor(Register rd, Register rs, Register rt);
722
723  void andi(Register rd, Register rs, int32_t j);
724  void ori(Register rd, Register rs, int32_t j);
725  void xori(Register rd, Register rs, int32_t j);
726  void lui(Register rd, int32_t j);
727
728  // Shifts.
729  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
730  // and may cause problems in normal code. coming_from_nop makes sure this
731  // doesn't happen.
732  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
733  void sllv(Register rd, Register rt, Register rs);
734  void srl(Register rd, Register rt, uint16_t sa);
735  void srlv(Register rd, Register rt, Register rs);
736  void sra(Register rt, Register rd, uint16_t sa);
737  void srav(Register rt, Register rd, Register rs);
738  void rotr(Register rd, Register rt, uint16_t sa);
739  void rotrv(Register rd, Register rt, Register rs);
740
741
742  //------------Memory-instructions-------------
743
744  void lb(Register rd, const MemOperand& rs);
745  void lbu(Register rd, const MemOperand& rs);
746  void lh(Register rd, const MemOperand& rs);
747  void lhu(Register rd, const MemOperand& rs);
748  void lw(Register rd, const MemOperand& rs);
749  void lwl(Register rd, const MemOperand& rs);
750  void lwr(Register rd, const MemOperand& rs);
751  void sb(Register rd, const MemOperand& rs);
752  void sh(Register rd, const MemOperand& rs);
753  void sw(Register rd, const MemOperand& rs);
754  void swl(Register rd, const MemOperand& rs);
755  void swr(Register rd, const MemOperand& rs);
756
757
758  //-------------Misc-instructions--------------
759
760  // Break / Trap instructions.
761  void break_(uint32_t code, bool break_as_stop = false);
762  void stop(const char* msg, uint32_t code = kMaxStopCode);
763  void tge(Register rs, Register rt, uint16_t code);
764  void tgeu(Register rs, Register rt, uint16_t code);
765  void tlt(Register rs, Register rt, uint16_t code);
766  void tltu(Register rs, Register rt, uint16_t code);
767  void teq(Register rs, Register rt, uint16_t code);
768  void tne(Register rs, Register rt, uint16_t code);
769
770  // Move from HI/LO register.
771  void mfhi(Register rd);
772  void mflo(Register rd);
773
774  // Set on less than.
775  void slt(Register rd, Register rs, Register rt);
776  void sltu(Register rd, Register rs, Register rt);
777  void slti(Register rd, Register rs, int32_t j);
778  void sltiu(Register rd, Register rs, int32_t j);
779
780  // Conditional move.
781  void movz(Register rd, Register rs, Register rt);
782  void movn(Register rd, Register rs, Register rt);
783  void movt(Register rd, Register rs, uint16_t cc = 0);
784  void movf(Register rd, Register rs, uint16_t cc = 0);
785
786  // Bit twiddling.
787  void clz(Register rd, Register rs);
788  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
789  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
790
791  //--------Coprocessor-instructions----------------
792
793  // Load, store, and move.
794  void lwc1(FPURegister fd, const MemOperand& src);
795  void ldc1(FPURegister fd, const MemOperand& src);
796
797  void swc1(FPURegister fs, const MemOperand& dst);
798  void sdc1(FPURegister fs, const MemOperand& dst);
799
800  void mtc1(Register rt, FPURegister fs);
801  void mfc1(Register rt, FPURegister fs);
802
803  void ctc1(Register rt, FPUControlRegister fs);
804  void cfc1(Register rt, FPUControlRegister fs);
805
806  // Arithmetic.
807  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
808  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
809  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
810  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
811  void abs_d(FPURegister fd, FPURegister fs);
812  void mov_d(FPURegister fd, FPURegister fs);
813  void neg_d(FPURegister fd, FPURegister fs);
814  void sqrt_d(FPURegister fd, FPURegister fs);
815
816  // Conversion.
817  void cvt_w_s(FPURegister fd, FPURegister fs);
818  void cvt_w_d(FPURegister fd, FPURegister fs);
819  void trunc_w_s(FPURegister fd, FPURegister fs);
820  void trunc_w_d(FPURegister fd, FPURegister fs);
821  void round_w_s(FPURegister fd, FPURegister fs);
822  void round_w_d(FPURegister fd, FPURegister fs);
823  void floor_w_s(FPURegister fd, FPURegister fs);
824  void floor_w_d(FPURegister fd, FPURegister fs);
825  void ceil_w_s(FPURegister fd, FPURegister fs);
826  void ceil_w_d(FPURegister fd, FPURegister fs);
827
828  void cvt_l_s(FPURegister fd, FPURegister fs);
829  void cvt_l_d(FPURegister fd, FPURegister fs);
830  void trunc_l_s(FPURegister fd, FPURegister fs);
831  void trunc_l_d(FPURegister fd, FPURegister fs);
832  void round_l_s(FPURegister fd, FPURegister fs);
833  void round_l_d(FPURegister fd, FPURegister fs);
834  void floor_l_s(FPURegister fd, FPURegister fs);
835  void floor_l_d(FPURegister fd, FPURegister fs);
836  void ceil_l_s(FPURegister fd, FPURegister fs);
837  void ceil_l_d(FPURegister fd, FPURegister fs);
838
839  void cvt_s_w(FPURegister fd, FPURegister fs);
840  void cvt_s_l(FPURegister fd, FPURegister fs);
841  void cvt_s_d(FPURegister fd, FPURegister fs);
842
843  void cvt_d_w(FPURegister fd, FPURegister fs);
844  void cvt_d_l(FPURegister fd, FPURegister fs);
845  void cvt_d_s(FPURegister fd, FPURegister fs);
846
847  // Conditions and branches.
848  void c(FPUCondition cond, SecondaryField fmt,
849         FPURegister ft, FPURegister fs, uint16_t cc = 0);
850
851  void bc1f(int16_t offset, uint16_t cc = 0);
852  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
853  void bc1t(int16_t offset, uint16_t cc = 0);
854  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
855  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
856
857  // Check the code size generated from label to here.
858  int SizeOfCodeGeneratedSince(Label* label) {
859    return pc_offset() - label->pos();
860  }
861
862  // Check the number of instructions generated from label to here.
863  int InstructionsGeneratedSince(Label* label) {
864    return SizeOfCodeGeneratedSince(label) / kInstrSize;
865  }
866
867  // Class for scoping postponing the trampoline pool generation.
868  class BlockTrampolinePoolScope {
869   public:
870    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
871      assem_->StartBlockTrampolinePool();
872    }
873    ~BlockTrampolinePoolScope() {
874      assem_->EndBlockTrampolinePool();
875    }
876
877   private:
878    Assembler* assem_;
879
880    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
881  };
882
883  // Class for postponing the assembly buffer growth. Typically used for
884  // sequences of instructions that must be emitted as a unit, before
885  // buffer growth (and relocation) can occur.
886  // This blocking scope is not nestable.
887  class BlockGrowBufferScope {
888   public:
889    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
890      assem_->StartBlockGrowBuffer();
891    }
892    ~BlockGrowBufferScope() {
893      assem_->EndBlockGrowBuffer();
894    }
895
896    private:
897     Assembler* assem_;
898
899     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
900  };
901
902  // Debugging.
903
904  // Mark address of the ExitJSFrame code.
905  void RecordJSReturn();
906
907  // Mark address of a debug break slot.
908  void RecordDebugBreakSlot();
909
910  // Record the AST id of the CallIC being compiled, so that it can be placed
911  // in the relocation information.
912  void SetRecordedAstId(unsigned ast_id) {
913    ASSERT(recorded_ast_id_ == kNoASTId);
914    recorded_ast_id_ = ast_id;
915  }
916
917  unsigned RecordedAstId() {
918    ASSERT(recorded_ast_id_ != kNoASTId);
919    return recorded_ast_id_;
920  }
921
922  void ClearRecordedAstId() { recorded_ast_id_ = kNoASTId; }
923
924  // Record a comment relocation entry that can be used by a disassembler.
925  // Use --code-comments to enable.
926  void RecordComment(const char* msg);
927
928  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
929
930  // Writes a single byte or word of data in the code stream.  Used for
931  // inline tables, e.g., jump-tables.
932  void db(uint8_t data);
933  void dd(uint32_t data);
934
935  int32_t pc_offset() const { return pc_ - buffer_; }
936
937  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
938
939  // Postpone the generation of the trampoline pool for the specified number of
940  // instructions.
941  void BlockTrampolinePoolFor(int instructions);
942
943  // Check if there is less than kGap bytes available in the buffer.
944  // If this is the case, we need to grow the buffer before emitting
945  // an instruction or relocation information.
946  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
947
948  // Get the number of bytes available in the buffer.
949  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
950
951  // Read/patch instructions.
952  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
953  static void instr_at_put(byte* pc, Instr instr) {
954    *reinterpret_cast<Instr*>(pc) = instr;
955  }
956  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
957  void instr_at_put(int pos, Instr instr) {
958    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
959  }
960
961  // Check if an instruction is a branch of some kind.
962  static bool IsBranch(Instr instr);
963  static bool IsBeq(Instr instr);
964  static bool IsBne(Instr instr);
965
966  static bool IsJump(Instr instr);
967  static bool IsJ(Instr instr);
968  static bool IsLui(Instr instr);
969  static bool IsOri(Instr instr);
970
971  static bool IsJal(Instr instr);
972  static bool IsJr(Instr instr);
973  static bool IsJalr(Instr instr);
974
975  static bool IsNop(Instr instr, unsigned int type);
976  static bool IsPop(Instr instr);
977  static bool IsPush(Instr instr);
978  static bool IsLwRegFpOffset(Instr instr);
979  static bool IsSwRegFpOffset(Instr instr);
980  static bool IsLwRegFpNegOffset(Instr instr);
981  static bool IsSwRegFpNegOffset(Instr instr);
982
983  static Register GetRtReg(Instr instr);
984  static Register GetRsReg(Instr instr);
985  static Register GetRdReg(Instr instr);
986
987  static uint32_t GetRt(Instr instr);
988  static uint32_t GetRtField(Instr instr);
989  static uint32_t GetRs(Instr instr);
990  static uint32_t GetRsField(Instr instr);
991  static uint32_t GetRd(Instr instr);
992  static uint32_t GetRdField(Instr instr);
993  static uint32_t GetSa(Instr instr);
994  static uint32_t GetSaField(Instr instr);
995  static uint32_t GetOpcodeField(Instr instr);
996  static uint32_t GetFunction(Instr instr);
997  static uint32_t GetFunctionField(Instr instr);
998  static uint32_t GetImmediate16(Instr instr);
999  static uint32_t GetLabelConst(Instr instr);
1000
1001  static int32_t GetBranchOffset(Instr instr);
1002  static bool IsLw(Instr instr);
1003  static int16_t GetLwOffset(Instr instr);
1004  static Instr SetLwOffset(Instr instr, int16_t offset);
1005
1006  static bool IsSw(Instr instr);
1007  static Instr SetSwOffset(Instr instr, int16_t offset);
1008  static bool IsAddImmediate(Instr instr);
1009  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1010
1011  static bool IsAndImmediate(Instr instr);
1012
1013  void CheckTrampolinePool();
1014
1015 protected:
1016  // Relocation for a type-recording IC has the AST id added to it.  This
1017  // member variable is a way to pass the information from the call site to
1018  // the relocation info.
1019  unsigned recorded_ast_id_;
1020
1021  bool emit_debug_code() const { return emit_debug_code_; }
1022
1023  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1024
1025  // Decode branch instruction at pos and return branch target pos.
1026  int target_at(int32_t pos);
1027
1028  // Patch branch instruction at pos to branch to given branch target pos.
1029  void target_at_put(int32_t pos, int32_t target_pos);
1030
1031  // Say if we need to relocate with this mode.
1032  bool MustUseReg(RelocInfo::Mode rmode);
1033
1034  // Record reloc info for current pc_.
1035  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1036
1037  // Block the emission of the trampoline pool before pc_offset.
1038  void BlockTrampolinePoolBefore(int pc_offset) {
1039    if (no_trampoline_pool_before_ < pc_offset)
1040      no_trampoline_pool_before_ = pc_offset;
1041  }
1042
1043  void StartBlockTrampolinePool() {
1044    trampoline_pool_blocked_nesting_++;
1045  }
1046
1047  void EndBlockTrampolinePool() {
1048    trampoline_pool_blocked_nesting_--;
1049  }
1050
1051  bool is_trampoline_pool_blocked() const {
1052    return trampoline_pool_blocked_nesting_ > 0;
1053  }
1054
1055  bool has_exception() const {
1056    return internal_trampoline_exception_;
1057  }
1058
1059  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1060
1061  bool is_trampoline_emitted() const {
1062    return trampoline_emitted_;
1063  }
1064
1065  // Temporarily block automatic assembly buffer growth.
1066  void StartBlockGrowBuffer() {
1067    ASSERT(!block_buffer_growth_);
1068    block_buffer_growth_ = true;
1069  }
1070
1071  void EndBlockGrowBuffer() {
1072    ASSERT(block_buffer_growth_);
1073    block_buffer_growth_ = false;
1074  }
1075
1076  bool is_buffer_growth_blocked() const {
1077    return block_buffer_growth_;
1078  }
1079
1080 private:
1081  // Code buffer:
1082  // The buffer into which code and relocation info are generated.
1083  byte* buffer_;
1084  int buffer_size_;
1085  // True if the assembler owns the buffer, false if buffer is external.
1086  bool own_buffer_;
1087
1088  // Buffer size and constant pool distance are checked together at regular
1089  // intervals of kBufferCheckInterval emitted bytes.
1090  static const int kBufferCheckInterval = 1*KB/2;
1091
1092  // Code generation.
1093  // The relocation writer's position is at least kGap bytes below the end of
1094  // the generated instructions. This is so that multi-instruction sequences do
1095  // not have to check for overflow. The same is true for writes of large
1096  // relocation info entries.
1097  static const int kGap = 32;
1098  byte* pc_;  // The program counter - moves forward.
1099
1100
1101  // Repeated checking whether the trampoline pool should be emitted is rather
1102  // expensive. By default we only check again once a number of instructions
1103  // has been generated.
1104  static const int kCheckConstIntervalInst = 32;
1105  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1106
1107  int next_buffer_check_;  // pc offset of next buffer check.
1108
1109  // Emission of the trampoline pool may be blocked in some code sequences.
1110  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1111  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1112
1113  // Keep track of the last emitted pool to guarantee a maximal distance.
1114  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1115
1116  // Automatic growth of the assembly buffer may be blocked for some sequences.
1117  bool block_buffer_growth_;  // Block growth when true.
1118
1119  // Relocation information generation.
1120  // Each relocation is encoded as a variable size value.
1121  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1122  RelocInfoWriter reloc_info_writer;
1123
1124  // The bound position, before this we cannot do instruction elimination.
1125  int last_bound_pos_;
1126
1127  // Code emission.
1128  inline void CheckBuffer();
1129  void GrowBuffer();
1130  inline void emit(Instr x);
1131  inline void CheckTrampolinePoolQuick();
1132
1133  // Instruction generation.
1134  // We have 3 different kind of encoding layout on MIPS.
1135  // However due to many different types of objects encoded in the same fields
1136  // we have quite a few aliases for each mode.
1137  // Using the same structure to refer to Register and FPURegister would spare a
1138  // few aliases, but mixing both does not look clean to me.
1139  // Anyway we could surely implement this differently.
1140
1141  void GenInstrRegister(Opcode opcode,
1142                        Register rs,
1143                        Register rt,
1144                        Register rd,
1145                        uint16_t sa = 0,
1146                        SecondaryField func = NULLSF);
1147
1148  void GenInstrRegister(Opcode opcode,
1149                        Register rs,
1150                        Register rt,
1151                        uint16_t msb,
1152                        uint16_t lsb,
1153                        SecondaryField func);
1154
1155  void GenInstrRegister(Opcode opcode,
1156                        SecondaryField fmt,
1157                        FPURegister ft,
1158                        FPURegister fs,
1159                        FPURegister fd,
1160                        SecondaryField func = NULLSF);
1161
1162  void GenInstrRegister(Opcode opcode,
1163                        SecondaryField fmt,
1164                        Register rt,
1165                        FPURegister fs,
1166                        FPURegister fd,
1167                        SecondaryField func = NULLSF);
1168
1169  void GenInstrRegister(Opcode opcode,
1170                        SecondaryField fmt,
1171                        Register rt,
1172                        FPUControlRegister fs,
1173                        SecondaryField func = NULLSF);
1174
1175
1176  void GenInstrImmediate(Opcode opcode,
1177                         Register rs,
1178                         Register rt,
1179                         int32_t  j);
1180  void GenInstrImmediate(Opcode opcode,
1181                         Register rs,
1182                         SecondaryField SF,
1183                         int32_t  j);
1184  void GenInstrImmediate(Opcode opcode,
1185                         Register r1,
1186                         FPURegister r2,
1187                         int32_t  j);
1188
1189
1190  void GenInstrJump(Opcode opcode,
1191                     uint32_t address);
1192
1193  // Helpers.
1194  void LoadRegPlusOffsetToAt(const MemOperand& src);
1195
1196  // Labels.
1197  void print(Label* L);
1198  void bind_to(Label* L, int pos);
1199  void next(Label* L);
1200
1201  // One trampoline consists of:
1202  // - space for trampoline slots,
1203  // - space for labels.
1204  //
1205  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1206  // Space for trampoline slots preceeds space for labels. Each label is of one
1207  // instruction size, so total amount for labels is equal to
1208  // label_count *  kInstrSize.
1209  class Trampoline {
1210   public:
1211    Trampoline() {
1212      start_ = 0;
1213      next_slot_ = 0;
1214      free_slot_count_ = 0;
1215      end_ = 0;
1216    }
1217    Trampoline(int start, int slot_count) {
1218      start_ = start;
1219      next_slot_ = start;
1220      free_slot_count_ = slot_count;
1221      end_ = start + slot_count * kTrampolineSlotsSize;
1222    }
1223    int start() {
1224      return start_;
1225    }
1226    int end() {
1227      return end_;
1228    }
1229    int take_slot() {
1230      int trampoline_slot = kInvalidSlotPos;
1231      if (free_slot_count_ <= 0) {
1232        // We have run out of space on trampolines.
1233        // Make sure we fail in debug mode, so we become aware of each case
1234        // when this happens.
1235        ASSERT(0);
1236        // Internal exception will be caught.
1237      } else {
1238        trampoline_slot = next_slot_;
1239        free_slot_count_--;
1240        next_slot_ += kTrampolineSlotsSize;
1241      }
1242      return trampoline_slot;
1243    }
1244
1245   private:
1246    int start_;
1247    int end_;
1248    int next_slot_;
1249    int free_slot_count_;
1250  };
1251
1252  int32_t get_trampoline_entry(int32_t pos);
1253  int unbound_labels_count_;
1254  // If trampoline is emitted, generated code is becoming large. As this is
1255  // already a slow case which can possibly break our code generation for the
1256  // extreme case, we use this information to trigger different mode of
1257  // branch instruction generation, where we use jump instructions rather
1258  // than regular branch instructions.
1259  bool trampoline_emitted_;
1260  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1261  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1262  static const int kInvalidSlotPos = -1;
1263
1264  Trampoline trampoline_;
1265  bool internal_trampoline_exception_;
1266
1267  friend class RegExpMacroAssemblerMIPS;
1268  friend class RelocInfo;
1269  friend class CodePatcher;
1270  friend class BlockTrampolinePoolScope;
1271
1272  PositionsRecorder positions_recorder_;
1273  bool emit_debug_code_;
1274  friend class PositionsRecorder;
1275  friend class EnsureSpace;
1276};
1277
1278
1279class EnsureSpace BASE_EMBEDDED {
1280 public:
1281  explicit EnsureSpace(Assembler* assembler) {
1282    assembler->CheckBuffer();
1283  }
1284};
1285
1286} }  // namespace v8::internal
1287
1288#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1289